
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 4, April 2009, Pages 1489–1497
S 0002-9939(08)09770-0
Article electronically published on November 25, 2008

ON THE LUSTERNIK-SCHNIRELMANN CATEGORY
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WITH 2-DIMENSIONAL FUNDAMENTAL GROUP

ALEXANDER N. DRANISHNIKOV

(Communicated by Daniel Ruberman)

Abstract. The following inequality

catLSX ≤ catLSY +

⌈
hd(X) − r

r + 1

⌉
holds for every locally trivial fibration f : X → Y between ANE spaces which
admits a section and has the r-connected fiber, where hd(X) is the homotopical
dimension of X. We apply this inequality to prove that

catLSX ≤ cd(π1(X)) +

⌈
dim X − 1

2

⌉
for every complex X with cd(π1(X)) ≤ 2, where cd(π1(X)) denotes the coho-
mological dimension of the fundamental group of X.

1. Introduction

In [DKR] we proved that if the Lusternik-Schnirelmann category of a closed n-
manifold, n ≥ 3, equals 2, then the fundamental group of M is free. In the opposite
direction we proved that if the fundamental group of an n-manifold is free, then
catLS M ≤ n − 2. J. Strom proved that catLS X ≤ 2

3n for every n-complex, n > 4,
with free fundamental group [St]. Yu. Rudyak conjectured that the coefficient
2/3 in Strom’s result could be improved to 1/2. Precisely, he conjectured that
the function f defined as f(n) = max{catLS Mn} is asymptotically 1

2n, where the
maximum is taken over all closed n-manifolds with free fundamental group.

In this paper we prove Rudyak’s conjecture. Our method gives the same estimate
for n-complexes. Moreover, we give the same asymptotic upper bound for catLS of
n-complexes with the fundamental group of cohomological dimension ≤ 2. In view
of this, the following generalization of Rudyak’s conjecture seems to be natural.

Conjecture 1.1. For every k the function fk defined as

fk(n) = max{catLS Mn | cd(π1(Mn) ≤ k}
is asymptotically 1

2n.

The smallest k when it is unknown is 3.
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1490 A. DRANISHNIKOV

This paper is organized as follows. Section 2 is an introduction to the Lusternik-
Schnirelmann category based on an analogy with dimension theory. Section 3 con-
tains a fibration theorem for catLS. In Section 4 this fibration theorem is applied
for the proof of Rudyak’s conjecture.

2. Kolmogorov-Ostrand’s approach

to the Lusternik-Schnirelmann category

A subset A ⊂ X of a topological space X is called X-contractible if it can be
contracted to a point in X. A cover U of a topological space X by X-contractible
sets is called X-contractible. By definition, catLS X ≤ n if there is an X-contractible
open cover U = {U0, . . . , Un} of X that consists of n + 1 sets.

We recall [CLOT] that a sequence ∅ = O0 ⊂ O1 ⊂ · · · ⊂ On+1 = X is called cat-
egorical of length n+1 if each difference Oi+1 \Oi is contained in an X-contractible
open set. It was proven in [CLOT] that catLS X ≤ n if and only if X admits a
categorical sequence of length n + 1.

Let U = {Uα}α∈A be a family of sets in a topological space X. Formally, it is a
function U : A → 2X \ {∅} from the index set to the set of nonempty subsets of
X. Thus, it is allowed to have Uα = Uβ for α �= β. The sets Uα in the family U
will be called elements of U . The multiplicity of U (or the order) at a point x ∈ X,
denoted Ordx U , is the number of elements of U that contain x. The multiplicity of
U is defined as OrdU = supx∈X Ordx U . A family U is a cover of X if Ordx U �= 0
for all x. A cover U is a refinement of another cover C (U refines C) if for every
U ∈ U there exists C ∈ C such that U ⊂ C. We recall that the covering dimension
of a topological space X does not exceed n, dim X ≤ n, if for every open cover C
of X there is an open refinement U with OrdU ≤ n + 1.

We recall that a family F of subsets of a topological space X is called locally
finite if for every x ∈ X there is a neighborhood U of x which has a nonempty
intersection at most with finitely many sets from F . The following proposition
makes the LS-category analogous to the covering dimension.

