
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 5, May 2009, Pages 1631–1639
S 0002-9939(08)09752-9
Article electronically published on November 26, 2008

THREEFOLDS CONTAINING BORDIGA SURFACES
AS AMPLE DIVISORS

HIDETOSHI MAEDA

(Communicated by Ted Chinburg)

Abstract. Let L be an ample line bundle on a smooth complex projective
variety X of dimension three such that there exists a smooth member Z of
|L|. When the restriction LZ of L to Z is very ample and (Z, LZ) is a Bordiga
surface, it is proved that there exists an ample vector bundle E of rank two
on P2 with c1(E) = 4 and 3 ≤ c2(E) ≤ 10 such that (X, L) = (PP2 (E), H(E)),
where H(E) is the tautological line bundle on the projective space bundle
PP2 (E) associated to E.

Introduction

In this paper varieties are always assumed to be defined over the field C of
complex numbers.

Given a smooth projective variety Z, the classification of smooth projective
varieties X containing Z as an ample divisor occupies an extremely important
position in the theory of polarized varieties, and it is well-known that the structure
of Z imposes severe restrictions on that of X. Inspired by this philosophy, we set
up the following condition (∗):

(∗) L is an ample line bundle on a smooth projective variety X such that there
exists a smooth member Z of |L|.

In this paper we treat Bordiga surfaces (Z, LZ) under the assumption (∗) when
the restriction LZ of L to Z is very ample. Here (Z, LZ) with LZ very ample is
called a Bordiga surface if Z is a smooth projective surface obtained by the blowing-
up σ : Z → P2 of P2 at k distinct points p1, . . . , pk in general position (0 ≤ k ≤ 10)
and LZ = σ∗OP2(4) − OZ(

∑k
i=1 ei), where ei = σ−1(pi) for i = 1, . . . , k. When

L itself is very ample, if (Z, LZ) is a Bordiga surface, then it follows from [I,
Theorem 4.2 and Proposition 4.7] and [LM2, Lemma 4] that there exists a very
ample vector bundle E of rank two on P2 with c1(E) = 4 and 3 ≤ c2(E) ≤ 10 such
that (X, L) = (PP2(E), H(E)), where H(E) is the tautological line bundle on the
projective space bundle PP2(E) associated to E . The purpose of this paper is to
generalize the above result when L is simply supposed to be ample. The precise
statement of our result is as follows:

Received by the editors November 23, 2007, and, in revised form, July 16, 2008.
2000 Mathematics Subject Classification. Primary 14J25; Secondary 14J30, 14J60.
Key words and phrases. Ample line bundle, Bordiga surface.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

1631



1632 HIDETOSHI MAEDA

Theorem. Let L be an ample line bundle on a smooth projective variety X of
dimension three such that there exists a smooth member Z of |L|. Assume that
the restriction LZ of L to Z is very ample and that (Z, LZ) is a Bordiga surface.
Then there exists an ample vector bundle E of rank two on P2 with c1(E) = 4 and
3 ≤ c2(E) ≤ 10 such that (X, L) = (PP2(E), H(E)).

This paper is organized as follows. In Section 1 we collect necessary material
that will be used later. Sections 2 and 3 are devoted to the proof of the theorem.
Concretely, in Section 2, under the assumption in the theorem we prove that there
exists an ample vector bundle E of rank two on P2 with c1(E) = 4 and 1 ≤ c2(E) ≤ 10
such that (X, L) = (PP2(E), H(E)). In Section 3 we show that c2(E) ≥ 3.

When E is an ample vector bundle of rank n − 2 ≥ 2 on a smooth projective
variety X of dimension n such that there exists a global section s of E whose zero
locus Z = (s)0 is a smooth surface on X and H is an ample line bundle on X such
that HZ is very ample, the triplets (X, E , H) are completely classified in [LM1] and
[LM2] under the assumption that (Z, HZ) is a Bordiga surface. Consequently the
theorem is regarded as a result when n = 3 and E = H.

