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VANISHING OF MODULAR FORMS AT INFINITY

SCOTT AHLGREN, NADIA MASRI, AND JEREMY ROUSE

(Communicated by Wen-Ching Winnie Li)

Abstract. We give upper bounds for the maximal order of vanishing at ∞
of a modular form or cusp form of weight k on Γ0(Np) when p � N is prime.
The results improve the upper bound given by the classical valence formula
and the bound (in characteristic p) given by a theorem of Sturm. In many
cases the bounds are sharp. As a corollary, we obtain a necessary condition
for the existence of a non-zero form f ∈ S2(Γ0(Np)) with ord∞(f) larger than
the genus of X0(Np). In particular, this gives a (non-geometric) proof of a
theorem of Ogg, which asserts that ∞ is not a Weierstrass point on X0(Np)
if p � N and X0(N) has genus zero.

1. Introduction and statement of results

Let Mk(Γ0(N)) denote the complex vector space of holomorphic modular forms
of weight k and level N , and let Sk(Γ0(N)) denote the subspace of cusp forms (see,
for example, [4] for background). If f(z) is a non-zero element of Mk(Γ0(N)), and
q := e2πiz, then f has a Fourier expansion at ∞ of the form

f(z) =
∞∑

n=n0

a(n)qn with a(n0) �= 0.

Given such a form f , we define

ord∞(f) := n0.

The following question is very natural:

For a non-zero element f ∈ Mk(Γ0(N)) (respectively Sk(Γ0(N))),
what is the largest possible value of ord∞(f)?

For convenience, we define Γ := SL2(Z). By the valence formula, we know that
the total number of zeros of a non-zero element f ∈ Mk(Γ0(N)) (counted in local
coordinates in the usual way), is given by k

12 [Γ : Γ0(N)] (see, for example, Chapter
V of [12]). An element of Mk(Γ0(N)) may (depending on the values of N and k)
have forced vanishing at elliptic points. We denote by α(N, k) the number of zeros
forced by this consideration, and by ε∞(N) the number of cusps of Γ0(N) (see (3.2),
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(3.4) for the precise definitions). Then we have
(1.1)

0 �= f ∈ Mk(Γ0(N)) =⇒ ord∞(f) ≤ k

12
[Γ : Γ0(N)] − α(N, k),

0 �= f ∈ Sk(Γ0(N)) =⇒ ord∞(f) ≤ k

12
[Γ : Γ0(N)] − α(N, k) − ε∞(N) + 1.

On the other hand, each of the spaces Mk(Γ0(N)) and Sk(Γ0(N)) has a basis
consisting of forms with rational coefficients. Using this basis, one can construct
an integral basis in “echelon form.” To be precise, let d denote the dimension of
the space in question. Then we have a basis of forms {f1, . . . , fd} with integer
coefficients and with the property that

(1.2)

f1(z) = a1q
c1 + O(qc1+1),

f2(z) = a2q
c2 + O(qc2+1),

...
...

fd(z) = adq
cd + O(qcd+1).

Here each leading coefficient ai is a non-zero integer, and c1 < c2 < · · · < cd. It is
clear that the maximal order of vanishing at infinity of any non-zero form in the
space is equal to cd.

Denote the maximal order of vanishing of any non-zero form in Mk(Γ0(N)) by
mN,k and the maximal order of vanishing of any non-zero form in Sk(Γ0(N)) by
sN,k. Using (1.1) and the above basis, we see that

(1.3)
dim(Mk(Γ0(N))) − 1 ≤ mN,k ≤ k

12
[Γ : Γ0(N)] − α(N, k),

dim(Sk(Γ0(N))) ≤ sN,k ≤ k

12
[Γ : Γ0(N)] − α(N, k) − ε∞(N) + 1.

It is possible to construct examples of spaces for which mN,k (respectively sN,k)
falls at either end of the allowable range. However, the exact value of these
quantities is in general mysterious. For example, it is conjectured that if N is
squarefree, then ∞ is not a Weierstrass point on the modular curve X0(N). Let-
ting g(N) denote the genus of X0(N), this is equivalent to the assertion that
sN,2 = dim(S2(Γ0(N))) = g(N) for such N . This has been verified by William
Stein for squarefree N ≤ 3223. On the other hand, Lehner and Newman [9] and
Atkin [1] proved that sN,2 > dim(S2(Γ0(N))) for many families of N which are not
squarefree.