Proposition 2.1. For a paracompact topological space X, catLS X ≤ n if and only
if X admits an X-contractible locally finite open cover V with OrdV ≤ n + 1.

Proof. If catLS X ≤ n, then by the definition, X admits an open contractible cover
that consists of n + 1 sets and therefore its multiplicity is at most n + 1.

Let V be a contractible cover of X of multiplicity ≤ n + 1. We construct a
categorical sequence O0 ⊂ O1 ⊂ · · · ⊂ On+1 of length n + 1. We define O1 = {x ∈
X | Ordx V = n + 1}. Note that

O1 =
⋃

{V0,...,Vn}⊂V
V0 ∩ · · · ∩ Vn.

Note that this is a disjoint union and every nonempty summand is X-contractible.
Thus O1 is X-contractible. Next, we define O2 = {x ∈ X | Ordx V ≥ n}. Then

O2 \ O1 =
⋃

{V0,...,Vn−1}⊂V
(V0 ∩ · · · ∩ Vn−1 \ O1)

is a disjoint union of closed in O2 subsets. Since V is locally finite, the family of
nonempty summands

{V0 ∩ · · · ∩ Vn−1 \ O1 | V0, . . . , Vn−1 ∈ V , V0 ∩ · · · ∩ Vn−1 \ O1 �= ∅}
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is locally finite. We recall that every disjoint locally finite family of closed subsets
is discrete. Hence there are open (in O2 and hence in X) disjoint neighborhoods
WV0,...,Vn−1 of these summands V0 ∩ · · · ∩ Vn−1 \O1. By taking WV0,...,Vn−1 ∩ V0 we
may assume that the neighborhood of the summand V0∩· · ·∩Vn−1\O1 is contained
in V0. Thus, we may assume that all neighborhoods WV0,...,Vn−1 are X-contractible.
Define O3 = {x ∈ X | OrdxV ≥ n − 1} as the union of (n − 1)-fold intersections
and so on. In general, Ok = {x ∈ X | OrdxV ≥ n − k + 2}. Similarly,

Ok+1 \ Ok =
⋃

{V0,...,Vn−k}⊂V
(V0 ∩ · · · ∩ Vn−k \ Ok)

is a disjoint union of closed in Ok+1 subsets. Since the family of nonempty sum-
mands in this union is locally finite, there are open in Ok+1, and hence in X, disjoint
neighborhoods of these summands V0∩· · ·∩Vn−k \Ok such that each neighborhood
lies in some X-contractible set V ∈ V .

Then On+1 is the union of elements of V (1-fold intersections) and hence On+1 =
X. The categorical sequence conditions are satisfied. �

A family U of subsets of X is called a k-cover, k ∈ N if every subfamily of k
elements forms a cover of X.

Example. Let
U =

⋃
i∈Z

(mi, m(i + 1) − 1)

be the union of disjoint intervals in R of length m− 1 with the distance 1 between
any two consecutive intervals. Let U = {TrU | r = 0, . . . , m − 1} be the family of
translates TrU = {x + r | x ∈ U} of U . Clearly, U is a 3-cover of R that consists of
m subsets.

If we take the intervals of length m − k and the distance k,

U =
⋃
i∈Z

(mi, m(i + 1) − k),

then U = {TrU | r = 0, . . . , m − 1} is a (k + 2)-cover that consists of m subsets.
The proof can be derived from the following:

Proposition 2.2. A family U that consists of m subsets of X is an (n + 1)-cover
of X if and only if Ordx U ≥ m − n for all x ∈ X.

Proof. If Ordx U < m− n for some x ∈ X, then n + 1 = m− (m− n) + 1 elements
of U do not cover x.

If n+1 elements of U do not cover some x, then Ordx U ≤ m−(n+1) < m−n. �

Inspired by the work of Kolmogorov on Hilbert’s 13th problem, Ostrand gave
the following characterization of the covering dimension [Os].

Theorem 2.3 (Ostrand). A metric space X is of dimension ≤ n if and only if for
each open cover C of X and each integer m ≥ n + 1, there exist m disjoint families
of open sets U1, . . . ,Um such that their union

⋃
Ui is an (n + 1)-cover of X and it

refines C.