Thanks are due to the referee for useful remarks.

1. Preliminaries

We use the standard notation from algebraic geometry. The tensor products of
line bundles are denoted additively. The pullback i∗E of a vector bundle E on X by
an embedding i : Y ↪→ X is denoted by EY . In particular, for a closed subvariety V
of PN , (OPN (1))V is denoted by OV (1). For a vector bundle E on a projective variety
X, the tautological line bundle on the projective space bundle PX(E) associated to E
is denoted by H(E). A vector bundle E on a projective variety X is said to be ample
(respectively very ample) if H(E) is ample (respectively very ample). We denote
by KX the canonical bundle of a smooth variety X. A polarized manifold is a pair
(X, L) consisting of a smooth projective variety X and an ample line bundle L on X.
The sectional genus g(X, L) of a polarized manifold (X, L) is defined by the formula
2g(X, L)−2 = (KX+(n−1)L)Ln−1, where n = dim X. A polarized manifold (X, L)
is called a scroll over a smooth projective variety W if (X, L) = (PW (E), H(E)) for
some ample vector bundle E on W . A polarized manifold (X, L) is called a Del
Pezzo manifold if KX + (dimX − 1)L = OX . A pair (X, L) with L very ample is
called a Bordiga surface if X is a smooth projective surface obtained by the blowing-
up σ : X → P2 of P2 at k distinct points p1, . . . , pk in general position (0 ≤ k ≤ 10)
and L = σ∗OP2(4) −OX(

∑k
i=1 ei), where ei = σ−1(pi) for i = 1, . . . , k.

First let us recall some numerical properties of adjoint bundles.

Lemma 1. Let L be an ample line bundle on a smooth projective variety X of
dimension n ≥ 1.

(i) If t ≥ n + 1, then KX + tL is always nef.
(ii) If KX + nL is not nef, then (X, L) = (Pn,OPn(1)).
(iii) Assume that KX + nL is nef and that n ≥ 2. If KX + (n− 1)L is not nef,

then (X, L) is one of the following:
(iii-1) X is a quadric hypersurface Qn in Pn+1, and L = OQn(1);
(iii-2) (X, L) = (P2,OP2(2));
(iii-3) (X, L) is a scroll over a smooth projective curve.
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(iv) Assume that KX + (n− 1)L is nef and that n ≥ 3. If KX + (n− 2)L is not
nef, then (X, L) is one of the following:

(iv-1) there exists an effective divisor E on X such that (E, LE, (OX(E))E) =
(Pn−1,OPn−1(1),OPn−1(−1));

(iv-2) (X, L) is a Del Pezzo manifold;
(iv-3) (X, L) = (P3,OP3(3));
(iv-4) (X, L) = (P4,OP4(2));
(iv-5) (X, L) = (Q3,OQ3(2));
(iv-6) X is a P2-bundle over a smooth projective curve C, and LF = OP2(2) for

any fiber F of the bundle projection X → C;
(iv-7) there exists a surjective morphism π : X → C onto a smooth projective

curve C with Picard number ρ(C) = ρ(X)− 1 such that any fiber D of π is
a quadric hypersurface in Pn with LD = OD(1);

(iv-8) (X, L) is a scroll over a smooth projective surface.

Proof. We refer the reader to [F, Theorems 11.2, 11.7 and 11.8]. �
Second we need the following:

Lemma 2. Assume that (X, L) = (PC(E), H(E)) for some (not necessarily ample)
vector bundle E of rank n on a smooth projective curve C. Then g(X, L) = g(C),
where g(C) is the genus of C.