Using geometric arguments in characteristic p, Ogg [10] proved that ∞ is not
a Weierstrass point on X0(Np) whenever p � N is prime and X0(N) has genus
zero. Recently, Kohnen [8] and Kilger [7] have used techniques from the theory of
modular forms mod p to reprove Ogg’s result for certain curves X0(p�) when p and
� are distinct primes. As a corollary to our first theorem, we obtain a proof of Ogg’s
result which uses only standard facts from the theory of modular forms mod p.

To state the first result, when p || N we require the Atkin-Lehner involution WN
p

on S2(Γ0(N)) (see (3.5) below). For a power series f =
∑

a(n)qn with rational
coefficients and bounded denominators, we recall that vp(f) := inf{vp(a(n))}. Then
we have the following, which was proved for certain N of the form p� by Kohnen
and Kilger.



VANISHING OF MODULAR FORMS AT INFINITY 1207

Theorem 1.1. Suppose that p ≥ 5 is a prime with p || N and that f ∈ S2(Γ0(N))∩
Q[[q]] has vp(f) = 0 and vp(f

∣∣WN
p ) ≥ 0. Then ord∞(f) ≤ g(N).

As an easy corollary, we obtain Ogg’s result.

Corollary 1.2. If p is a prime with p || N , and g(N/p) = 0, then ∞ is not a
Weierstrass point on X0(N).

We now state the results for general weights. If f ∈ Mk(Γ0(N)), then let α2(N, k)
and α3(N, k) denote the number of complex zeros of f which are forced at the elliptic
points of orders 2 and 3 (see (3.3) for the precise values). We will consider levels N
of the form N = pN ′ where p ≥ 5 is a prime with p � N ′. For such an N , and for
weights k which are sufficiently small relative to p, we obtain an improvement of
the upper bounds in (1.3) for each of the quantities mN,k and sN,k. We note that
Theorem 4.2 gives a more precise statement for any particular form f .

Theorem 1.3. Suppose that k ≥ 2, that p ≥ k + 3 is prime, and that N is an
integer with p||N . Suppose that f(z) ∈ Mk(Γ0(N)) and that f �= 0. Then we have

ord∞(f) ≤ kp

12
· [Γ : Γ0(N/p)] − 1

2α2(N/p, kp) − 1
3α3(N/p, kp).

Theorem 1.4. Suppose that k ≥ 2, that p ≥ max(5, k + 1) is prime, and that N
is an integer with p||N . Suppose that f(z) ∈ Sk(Γ0(N)) and that f �= 0. Then we
have

ord∞(f) ≤ kp

12
· [Γ : Γ0(N/p)] − 1

2α2(N/p, kp) − 1
3α3(N/p, kp) − ε∞(N/p) + 1.

The bounds in these results are sharp for many spaces of forms. Let η(z) be the
usual Dedekind eta-function, defined by

η(z) := q
1
24

∞∏
n=1

(1 − qn).

For one family of examples, define f(z) ∈ M4(Γ0(15)) by

f(z) :=
η(z) · η15(15z)
η3(3z) · η5(5z)

= q8 + · · · ,

and if p > 5 is prime, then define g(z) ∈ M4(Γ0(15p)) by

g(z) := f(pz) = q8p + · · · ∈ M4(Γ0(15p)).

We have α(15p, 4) = 0, so in this case the upper bound in (1.3) is 4
12 [Γ : Γ0(15p)] =

8p+8. We see that the actual order of vanishing matches the bound 4p
12 [Γ : Γ0(15)] =

8p provided by Theorem 1.3. Infinite families of related examples will be discussed
in the last section.

We also remark that the hypothesis on the size of p is necessary. For example,
in the space M6(Γ0(35)), there is a form whose q-expansion begins with q21 + · · · .
On the other hand, we have 6·7

12 [Γ : Γ0(5)] − 1
2α2(5, 42) = 20, from which we see

that the conclusion does not hold when p = 7.
To see that Theorem 1.4 is sharp, consider the space S4(Γ0(60)). We have

α(60, 4) = 0 and ε∞(60) = 12, so the upper bound provided by (1.3) is 37. On the
other hand, we have [Γ : Γ0(12)] = 24 and ε∞(12) = 6, so the bound in Theorem 1.4
is 4·5

12 ·24−5 = 35. In fact, there is a form in this space whose q-expansion is q35+· · · .
More examples will be provided in the last section. Again, the assumption on p is
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necessary; to see this note that there is a form f ∈ S8(Γ0(35)) whose q-expansion
is f = q26 + · · · .