Let U be a family of subsets in X and let A ⊂ X. We denote by U|A = {U ∩A |
U ∈ U} the restriction of U to A.
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Definition 2.4. Let f : X → Y be a map. An open cover U = {U0, U1, . . . , Un}
of X is called uniformly f-contractible if for every y ∈ Y there is a neighborhood
V such that the restriction U|f−1(V ) of U to the preimage f−1(V ) consists of X-
contractible sets.

We will use uniformly f -contractible covers to give in the next section an alter-
native extension of the Lusternik-Schnirelmann category to mappings. The stan-
dard extension catLS(f) [CLOT] satisfies the equalities catLS(1X) = catLS X and
catLS(c) = 0, where 1X and c : X → ∗ are the identity map and the constant
map respectively. Our extension catLS

∗ satisfies the opposite: catLS
∗(c) = catLS X.

Also it satisfies catLS
∗(1X) = 0 for locally contractible spaces (see §3).

Theorem 2.5. Let U = {U0, . . . , Un} be an open cover of a normal topological
space X. Then for any m = n, n + 1, . . . ,∞ there is an open (n + 1)-cover of X,
Um = {U0, . . . , Um} such that for k > n, Uk =

⋃n
i=0 Vi is a disjoint union with

Vi ⊂ Ui.
In particular, if U is X-contractible, the cover Um is X-contractible. If U is uni-

formly f-contractible for some f : X → Z, the cover Um is uniformly f-contractible.

Proof. We construct the family Um by induction on m. For m = n we take Um = U .
Let Um−1 = {U0, . . . , Um−1} be the corresponding family for m > n. By Propo-

sition 2.2, Ordx U ≥ m−n. Consider Y = {x ∈ X | Ordx U = m−n}. Clearly, it is
a closed subset of X. If Y = ∅, then by Proposition 2.2, U is an n-cover and we can
add Um = U0 to obtain a desired (n+1)-cover. Assume that Y �= ∅. We show that
for every i ≤ n, the set Y ∩Ui is closed in X. Let x be a limit point of Y ∩Ui that
does not belong to Ui. Let Ui1 , . . . , Uim−n

be the elements of the cover U that con-
tain x ∈ Y . The limit point condition implies that (Ui1 ∩· · ·∩Uim−n

)∩(Y ∩Ui) �= ∅.
Then Ordy U = m − n + 1 for all y ∈ Y ∩ Ui ∩ Ui0 ∩ · · · ∩ Uim−n

, a contradiction.
We define recursively F0 = Y ∩ U0 and Fi+1 = Y ∩Ui+1 \ (

⋃i
k=0 Uk). Note that

{Fi}n
i=0 is a disjoint finite family of closed subsets with

⋃n
i=0 Fi = Y . Since X is

normal, we can fix disjoint open neighborhoods Vi of Fi with Vi ⊂ Ui. We define
Um =

⋃n
i=0 Vi. In view of Proposition 2.2, U0, . . . , Um−1, Um is an (n + 1)-cover.

Clearly, if all Ui are X-contractible, i ≤ n, then Um is X-contractible. If all
Ui are uniformly f -contractible, for some f : X → Z, then Um is uniformly f -
contractible. �
Corollary 2.6. For a normal topological space X, catLS X ≤ n if and only if for
any m > n, X admits an open (n + 1)-cover by m X-contractible sets.

This corollary is a catLS-analog of Ostrand’s theorem. It also can be found in
[CLOT] with further reference to [Cu].

3. Fibration theorems for catLS

Definition 3.1. The ∗-category catLS
∗ f of a map f : X → Y is the minimal n, if it

exists, such that there is a uniformly f -contractible open cover U = {U0, U1, . . . , Un}
of X.

Note that catLS
∗ c = catLS X for a constant map c : X → pt. More generally,

catLS
∗ π = catLS X for the projection π : X × Y → Y .

Theorem 3.2. The inequality catLS X ≤ dimY + catLS
∗ f holds true for any

continuous map of a normal space.
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Proof. The requirements to the spaces in the theorem are that the Ostrand theorem
holds true for Y ; i.e. they are fairly general (say, Y is normal).

