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ON THE CLASSIFICATION OF SOLUTIONS OF −∆u = eu

ON R
N : STABILITY OUTSIDE A COMPACT SET

AND APPLICATIONS
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Abstract. In this short paper we prove that, for 3 ≤ N ≤ 9, the problem
−∆u = eu on the entire Euclidean space R

N does not admit any solution
stable outside a compact set of R

N . This result is obtained without making
any assumption about the boundedness of solutions. Furthermore, as a conse-
quence of our analysis, we also prove the non-existence of finite Morse Index
solutions for the considered problem. We then use our results to give some
applications to bounded domain problems.

1. Introduction and main results

In this short paper we study and classify solutions u ∈ C2(RN ) of the semilinear
partial differential equation

(1.1) −∆u = eu on R
N , N ≥ 2,

which are stable outside a compact set of R
N .

Let us recall that, given a domain Ω ⊂ R
N (possibly unbounded), a solution

u ∈ C2(Ω) of the equation −∆u = eu is said to be stable outside a compact set
K ⊂ Ω if

∀ ψ ∈ C1
c (Ω \ K) Qu(ψ) :=

∫
Ω\K

|∇ψ|2 − euψ2 ≥ 0.

In particular, when K is the empty set, the solution u is said to be stable in Ω.
Our main result is the following.

Theorem 1. Let 3 ≤ N ≤ 9. Equation (1.1) does not admit any C2 solution stable
outside a compact set of R

N .

The proof of the above result is based on the methods and techniques developed
by the second author in [9], [10], [11] as well as on the following integral estimate
also proved in [11] (cf. Proposition 5 therein).

Proposition 1. Assume N ≥ 2 and let Ω be a domain (possibly unbounded) of
R

N . Let u ∈ C2(Ω) be any stable solution of

−∆u = eu on Ω.
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Then, for any integer m ≥ 5 and any α ∈ (0, 2) we have

(1.2)
∫

Ω

e(2α+1)uψ2m ≤
( m

2 − α

)2α+1
∫

Ω

(
|∇ψ|2 + |ψ||∆ψ|

)2α+1

for all test functions ψ ∈ C2
c (Ω) satisfying 0 ≤ ψ ≤ 1 in Ω.

Before turning to the proof of Theorem 1 we would like to make some remarks.

Remark 1. (i) Note that Theorem 1 is obtained without making any assumption
about the boundedness of solutions. This is an important feature of our result. In-
deed, an assumption about the boundedness of solutions (either from below or from
above) is a classic (and often necessary) hypothesis, when one studies classification
results or non-existence results, for elliptic problems on the entire Euclidean space
R

N .
(ii) Note that the family of the solutions of (1.1) stable outside a compact set of

R
N includes, as a special case, all finite Morse index solutions (and hence all stable

solutions) of (1.1) (see for instance [5], [9], [10], [11]). Thus, for 3 ≤ N ≤ 9, the
above Theorem 1 also provides a complete classification for this kind of solutions.
In this regard we recall that the second author [11] proved that, for 2 ≤ N ≤ 9,
there is no stable C2 solution of the equation (1.1) (see also the very recent preprint
[8] for a similar result under the stronger additional assumption that u is bounded
above). For N = 2 and 3 and, again, under the additional assumption that u is
bounded above, the non-existence of stable solutions was firstly obtained by the
first author [5]. Also, the first author [6] proved that, for N = 3, the equation (1.1)
has no negative solution of finite Morse index. The results proved in [5], [6] and [8]
crucially depend on the assumption that the considered solutions are bounded from
above while, as already pointed out, our Theorem 1 is free from this constraint.

(iii) Theorem 1 is sharp. Indeed, on the one hand, for N = 2 the equation
(1.1) admits radial solutions stable outside a compact set (cf. Theorem 3 of [11],
where all stable solutions outside a compact set of R

2 are classified). On the other
hand, for every N ≥ 10 the equation (1.1) possesses a radial stable solution. The
existence of such a solution is a consequence of the analysis performed in [12], as
was remarked in [6].

(iv) The above theorem answers an open question raised in [11].

The paper is organized as follows. In section 1 we prove our main result, namely
Theorem 1. The second and last section is devoted to some applications to bounded
domain problems.

Proof of Theorem 1. First we define some smooth compactly supported functions
to be used in Proposition 1.

We choose ϕ ∈ C2
c (R) satisfying 0 ≤ ϕ ≤ 1 everywhere on R and

ϕ(t) =

{
1 if |t| ≤ 1,

0 if |t| ≤ 2.