A computation using (1.1) shows that sN,k attains values in an interval, consid-
ered asymptotically with respect to N , of length p+1

12 [Γ : Γ0(N/p)]. Theorem 1.4
implies that sN,k lies in the narrower range

dim(Sk(Γ0(N)) ≤ sN,k ≤ kp

12
[Γ : Γ0(N/p)] − 1

2α2(N/p, kp)(1.4)

− 1
3α3(N/p, kp) − ε∞(N

p ) + 1.

Considered asymptotically with respect to N , this interval has length −k+p+1
12 [Γ :

Γ0(N/p)]. So the result of Theorem 1.4 is optimized when p is as close to k as
possible. For example, when k = 4 and p = 5, then the length of the interval (1.4)
is asymptotically one-third the length of the interval in (1.1).

The proofs of these results use techniques similar to those in [8], [7]. In order
to prove these theorems, we will establish the analogous results in characteristic p.
In particular, we give an improvement of a well-known theorem of Sturm on the
maximal order of vanishing of a modular form in characteristic p. The tools involve
facts on the integrality of modular forms, a modification of Sturm’s original result
to account for forced vanishing at the elliptic points, the trace map, the theory of
modular forms mod p, and a recent result of Kilbourn [6], which, extending results
of Deligne-Rapoport [3] and Weissauer [14], gives bounds for the p-adic valuation of
the image of a cusp form f ∈ Sk(Γ0(N)) under the Atkin-Lehner operator WN

p . We
begin in the next section by stating the characteristic p results and deducing from
them Theorems 1.3 and 1.4. The following sections contain background material,
the proof of the characteristic p results, and examples.

2. A result modulo p

If f(z) =
∑∞

n=0 a(n)qn ∈ Mk(Γ0(N)) ∩ Q[[q]] and p is prime, then define

(2.1) vp(f) := inf{vp(a(n)}
(this infimum exists by the principle of bounded denominators). If p is prime, then
let Z(p) denote the ring of p-integral rational numbers. If f ∈ Z(p)[[q]], then we write
f for its (coefficientwise) reduction modulo p, and if vp(f) = 0, then we denote by
ord∞(f) the index of the first coefficient which does not vanish modulo p.

A well-known theorem of Sturm [13] gives bounds for the maximal order of
vanishing of a modular form modulo p. Theorems 1.3 and 1.4 will follow from the
next results, which improve Sturm’s theorem in the cases under consideration.

Theorem 2.1. Suppose that k ≥ 2 is an even integer, that p ≥ k +3 is prime, and
that N is a positive integer with p||N . Suppose that f(z) ∈ Mk(Γ0(N)) ∩ Z(p)[[q]]
and that f �≡ 0 (mod p). Then

ord∞(f) ≤ kp

12
· [Γ : Γ0(N/p)] − 1

2α2(N/p, kp) − 1
3α3(N/p, kp).

Theorem 2.2. Suppose that k ≥ 2 is an even integer, that p ≥ max(5, k + 1) is
prime, and that N is a positive integer with p||N . Suppose that f(z) ∈ Sk(Γ0(N))∩
Z(p)[[q]] and that f �≡ 0 (mod p). Then

ord∞(f) ≤ kp

12
· [Γ : Γ0(N/p)] − 1

2α2(N/p, kp) − 1
3α3(N/p, kp) − ε∞(N/p) + 1.
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To deduce Theorem 1.3, we argue as follows. It suffices to prove the result for
the form fd in the basis (1.2). Assume without loss of generality that vp(fd) = 0.
Since ord∞(fd) ≤ ord∞(fd), Theorem 1.3 follows. Theorem 1.4 follows in the same
manner. �

3. Preliminaries

We first recall the values of some of the quantities introduced in the first section.
A good reference is the table on page 107 of the book of Diamond and Shurman
[4]. We have

(3.1) [Γ : Γ0(N)] = N
∏
p|N

(1 + 1
p ).

The number of cusps on X0(N) is given by

(3.2) ε∞(N) =
∑
d|N

φ(gcd(d, N/d)).

Let ε2(N), ε3(N) denote the numbers of elliptic points of orders 2 and 3 on X0(N),
respectively. Then we have

ε2(N) =

⎧⎪⎨
⎪⎩

0 if 4 | N,∏
p|N

(
1 +

(
−4
p

))
otherwise,

ε3(N) =

⎧⎪⎨
⎪⎩

0 if 9 | N,∏
p|N

(
1 +

(
−3
p

))
otherwise.