Let dim Y = n and catLS
∗ f = m. Let U = {U0, . . . , Um} be a uniformly

f -contractible cover of X. For y ∈ Y denote by Vy a neighborhood of y from
the definition of the uniform f -contractibility. In view of Theorem 2.3 there is a
refinement V = V0 ∪ · · · ∪ Vn+m of the cover {Vy | y ∈ Y } of Y such that each
family Vi is disjoint and V is an (n + 1)-cover. Let Vi =

⋃
Vi.

We apply Theorem 2.5 to extend the family U to a uniformly f -contractible
(m + 1)-cover {U0, . . . , Un+m}. Consider the family W = {f−1(Vi) ∩ Ui}0≤i≤n+m.
Note that it is X-contractible. Thus, in order to get the inequality catLS X ≤
n + m it suffices to show that W is a cover of X. Since V is an (n + 1)-cover, by
Proposition 2.2, every y ∈ Y is covered by m + 1 elements of V , Vi0 , . . . , Vim

. Since
{U0, . . . , Un+m} is an (m + 1)-cover, the family Ui0 , . . . , Uim

covers X. Therefore
the family f−1(Vi0)∩Ui0 , . . . , f

−1(Vim
)∩Uim

covers the fiber f−1(y). Since y ∈ Y
is arbitrary, W covers all X. �
Corollary 3.3 (Corollary 9.35 [CLOT], [OW]). Let p : X → Y be a closed map of
ANE. If each fiber p−1(y) is contractible in X, then catLS X ≤ dimY .

Proof. In this case catLS
∗ p = 0. Indeed, since X is an ANE, a contraction of p−1(y)

to a point can be extended to a neighborhood U . Since the map p is closed there
is a neighborhood V of y such that p−1(V ) ⊂ U . �

We recall that the homotopical dimension of a space X, hd(X), is the minimal
dimension of a CW-complex homotopy equivalent to X [CLOT].

Proposition 3.4. Let p : E → X be a fibration with (n− 1)-connected fiber where
n = hd(X). Then p admits a section.

Proof. Let h : Y → X be a homotopy equivalence with the homotopy inverse
g : X → Y , where Y is a CW-complex of dimension n. Since the fiber of p is (n−1)-
connected, the map h admits a lift h′ : Y → E. Let H be a homotopy connecting
h ◦ g with 1X . By the homotopy lifting property there is a lift H ′ : X × I → E of
H with H|X×{0} = h′ ◦ g. Then the restriction H|X×{1} is a section. �

We introduce a fiberwise version of Ganea’s fibration. First we recall that the
k-th Ganea’s fibration pk : Ek(Z, z0) → Z over a path connected space Z with
a fixed base point z0 is the fiberwise join product of k + 1 copies of Serre’s path
fibrations p0 : PZ → Z. We recall that PZ consists of paths φ in Z with the initial
point z0 and p0 takes φ to φ(1). Note that p0 is a Hurewicz fibration and since the
fiberwise join of Hurewicz fibrations is a Hurewicz fibration, so are all pk [Sv]. Also
we note that the fiber of p0 is the loop space ΩZ and therefore, the fiber of pk is
the join product ∗k+1ΩZ of k + 1 copies of ΩZ (see [CLOT] for more details).

Theorem 3.5 (Ganea, Švarc). For a path connected normal space X with a non-
degenerate base point, catLS(X) ≤ k if and only if the Ganea fibration pk : Ek(Z, z0)
→ Z has a section.

The proof can be found in [CLOT], [Sv].
The Ganea construction can be done simultaneously for all possible choices of the

base points z0. Namely, for the path fibration we consider the map p̃0 : C(I, Z) →
Z ×Z defined on all paths in Z as p̃0(φ) = (φ(1), φ(0)). It is easy to check that p̃0

is a Hurewicz fibration. Therefore the (iterated) fiberwise join of p̃0 with itself is a
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Hurewicz fibration. Let p̃k : Ẽk → Z × Z denote the fiberwise join of k + 1 copies
of p̃0. We call p̃k the extended Ganea fibration. Note that for every z0 ∈ Z, the
preimage p̃−1

k (Z × {z0}) is homeomorphic to Ek(Z, z0) and the restriction of p̃k to
p̃−1

k (Z × {z0}) is the Ganea fibration pk with the base point z0.
Now let f : X → Y be a locally trivial bundle with a path connected fiber Z

and let f admit a section s : Y → X. We define a space

E0 = {φ ∈ C(I, X) | s(fφ(I)) = {φ(0)}}
to be the space of all paths φ in X with the initial point s(y) for some y ∈ Y such
that the image of φ is contained in the fiber f−1(y). The topology in E0 is inherited
from C(I, X). We define a map ξ0 : E0 → X by the formula ξ0(φ) = φ(1). Then
ξk : Ek → X is defined as the fiberwise join of k + 1 copies of ξ0. Formally, we
define Ek inductively as a subspace of the join E0 ∗ Ek−1:

Ek =
⋃

{φ ∗ ψ ∈ E0 ∗ Ek−1 | ξ0(φ) = ξk−1(ψ)},

which is the union of all intervals [φ, ψ] = φ ∗ ψ with the endpoints φ ∈ E0 and
ψ ∈ Ek−1 such that ξ0(φ) = ξk−1(ψ). There is a natural projection ξk : Ek → X
that takes all points of each interval [φ, ψ] to φ(0).

Note that when f : X = Z × Y → Y is a trivial bundle and a section s : Y → X
is defined by a point z0 ∈ Z, then Ek = Ek(Z, z0) × Y and ξk = pk × 1Y where
pk : Ek → Z is the Ganea fibration.

Lemma 3.6. Let f : X → Y be a locally trivial bundle between paracompact spaces
with a path connected fiber Z and with a section s : Y → X. Then

i. For each k the map ξk : Ek → X is a Hurewicz fibration.
ii. The fiber of ξk is precisely the join of k + 1 copies of the space of paths from

sf(x) to x which is homeomorphic to ∗k+1ΩZ.
iii. ξk has a section if and only if X has an open cover U = {U0, . . . , Uk} by

sets, each of which admits a fiberwise deformation into s(Y ).

Proof. i. In view of Dold’s theorem [Do] it suffices to show that ξk is a Hurewicz
fibration over f−1(U) for all U ∈ U for some locally finite cover of X. We consider
a cover U such that f admits a trivialization over U for all U ∈ U , i.e., fiber-
wise homeomorphisms hU : f−1(U) → U × Z. Then the section s defines a map
σU = π2 ◦ hU ◦ s : U → Z where π2 : U × Z → Z is the projection to the second
factor. If the map σU were constant, the fibration ξk over f−1(U) ∼= U × Z would
be a Hurewicz fibration being homeomorphic to the product 1U ×pk. In the general
case the fibration ξk over f−1(U) is obtained as the pull-back of the extended Ganea
fibration p̃k : Ẽk → Z ×Z under the map (σU ×1Z)◦hU : f−1(U) → Z ×Z. Hence
it is a Hurewicz fibration.

ii. We note that the map ξk over the fiber (f−1(x), s(x)) coincides with the
Ganea fibration pk for Z. Therefore, the fiber of ξk coincides with the fiber of pk;
i.e., it is ∗k+1ΩZ.

iii. Note that when Y = pt, iii turns into the Ganea-Švarc theorem. Thus, iii
can be viewed as a fiberwise version of the Ganea-Švarc theorem.

Suppose ξk has a section σ : X → Ek. For each x ∈ X the element σ(x) of
∗k+1ΩF can be presented as the (k + 1)-tuple

σ(x) = ((φ0, t0), . . . , (φk, tk)) |
∑

ti = 1, ti ≥ 0).

We use the notation σ(x)i = ti. Clearly, σ(x)i is a continuous function.
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A section σ : X → Ek defines a cover U = {U0, . . . , Uk} of X as follows:

Ui = {x ∈ X | σ(x)i > 0}.
By the construction of Ui for i ≤ n for every x ∈ Ui there is a canonical path
connecting x with sf(x). We use these paths to contract a fiberwise deformation
of Ui into s(Y ).

The other direction of iii is not used in the paper. Since the proof of it is similar
to that for the Ganea-Švarc theorem, we leave it to the reader. �

We recall that �x� denotes the smallest integer n such that x ≤ n.

Theorem 3.7. Suppose that a locally trivial fibration f : X → Y with an r-
connected fiber F admits a section. Then

catLS
∗ f ≤

⌈
hd(X) − r

r + 1

⌉
.

Moreover,

catLS X ≤ catLS Y +
⌈

hd(X) − r

r + 1

⌉
.