For s > 0, we choose a function θs such that : θs ∈ C2
c (R), 0 ≤ θs ≤ 1 everywhere

on R and

θs(t) =

{
0 if |t| ≤ s + 1,

1 if |t| ≥ s + 2.
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The proof of the theorem is by contradiction, and we split it into four steps. Let us
suppose that equation (1.1) admits a C2 solution, which is stable outside a compact
set of R

N . Then:
Step 1. There exists R0 = R0(u) > 0 such that

a) for every α ∈ (0, 2) and every r > R0 + 3 we have

(1.3)
∫
{R0+2<|x|<r}

e(2α+1)udx ≤ A + BrN−2(2α+1),

where A and B are positive constants depending on α, N , and R0 but not on r.
b) For every α ∈ (0, 2) and every open ball B(y, R) such that B(y, 2R) ⊂ {x ∈
R

N : |x| > R0 }, we have

(1.4)
∫

B(y,R)

e(2α+1)udx ≤ CRN−2(2α+1),

where C is a positive constant depending on α, N, R0 but not on R or on y.
Since u is stable outside a compact set of R

N there exists R0 > 0 such that
Proposition 1 holds true with Ω := R

N \ B(0, R0). We fix m = 5 and, for every
r > R0 + 3, we consider the following test function ξr ∈ C2

c (RN ):

ξr(x) =

{
θR0(|x|) if |x| ≤ R0 + 3,

ϕ
(

|x|
r

)
if |x| ≥ R0 + 3,

which inserted into (1.2) gives∫
{R0+2<|x|<r}

e(2α+1)udx ≤
∫

Ω

e(2α+1)udx

≤
( m

2 − α

)2α+1
∫

Ω

(
|∇ξr|2 + |ξr||∆ξr|

)2α+1

≤
( m

2 − α

)2α+1[ ∫
{|x|≤R0+3}

(
|∇θR0 |2 + |θR0 ||∆θR0 |

)2α+1

dx

+
∫
{r≤|x|≤2r}

(
|∇ξr|2 + |ξr||∆ξr|

)2α+1

dx
]

≤ C1(α, N, θR0) + C2(α, N, ϕ)rN−2(2α+1),

for all r > R0 + 3. Hence, the desired integral estimate (1.3) follows.
The integral estimate (1.4) is obtained in the same way by using the test functions

ψR,y(x) := ϕ
(

|x−y|
R

)
in Proposition 1.

Step 2. Let η > 0. Then there exist R1 = R1(N, η, u) > R0 such that

(1.5)
∫
|x|>R1

e
N
2 udx ≤ η

N
2 .

Let α1 := N−2
4 ∈ (0, 2). By part a) of Step 1 we infer that, for all r > R0 + 3,∫

{R0+2<|x|<r}
e

N
2 udx =

∫
{R0+2<|x|<r}

e(2α1+1)udx ≤ A + BrN−2(2α1+1);

hence,
∫
|x|>R0+2

e
N
2 udx < +∞, which immediately yields (1.5).

Step 3.
lim

|x|→+∞
|x|2eu(x) = 0.
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Set ε = 1
10 and observe that N

2−ε ∈ (1, 5). Thus, there exist α2 = α2(N) ∈ (0, 2)
such that 2α2 + 1 = N

2−ε . Here we have used the assumption 3 ≤ N ≤ 9.
Next we fix η > 0 and observe that w = eu satisfies

−∆w − euw ≤ 0 on B(y, 2R).

According to a well-known Harnack inequality (cf. [14], [13]) for positive subso-
lutions of the linear equation −∆w − euw = 0, we have, for any t > 1,

(1.6) ‖w‖L∞(B(y,R)) ≤ CST R−N
t

(
‖w‖Lt(B(y,2R))

)
,

where CST is a positive constant depending on N and also on

(1.7) Rε‖eu‖
L

N
2−ε (B(y,2R))

.

In order to apply the above result we consider points y ∈ R
N such that |y| > 10R1

and set R = |y|
4 , t = N

2 > 1. Here R1 > R0 is defined by (1.5) of Step 2. This
choice yields

B(y, 2R) ⊂ {x ∈ R
N : |x| > R1 } ⊂ {x ∈ R

N : |x| > R0 },∫
|x|≥R1

e
N
2 udx < η

N
2

and

Rε‖eu‖
L

N
2−ε (B(y,2R))

= Rε
(∫

B(y,2R)

e
N

2−ε u
) 2−ε

N

= Rε
( ∫

B(y,2R)

e(2α2+1)u
) 2−ε

N ≤ Rε
[
CRN−2(2α2+1)

] 2−ε
N ≤ C

′
RεR2−εR−2 = C

′
,

where in the latter we have used part (b) of Step 1.
This proves that the constant CST in (1.6) is independent of both y and R.