Proof. Let π : X → C be the bundle projection. Then KX +nL = π∗(KC +det E).
Furthermore, the Wu-Chern relation tells us that Ln − Ln−1π∗(det E) = 0. Thus

2g(X, L) − 2 = (KX + (n − 1)L)Ln−1 = (−L + π∗(KC + det E))Ln−1

= −Ln + Ln−1π∗(KC + det E) = −Ln−1π∗(det E) + Ln−1π∗(KC + det E)

= Ln−1π∗KC = deg KC = 2g(C) − 2,

i.e., g(X, L) = g(C). �
Let (X, L) be a Bordiga surface, that is to say, L is a very ample line bundle

on a smooth projective surface X obtained by the blowing-up σ : X → P2 of
P2 at k distinct points p1, . . . , pk in general position (0 ≤ k ≤ 10), and L =
σ∗OP2(4) − OX(

∑k
i=1 ei), where ei = σ−1(pi) for i = 1, . . . , k. For k ≥ 1, the

(−1)-curves ei satisfy Lei = 1. Conversely, we also need the following:

Lemma 3. Let (X, L) be a Bordiga surface as above, and let l be a (−1)-curve on
X with Ll = 1. Then l = ei for some i.

Proof. We refer the reader to [LM1, Proposition 0.2]. �
In addition, we quote the following from [LM1].

Lemma 4. Let (X, L) be a Bordiga surface as above, let ρ : X → P1 be a P1-
fibration, and let f be a fiber of ρ. Then f ∈ |σ∗OP2(d)−OX(

∑k
i=1 miei)| for some

d > 0 and for some mi ≥ 0. Moreover,

(1.1)
k∑

i=1

m2
i = d2 and

k∑
i=1

mi = 3d − 2.

Proof. We refer the reader to [LM1, Lemma 0.3]. �
Finally we prove the following:



1634 HIDETOSHI MAEDA

Lemma 5. Let E be an ample vector bundle of rank r on a smooth projective variety
X of dimension n ≥ 2. Assume that r ≥ n. If KX +det E is not ample, then either
KX + det E = OPn(−1) or (KX + det E)n = 0.

Proof. If KX +det E is not ample, then it follows from [F, Theorems 20.1 and 20.8]
that (X, E) is one of the following:

(1) (Pn,OPn(1)⊕(n+1));
(2) (Pn,OPn(1)⊕n);
(3) there exists a vector bundle F of rank n on a smooth projective curve C

such that X = PC(F), and EF = OPn−1(1)⊕n for any fiber F of the bundle
projection;

(4) (Pn,OPn(2) ⊕OPn(1)⊕(n−1));
(5) (Pn, TPn), where TPn is the tangent bundle of Pn;
(6) (Qn,OQn(1)⊕n).

In cases (1), (4), (5) and (6) we get KX + det E = OX . In case (2) we obtain
KX + det E = OPn(−1). Suppose that case (3) holds. Then there exists a vector
bundle G of rank n on C such that E = H(F)⊗ρ∗G, where ρ : X → C is the bundle
projection. We have KX = −nH(F) + ρ∗(KC + detF) and det E = nH(F) +
ρ∗(detG), so that KX +det E = ρ∗(KC +detF +detG). Hence (KX +det E)n = 0,
and the result is proved. �

2. Proof of the theorem: Part I

Let (Z, LZ) be a Bordiga surface. Then Z is a smooth projective surface obtained
by the blowing-up σ : Z → P2 of P2 at k distinct points p1, . . . , pk in general
position (0 ≤ k ≤ 10), and LZ = σ∗OP2(4) −OZ(

∑k
i=1 ei), where ei = σ−1(pi) for

i = 1, . . . , k. Since (KX + L)Z = KZ and KZ is not nef, we see that KX + L itself
is not nef. Thus it follows from Lemma 1 that (X, L) is one of the following:

(1) (P3,OP3(1));
(2) (Q3,OQ3(1));
(3) (X, L) is a scroll over a smooth projective curve C;
(4) there exists an effective divisor E on X such that (E, LE, (OX(E))E) =

(P2,OP2(1),OP2(−1));
(5) (X, L) is a Del Pezzo manifold;
(6) (P3,OP3(3));
(7) (Q3,OQ3(2));
(8) X is a P2-bundle over a smooth projective curve C, and LF = OP2(2) for

any fiber F of the bundle projection X → C;
(9) there exists a surjective morphism π : X → C onto a smooth projective

curve C with Picard number ρ(C) = ρ(X) − 1 such that any fiber D of π
is a quadric surface in P3 with LD = OD(1);

(10) (X, L) is a scroll over a smooth projective surface S.