Proof. Let catLS Y = m and hd(X) = n.
Let s : Y → X be a section. By Lemma 3.6 i-ii ξk is a Hurewicz fibration with

the fiber the join product ∗k+1ΩF of k + 1 copies of the loop space ΩF . Thus, it
is (k + (k + 1)r − 1)-connected. By Proposition 3.4 there is a section σ : X → Ek

whenever k(r + 1) + r ≥ n. The smallest such k is equal to �n−r
r+1 �.

By Lemma 3.6 iii a section σ : X → Ek defines a cover U = {U0, . . . , Uk} by the
sets fiberwise contractible to s(Y ). Let Um+k = {U0, . . . , Um+k} be an extension of
U to a (k + 1)-cover of X from Theorem 2.5.

Let V = {V0, . . . , Vm+k} be an open Y -contractible (m+1)-cover of Y . We show
that the sets Wi = f−1(Vi)∩Ui are contractible in X for all i. By Theorem 2.5 Ui is
fiberwise contractible into s(Y ) for i ≤ m + k. Hence we can contract f−1(Vi)∩Ui

to s(Vi) in X. Then we apply a contraction of s(Vi) to a point in s(Y ).
Similarly as in the proof of Theorem 3.2 we show that {Wi}m+k

i=0 is a cover of X.
Since V is an (m + 1)-cover, by Proposition 2.2 every y ∈ Y is covered by at least
k + 1 elements Vi0 , . . . , Vik

of V . By the construction Ui0 , . . . , Uik
is a cover of X.

Hence Wi0 , . . . , Wik
covers f−1(y). �

4. The Lusternik-Schnirelmann category of complexes

with low dimensional fundamental groups

Theorem 4.1. For every complex X with cd(π1(X)) ≤ 2 the following inequality
holds true:

catLS X ≤ cd(π1(X)) +
⌈

hd(X) − 1
2

⌉
.

Proof. Let π = π1(X) and let X̃ denote the universal cover of X. We consider
Borel’s construction

X̃ ←−−−− X̃ × Eπ −−−−→ Eπ⏐⏐� ⏐⏐� ⏐⏐�
X

g←−−−− X̃ ×π Eπ
f−−−−→ Bπ.
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We claim that there is a section s : Bπ → X̃ ×π Eπ of f . By the condition cdπ ≤ 2
we may assume that Bπ is a complex of dimension ≤ 3. Note that f is a locally
trivial bundle with the fiber X̃. Since the fiber of f is simply connected, there is
a lift of the 2-skeleton. The condition cdπ ≤ 2 implies H3(Bπ, E) = 0 for every
π-module. Thus, we have no obstruction for the lift of the 3-skeleton (see, for
example, [Po], [Th] for the basics of obstruction theory with twisted coefficients).

We apply Theorem 3.7 to obtain the inequality

catLS X ≤ catLS(Bπ) +

⌈
hd(X̃ ×π Eπ) − 1

2

⌉
.

Since g is a fibration with the homotopy trivial fiber, the space X̃×πEπ is homotopy
equivalent to X. Thus, hd(X̃ ×π Eπ) = hd(X). Note that the results of Eilenberg
and Ganea [EG] in view of the Stallings-Swan theorem [Sta], [Swan] imply that
catLS Bπ = cdπ for all groups π. �

Corollary 4.2. For every complex X with free fundamental group,

catLS X ≤ 1 +
⌈

dimX − 1
2

⌉
.

Note that this estimate is sharp on X = S1 × CPn.

Corollary 4.3. For every 3-dimensional complex X with free fundamental group,
catLS X ≤ 2.

This corollary can also be derived from the fact that in the case of a free funda-
mental group every 2-complex is homotopy equivalent to the wedge of circles and
2-spheres [KR].

It is unclear whether the estimate catLS X ≤ 2+�dim X−1
2 � is sharp for complexes

with cd(π1(X)) = 2. It is sharp if the answer to the following question is affirmative.

Question 4.4. Does there exists a 4-complex K with free fundamental group and
with catLS(K × S1) = 4?

Indeed, for X = K × S1 we would have the equality 4 = 2 + � 5−1
2 �. Note that

cd(π1(X)) = 2.
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