Actually it depends only on N and R0.
Now, using t = N

2 in (1.6) and Step 2, we are led to

|eu(y)| ≤ CST R−2‖w‖
L

N
2 (B(y,2R))

≤ 16CST |y|−2‖w‖
L

N
2 (B(y,2R))

≤ 16CST |y|−2η,

which proves the claim.
Step 4. End of the proof.
By Step 3, there exist R2 > 0 such that the function v = v(|x|), defined as the

average of the solution u over spheres of radii |x| > 0, satisfies

−∆v ≤ 1
2r2

∀ r > R2.

Hence, the radial function v satisfies

v′(r) ≥ C(N)
rN−1

− 1
2(N − 2)r

∀ r > R2,

and thus
v′(r) ≥ −1

r
∀ r > R3,

for some R3 > R2. Integrating the latter and taking the exponential we get

(1.8) r2ev(r) ≥ Cr ∀ r > R3,

where C is a positive constant independent of r.
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To conclude the proof of Theorem 1, we observe that (1.8) contradicts what we
proved in Step 3. Indeed, by Jensen’s inequality, we have

max
|x|=r

(|x|2eu(x))=r2 max
|x|=r

eu(x) ≥ r2 1
|{|x|=r}|

∫
{|x|=r}

eu≥r2ev(r)≥cr ∀ r > R3,

which clearly contradicts the claim of Step 3.

2. Some applications to bounded domain problems

We conclude the present work with two applications of our main results to
bounded domain problems.

Theorem 2. Assume 3 ≤ N ≤ 9 and let Ω be a bounded smooth domain of R
N .

Assume that (un)n∈N is a sequence of smooth solutions of the problem

(2.1)

{
−∆u = eu in Ω,

u = 0 on ∂Ω.

Then the sequence (un)n∈N is bounded in L∞(Ω) if and only if the sequence of their
Morse indices is bounded in R.

This result extends, up to dimension N = 9, a previous result established by
E.N. Dancer [6] in dimension N = 3. (See also [1] and [10] for similar results for
the case of non-linearities of power-like type.)

The proof of the above Theorem 2 is the same as the one of Theorem 2.1 of [6].
The only difference is that the use of Theorem 1.1 of [6] is replaced by the use of
Theorem 1 here.

Our next result concerns positive solutions of the problem

(2.2)

{
−∆u = λf(u) in Ω,

u = 0 on ∂Ω,

where λ ≥ 0, Ω is a smooth bounded domain of R
N , with 3 ≤ N ≤ 9, f ∈ C1(R, R),

f(t) > 0 for t > 0 and either f(0) > 0 or f(0) = 0 and f
′
(0) > 0. Furthermore, we

assume that f is a real analytic function in a neighborhood of [0, +∞) such that

limt→+∞
f
′
(t)

et = C > 0, and we let λ1 be the first eigenvalue of −∆ on Ω for the
Dirichlet boundary conditions. In [4], by making use of analytic bifurcation theory
[3], it is proven that there exist an unbounded connected arc of positive solutions
T̂ of the problem (3.2) such that (0, λ1(f

′
(0))−1) ∈ T̂ (or (0, 0) ∈ T̂ if f(0) > 0)

and ‖u(s)‖C1 + |λ(s)| → +∞ as s → +∞ (where T̂ = { (u(s), λ(s)) : s ≥ 0 }) and
−∆−λ(s)f

′
(u(s))Id (plus the boundary condition) is an invertible operator except

at isolated points. Thus, one can apply the implicit function theorem on T̂ except
at the above-mentioned isolated points. This enables us to prove the following.

Theorem 3. Assume that the above conditions hold and let S be a bounded subset
of C0[0, 1] × R. Then the set T̂ \S contains infinitely many bifurcation points.

The proof of the above result is a modification of the one of Theorem 2.2 of [6].
(One has to note that the use of Theorem 2.1 of [6] is replaced here by the use
of Theorem 1 and that the blow-up argument performed in [5] still applies in the
present situation.) For these reasons we omit the details.
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Remark 2. Theorem 3 generalizes a result of Joseph and Lundgren [12], which was
proved for the special case f(t) = et and Ω a Euclidean open ball (the so-called
Gelfand problem on an open ball). Our method is completely different from the
one used in [12], and our results hold true for much more general domains as well
as for much more general non-linearities f .

(ii) The results proven in [12] show that Theorem 3 does not hold for an open
ball whenever N ≥ 10. (The method of moving planes shows that all solutions
must be radial in this case.)
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