Furthermore, we have KZ + LZ = (σ∗OP2(−3) + OZ(
∑k

i=1 ei)) + (σ∗OP2(4) −
OZ(

∑k
i=1 ei)) = σ∗OP2(1), so that 2g(Z, LZ) − 2 = (KZ + LZ)LZ =

(σ∗OP2(1))(σ∗OP2(4) − OZ(
∑k

i=1 ei)) = 4. Hence g(Z, LZ) = 3, and we conclude
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that g(X, L) = 3. Moreover, the Lefschetz theorem tells us that h1(X,OX) =
h1(Z,OZ) = 0. Set Z = (s)0 for some global section s of L. Now let us deal with
each of the cases (1)–(10) separately.

In case (1) we have 2g(X, L)−2 = (KX +2L)L2 = (OP3(−4)+OP3(2))OP3(1)2 =
−2, so that g(X, L) = 0, which contradicts the fact that g(X, L) = 3.

In case (2) we obtain 2g(X, L)−2 = (KX +2L)L2 = (OQ3(−3)+OQ3(2))OQ3(1)2

= −2, and then g(X, L) = 0. This is also impossible.
Assume that case (3) holds. Then h1(C,OC) = h1(X,OX) = 0, i.e., C = P1.

Combining this with Lemma 2, we have g(X, L) = g(C) = 0. This is absurd because
g(X, L) = 3.

We treat case (4) after case (9). In case (5) we get 2g(X, L)−2 = (KX +2L)L2 =
0, so that g(X, L) = 1, which is also impossible.

In case (6) we have 2g(X, L)−2 = (KX +2L)L2 = (OP3(−4)+OP3(6))OP3(3)2 =
18, and hence g(X, L) = 10. This is absurd.

In case (7) we obtain 2g(X, L)−2 = (KX +2L)L2 = (OQ3(−3)+OQ3(4))OQ3(2)2

= 8, and so g(X, L) = 5. This is also absurd.
Now we consider case (8). Then h1(C,OC) = h1(X,OX) = 0. Thus C = P1.

This directly indicates that Pic(X) = Z ⊕ Z, and the Lefschetz theorem tells us
that k ≥ 1. We can write X = PP1(E), where E = OP1 ⊕ OP1(a1) ⊕ OP1(a2)
with a1, a2 ≥ 0. Let ρ : X → P1 be the bundle projection, and let H denote the
tautological line bundle H(E) on X. Then H is spanned. Since LF = OP2(2) for any
fiber F of ρ, we have L = 2H+bρ∗OP1(1) for some b. Combining [BS, Lemma 3.2.4]
with the ampleness of L gives b > 0. We have 1 = LZe1 = (2HZ + bρ∗ZOP1(1))e1 =
2HZe1 + b(ρ∗ZOP1(1))e1. Since HZ and ρ∗ZOP1(1) are spanned, we obtain HZe1 = 0
and b = (ρ∗ZOP1(1))e1 = 1. Therefore L = 2H + ρ∗OP1(1). Let us compute the
sectional genus g(X, L). Since KX = −3H+ρ∗OP1(c1(E)−2), we get 4 = 2g(X, L)−
2 = (KX +2L)L2 = (−3H +ρ∗OP1(c1(E)−2)+4H +ρ∗OP1(2))(2H +ρ∗OP1(1))2 =
(H + ρ∗OP1(c1(E)))(4H2 + 4Hρ∗OP1(1)) = 4H3 + 4 + 4c1(E) = 8c1(E) + 4. Hence
c1(E) = 0, i.e., a1 = a2 = 0, so that E = O⊕3

P1 . Consequently X = P2 × P1 and
L = O(2, 1). However, we can regard (X, L) as (PP2(OP2(2)⊕2), H(OP2(2)⊕2)).
From this, case (8) is included in case (10).