If α2(N, k) and α3(N, k) count the number of forced complex zeroes of a form
f ∈ Mk(Γ0(N)) at the elliptic points of order 2 and order 3, respectively, then

(3.3) (α2(N, k), α3(N, k)) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ε2(N), 2ε3(N)) if k ≡ 2 (mod 12),
(0, ε3(N)) if k ≡ 4 (mod 12),
(ε2(N), 0) if k ≡ 6 (mod 12),
(0, 2ε3(N)) if k ≡ 8 (mod 12),
(ε2(N), ε3(N)) if k ≡ 10 (mod 12),
(0, 0) if k ≡ 0 (mod 12).

Then the quantity α(N, k) used in the introduction is given by

(3.4) α(N, k) := 1
2α2(N, k) + 1

3α3(N, k).

We next recall some basic operators (a good reference is [2]). For any prime p,
we define the linear operators Up and Vp on Fourier expansions by

(∑
a(n)qn

) ∣∣Up :=
∑

a(pn)qn,(∑
a(n)qn

) ∣∣Vp :=
∑

a(n)qpn.
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We will always assume that p is a prime with p || N . For such primes, we define
the Atkin-Lehner involution WN

p on Mk(Γ0(N)) by

(3.5) f
∣∣
k
WN

p := f
∣∣
k

(
pa 1
Nb p

)
,

where a, b ∈ Z and p2a − Nb = p. We then have

(3.6) f
∣∣
k
WN

p = p
k
2 f

∣∣Vp for f ∈ Mk(Γ0(N/p)).

We recall also the trace operator

TrN
N/p : Mk(Γ0(N)) → Mk(Γ0(N/p))

defined by

(3.7) TrN
N/p(f) := f + p1− k

2 f
∣∣
k
WN

p

∣∣Up.

The trace takes cusp forms to cusp forms. Finally, we define the familiar modular
form

E∗
p−1 := Ep−1 − pp−1Ep−1|Vp ∈ Mp−1(Γ0(p)).

We have E∗
p−1 ≡ 1 (mod p) and

(3.8) E∗
p−1|p−1W

N
p ≡ 0 (mod p

p+1
2 ) for all N with p || N .

We will make use of the following recent result of Kilbourn [6]. This generalizes the
result of Weissauer [14] in the case of weight 2.

Theorem 3.1 (Kilbourn). Suppose that f ∈ Sk(Γ0(N)) ∩ Q[[q]] and that p is a
prime with p || N and p ≥ max(5, k + 1). Then |vp(f |kWN

p ) − vp(f)| ≤ k
2 .

We also require a minor modification of this theorem for modular forms.

Theorem 3.2. Suppose that f ∈ Mk(Γ0(N)) ∩ Q[[q]] and that p is a prime with
p || N and p ≥ k + 3. Then |vp(f |kWN

p ) − vp(f)| ≤ k
2 .

In the case of prime level, this result is proven in [3], Proposition 3.20. For the
convenience of the reader, we will sketch Kilbourn’s method as applied to The-
orem 3.2. We seek a contradiction from the assumption (made without loss of
generality after renormalization) that f ∈ Mk(Γ0(N)) ∩ Z(p)[[q]] has vp(f) = 0
and vp(f

∣∣
k
WN

p ) ≥ k/2 + 1. Defining h := TrN
N/p(f) ∈ Mk(Γ0(N/p)), we find

from (3.7) that h ≡ f (mod p2). Let m := vp(h − f) ≥ 2 and define g :=
(h − f)/pm ∈ Mk(Γ0(N)) ∩ Z(p)[[q]]. Using the hypotheses and (3.6), it can be
shown that h|Vp ≡ pm−k/2g

∣∣
k
WN

p (mod p). Defining

(3.9) h′ := TrN
N/p(p

m−k/2(g
∣∣
k
WN

p )(E∗
p−1)

k−2) ∈ M(k−2)p+2(Γ0(N/p)),

we find after a computation that h′ ≡ h|Vp (mod p).
If F ∈ Mk(Γ0(N/p)) ∩ Z(p)[[q]], define

ω(F ) = inf{k : there exists G ∈ Mk(Γ0(N/p)) ∩ Z(p)[[q]] with F ≡ G (mod p)}.

The theory of modular forms modulo p (see Section 4 of [5]) implies that ω(h′) =
ω(hp) = pω(h). Since k ≤ p − 3 and h is not identically zero, it follows that
ω(h′) = pk, contradicting (3.9).
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4. Proof of Theorem 2.1

We require a slight sharpening of Sturm’s theorem [13]. We follow Sturm’s proof,
but take account of forced vanishing at the elliptic points.