Suppose that (X, L) is as in case (9). Then h1(C,OC) ≤ h1(X,OX) = 0,
so that C = P1. Hence ρ(X) = 2. By the Lefschetz theorem, the restriction
homomorphism Pic(X) → Pic(Z) is injective. Moreover, Pic(Z) is torsion free
because Z is rational. Thus Pic(X) = Z⊕Z, and hence k ≥ 1. Set N = −(KX +L).
Then NF = −(KF +LF ) = OQ2(1) for a general fiber F = Q2 of π, and so Pic(X) is
generated by N and π∗OP1(1). Set L = aN+bπ∗OP1(1) for some integers a, b. Then,
since LD = OD(1) for any fiber D of π, we obtain a = 1, so that L = N+bπ∗OP1(1).
We know that Z = (s)0 for some global section s of L. Let sF denote the restriction
of s to a general fiber F . Then sF ∈ Γ(Q2,OQ2(1)), so that Z∩F = (sF )0 	= ∅. This
implies that the restriction πZ : Z → P1 of π to Z is surjective. Now Z∩F is a conic
in P2 for a general F , which indicates that πZ is a P1-fibration. Set f = Z ∩ F
for a general F . Then LZ = NZ + bπ∗

ZOP1(1) = −KZ + bπ∗
ZOP1(1) = −KZ +

bOZ(f). In addition, by Lemma 4 we know that f ∈ |σ∗OP2(d) −OZ(
∑k

i=1 miei)|
for some d > 0 and for some mi ≥ 0. Since −KZ = σ∗OP2(3) − OZ(

∑k
i=1 ei),

we obtain LZ = −KZ + bOZ(f) = (σ∗OP2(3) − OZ(
∑k

i=1 ei)) + b(σ∗OP2(d) −
OZ(

∑k
i=1 miei)) = σ∗OP2(3 + bd) − OZ(

∑k
i=1(1 + bmi)ei). On the other hand,
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LZ = σ∗OP2(4) −OZ(
∑k

i=1 ei). Consequently 3 + bd = 4 and 1 + bmi = 1 for any
i, so that bd = 1 and bmi = 0 for every i. Therefore b = d = 1 and mi = 0 for any
i. But then, since d = 1, it follows from (1.1) that mi = 1 for some i. This is a
contradiction.

Let us consider case (4). Let f : X → X ′ be the blowing-down of E to a point
p ∈ X ′. Then there exists a line bundle L′ on X ′ such that L = f∗L′ − OX(E).
It follows from [F, Lemma 7.16] that L′ is ample on X ′. Set l = (sE)0 = Z ∩ E.
Since sE ∈ Γ(P2,OP2(1)), l is a linear subspace of E with dim l ≥ 1. If Z ∩E = Z,
then Z = P2, so that LZ = (LE)Z = OP2(1). Thus KZ + LZ = OP2(−2), which
contradicts the nefness of KZ + LZ = σ∗OP2(1). Hence l = Z ∩ E � Z, and the
irreducibility of Z gives dim l ≤ 1. Therefore dim l = 1, i.e., l = P1. Moreover,
(OZ(l))l = ((OX(E))Z)l = ((OX(E))E)l = OP1(−1). This directly implies that l is
a (−1)-curve on Z. Set Z ′ = f(Z). Then Z ′ is a smooth projective surface, and Z ′ is
also a smooth member of |L′|. It should be emphasized that LZ = f∗

ZL′
Z′−OZ(l), so

that LZ l = 1. Combining this with Lemma 3 leads us to the conclusion that l = ei

for some i. Consequently (Z ′, L′
Z′) is again a Bordiga surface, and (X ′, L′) satisfies

the same assumption as that in the theorem. We have KX + 2L = f∗(KX′ + 2L′)
because KX = f∗KX′ +2OX(E). Since we are in case (iv-1) of Lemma 1, KX +2L
is nef, so that KX′ + 2L′ is also nef. Moreover, since (Z ′, L′

Z′) is a Bordiga surface,
we see that KX′ +L′ is not nef. Therefore (X ′, L′) is as in cases (4)–(10). However,
we know that cases (5)–(9) do not occur when (Z ′, L′

Z′) is a Bordiga surface (we
should keep in mind that case (8) is included in case (10)). Suppose that (X ′, L′)
is as in case (10). Then there exists a smooth rational curve C on X ′ passing
through p such that L′C = 1. Let C̃ be the strict transform of C by f . Then
LC̃ = (f∗L′ − OX(E))C̃ = L′C − OX(E)C̃ = 0, which contradicts the ampleness
of L. Thus (X ′, L′) must be as in case (4) again. We apply the same argument as
above to X ′, L′ and Z ′, and continue in this manner. This procedure must come
to an end after a finite number of repetitions, and we obtain (X̃, L̃) satisfying the
same assumption as in the theorem such that K

X̃
+ L̃ is nef. For the corresponding

smooth projective surface Z̃, KZ̃ is nef. This contradicts the fact that Z̃ is rational,
and case (4) does not occur.

Finally we consider case (10). Let ρ : X → S be the scroll projection, and
let F be an arbitrary fiber of ρ. Then LF = OP1(1). This indicates that Z ∩ F
is either a point or all of F . In particular, ρZ : Z → S is surjective, so that
ρZ is generically finite. Hence ρZ is birational. The Lefschetz theorem tells us
that the restriction homomorphism Pic(X) → Pic(Z) is injective, so that ρZ is
not an isomorphism. Thus there exists a positive dimensional fiber e of ρZ . Since
e = Z ∩ F for some fiber F of ρ and Z ∩ F is all of F , we have e = P1. We
can write (X, L) = (PS(E), H(E)) for some ample vector bundle E of rank 2 on S,
and we obtain KX + 2L = ρ∗(KS + det E), so that KZ + LZ = ρ∗Z(KS + det E).
Therefore 0 = (ρ∗Z(KS + det E))e = KZe + LZe = KZe + LF e = KZe + 1, i.e.,
KZe = −1. This directly implies that e is a (−1)-curve on Z. Moreover, since
LZe = 1, it follows from Lemma 3 that e = ei for some i. From this, we can
conclude that S is also a smooth projective surface with the Bordiga polarization,
so that σ factors through ρZ . Let us recall that KZ + LZ = ρ∗Z(KS + det E). Since
KZ + LZ = σ∗OP2(1) is nef and big, we see that KS + det E is also nef and big.
Hence by Lemma 5, KS + det E is ample. We get (KZ + LZ)ei = 0 for any i
because KZ + LZ = σ∗OP2(1), so that 0 = (KZ + LZ)ei = (ρ∗Z(KS + det E))ei
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for any i. Combining this with the ampleness of KS + det E implies that ρZ(ei)
is a point of S for every i. Therefore S = P2 and ρZ = σ. Thus KX + 2L =
ρ∗(OP2(−3)+det E), which indicates that KZ+LZ = ρ∗Z(OP2(−3)+det E). We know
that KZ + LZ = σ∗OP2(1). Hence OP2(−3) + det E = OP2(1), i.e., det E = OP2(4).
Thus c1(E) = 4. By the Wu-Chern relation, we have L2 − Lρ∗c1(E) + ρ∗c2(E) = 0,
and hence L3 = L2ρ∗c1(E)−Lρ∗c2(E) = c1(E)2 − c2(E) = 16− c2(E). On the other
hand, L3 = L2

Z = (σ∗OP2(4) − OZ(
∑k

i=1 ei))2 = 16 − k. Consequently c2(E) = k.
Since ρZ = σ is not an isomorphism, we obtain k ≥ 1, and we conclude that
1 ≤ c2(E) ≤ 10. In Section 3 we show that c2(E) ≥ 3.