Theorem 4.1. Suppose that k ≥ 2 is an even integer and that N is a positive
integer. Suppose that f(z) ∈ Mk(Γ0(N)) ∩ Z(p)[[q]] and that f �≡ 0 (mod p). Then

ord∞(f) ≤ k

12
· [Γ : Γ0(N)] − 1

3α3(N, k) − 1
2α2(N, k).

If in fact f(z) ∈ Sk(Γ0(N)) ∩ Z(p)[[q]], then

ord∞(f) ≤ k

12
· [Γ : Γ0(N)] − 1

3α3(N, k) − 1
2α2(N, k) − ε∞(N) + 1.

Proof. Define m := [Γ : Γ0(N)] and let γv, v = 1, . . . , m (where γ1 is the identity)
be the representatives of Γ\Γ0(N). Following Sturm’s argument, we fix a number
field K containing the coefficients of each form f

∣∣
k
γv, and denote by O the ring of

integers of K. Let λ be any place above p. For each v, we find Av ∈ K× such that
vλ(Avf

∣∣
k
γv) = 0 and consider the form

G := f

m∏
v=2

Avf
∣∣
k
γv ∈ Skm(Γ).

Note that G �≡ 0 (mod λ). For h = 2, 3, we see that for each complex zero of f at
an elliptic fixed point of order h on a fundamental domain for Γ0(N), the function
G has precisely one zero at an elliptic fixed point of order h on a fundamental
domain for Γ. Since E4 and E6 have simple zeros at the points of orders 3, 2 for Γ,
we conclude that

G′ :=
G

E
α3(N,k)
4 E

α2(N,k)
6

∈ Skm−4α3(N,k)−6α2(N,k)(Γ).

Since f is a cusp form, we see that for each v ≥ 2, we have an expansion of the
form

Avf
∣∣
k
γv = cvq

1/hv + · · · ,

where hv is the width of the cusp corresponding to γv. Since each such cusp
corresponds to exactly hv of the elements γv, we conclude that G′ vanishes mod λ
at ∞ to order at least

ordλ(f) + ε∞(N) − 1.

By Sturm’s result in level one, this quantity is at most one-twelfth the weight of
G′, which gives the theorem for cusp forms. The proof for modular forms is the
same. �

We will now prove the following.

Theorem 4.2. Suppose that N and k are positive integers and that p ≥ 5 is a
prime with p || N . Suppose that f ∈ Mk(Γ0(N)) ∩ Z(p)[[q]] has

vp(f) = 0, vp(f
∣∣
k
WN

p ) ≥ a.
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(1) If p ≥ k + 3, then

ord∞(f) ≤
k + (k

2 − a)(p − 1)
12

[Γ : Γ0(N/p)]

− 1
3α2(N/p, k + (k

2 − a)(p − 1)) − 1
2α3(N/p, k + (k

2 − a)(p − 1)).

(2) If p ≥ k + 1 and f ∈ Sk(Γ0(N)), then

ord∞(f) ≤
k + (k

2 − a)(p − 1)
12

[Γ : Γ0(N/p)]

− 1
3α2(N/p, k + (k

2 − a)(p − 1)) − 1
2α3(N/p, k + (k

2 − a)(p − 1)) − ε∞(N/p) + 1.

Theorems 2.1 and 2.2 follow immediately since by Theorems 3.1 and 3.2 we have
a ≥ −k/2 in each case.

Proof of Theorem 4.2. Let f be as in the hypotheses of the first part. Then consider
the form

F := TrN
N/p

(
f(E∗

p−1)
k
2−a

)

= f(E∗
p−1)

k
2−a + p1− k+( k

2 −a)(p−1)
2

(
f
∣∣
k
WN

p · (E∗
p−1)

k
2−a

∣∣
(p−1)( k

2 −a)
WN

p

) ∣∣Up.

Then F ∈ Mk+( k
2 −a)(p−1)(Γ0(N/p)) ∩ Q[[q]]. Moreover, a computation using (3.8)

shows that we have F ≡ f (mod p). By Theorem 4.1 we conclude that

ord∞(f) = ord∞(F ) ≤
k + (k

2 − a)(p − 1)
12

[Γ : Γ0(N/p)]

− 1
3α2(N/p, k + (k

2 − a)(p − 1)) − 1
2α3(N/p, k + (k

2 − a)(p − 1)).

The second assertion follows in a similar manner. �

Finally, we prove Theorem 1.1. If f ∈ S2(Γ0(N)) is as in the hypotheses, then,
taking k = 2 and a = 0 in Theorem 4.2, we find that

ord∞(f) ≤ p + 1
12

[Γ : Γ0(N/p)]− ε∞(N/p)− 1
2α2(N/p, p+1)− 1

3α3(N/p, p+1)+1.

A computation shows that we have α2(N/p, p + 1) = 1
2ε2(N), α3(N/p, p + 1) =

ε3(N), and ε∞(N/p) = 1
2ε∞(N). Thus,

ord∞(f) ≤ [Γ : Γ0(N)]
12

− 1
2ε∞(N) − 1

4ε2(N) − 1
3ε3(N) + 1.

The right-hand side is precisely the genus of X0(N), which proves Theorem 1.1.
Corollary 1.2 can be checked explicitly when p = 2, 3. For other primes, we note

that if g(N/p) = 0 and f ∈ S2(Γ0(N)) ∩ Z(p)[[q]], then TrN
N/p(f

∣∣WN
p ) = 0, so that

we must have vp(f
∣∣WN

p ) = vp(f
∣∣Up) ≥ 0.

5. Examples

We provide more examples of spaces for which Theorems 1.3 and 1.4 are sharp.
Let N ′ ≥ 1 be a squarefree integer. Define the form

fN ′(z) :=

⎛
⎝ ∏

d|N ′

η(dz)µ(N ′/d)d

⎞
⎠

α

,
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where µ(n) is the Möbius function and

α :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

24 if N ′ = 1,

8 if N ′ = 2,

6 if N ′ = 3,

2 if N ′ = 6, p, or 2p where p ≥ 5 is prime,
1 otherwise.

Set

k :=
αφ(N ′)

2
.

Using standard criteria (a convenient reference is Section 1.4 of [11]) one can check
that fN ′(z) ∈ Mk(Γ0(N ′)) and that

ord∞(fN ′(z)) =
αφ(N ′)σ1(N ′)

24
=

k

12
[Γ : Γ0(N ′)].

If N ′ is not squarefree, then write N ′ = N1N2 where N1 is the largest squarefree
divisor of N ′. Then define the form fN ′(z) := fN1(z)|VN2 ∈ Mαφ(N1)/2(Γ0(N ′)).

For all N ′ ≥ 1 it follows that

(5.1) ord∞(fN ′(z)) =
k

12
[Γ : Γ0(N ′)].

If p ≥ k + 3, let N = pN ′. Theorem 1.3 asserts that each non-zero form f ∈
Mk(Γ0(N)) has

(5.2) ord∞(f) ≤ kp

12
[Γ : Γ0(N)].

We see from (5.1) that equality holds in (5.2) for the form fN ′(pz) ∈ Mk(Γ0(N)).
Therefore Theorem 1.3 is sharp for these spaces.

We turn to Theorem 1.4. Suppose that k ≥ 2, and that p ≥ 12k + 1 is prime.
Then the order of vanishing of the form F (z) := ∆(pz)k = qkp + · · · ∈ S12k(Γ0(p))
agrees with the upper bound provided by Theorem 1.4.

There are other examples where Theorem 1.4 is sharp. For example, define

F (z) :=
η(6z)η(9z)η6(21z)η34(126z)

η2(18z)η11(42z)η17(63z)
∈ S6(Γ0(126)).

Then we have α2(18, 42)/2 = α3(18, 42)/3 = 0 and

ord∞(F ) = 119 =
6 · 7
12

[Γ : Γ0(18)] − ε∞(18) + 1.

Another example is provided by the form

F = 2q99 + 2q101 − 3q104 + · · · ∈ S6(Γ0(175)).

Then, α2(25, 42)/2 = 1, α3(25, 42)/3 = 0 and

ord∞(F ) = 99 =
6 · 7
12

[Γ : Γ0(25)] − α2(25, 42)/2 − α3(25, 42)/3 − ε∞(25) + 1.

In closing, we mention several other forms for which equality holds in Theo-
rem 1.4 (there are other examples of the same sort). For example, this occurs for
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the following forms:
η(z)η13(77z)
η(7z)η(11z)

∈ S6(Γ0(77)),

η30(44z)η2(2z)
η2(4z)η14(22z)

∈ S8(Γ0(44)),

η29(99z)η(3z)
η9(33z)η(9z)

∈ S10(Γ0(99)),

η47(46z)η(z)
η23(23z)η(2z)

∈ S12(Γ0(46)).
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