3. Proof of the theorem: Part II

Let X, L and Z be as in the theorem. Then we know that there exists an ample
vector bundle E of rank two on P2 with c1(E) = 4 and 1 ≤ c2(E) ≤ 10 such that
(X, L) = (PP2(E), H(E)). Let us consider the vector bundle E ⊗ OP2(−2). Then
c1(E ⊗ OP2(−2)) = c1(E) + 2c1(OP2(−2)) = 0, so that E ⊗ OP2(−2) is normalized
in the sense of [OSS, p. 165].

First assume that E is not semistable. Then [OSS, Chapter II, Lemma 1.2.5] tells
us that H0(P2, E ⊗ OP2(−3)) 	= 0. Take a nonzero global section t ∈ H0(P2, E ⊗
OP2(−3)). If (t)0 = ∅, then we have an exact sequence (E ⊗OP2(−3))∨ → OP2 → 0,
where (E ⊗OP2(−3))∨ is the dual of E ⊗OP2(−3). Hence the sequence 0 → OP2 →
E ⊗ OP2(−3) → OP2(−2) → 0 is exact, so that 0 → OP2(3) → E → OP2(1) → 0
is exact. Now Ext1(OP2(1),OP2(3)) = Ext1(OP2 ,OP2(2)) = H1(P2,OP2(2)) = 0.
Therefore E = OP2(3)⊕OP2(1), and c2(E) = 3. On the other hand, when (t)0 	= ∅,
we take a line l in P2 such that (tl)0 = (t)0∩ l is a nonempty finite set. Then we can
write El = OP1(a) ⊕OP1(4 − a) for some integer a. Taking the ampleness of E and
the symmetry into account, we can assume that a ≥ 4 − a ≥ 1, so that 2 ≤ a ≤ 3.
Now (E ⊗ OP2(−3))l = OP1(a − 3) ⊕ OP1(1 − a). If a = 3, then (tl)0 = l, which is
contrary to our assumption. If a = 2, then (tl)0 is also l. This is still absurd.

Next assume that E is not stable but semistable. Then by [OSS, Chapter II,
Lemma 1.2.5] we get H0(P2, E ⊗ OP2(−3)) = 0 and H0(P2, E ⊗ OP2(−2)) 	= 0.
Take a nonzero global section t ∈ H0(P2, E ⊗ OP2(−2)). If (t)0 = ∅, then we
obtain an exact sequence (E ⊗ OP2(−2))∨ → OP2 → 0, which induces an exact
sequence 0 → OP2 → E ⊗ OP2(−2) → OP2 → 0. As a consequence, the sequence
0 → OP2(2) → E → OP2(2) → 0 is exact. We have Ext1(OP2(2),OP2(2)) =
Ext1(OP2 ,OP2) = H1(P2,OP2) = 0. Hence E = OP2(2)⊕2 and c2(E) = 4. When
(t)0 	= ∅, the case where dim(t)0 = 1 is impossible because H0(P2, E⊗OP2(−3)) = 0.
Thus dim(t)0 = 0. Take an arbitrary line l in P2 such that (t)0 ∩ l 	= ∅. With the
same notation as above we have (E⊗OP2(−2))l = OP1(a−2)⊕OP1(2−a). We should
keep in mind that 2 ≤ a ≤ 3 by the ampleness of E . Thus a = 3, and (t)0∩l is a single
point p of P2. Therefore c2(E ⊗OP2(−2)) = 1, and the Koszul complex gives rise to
an exact sequence 0 → OP2 → (E⊗OP2(−2))∨ = E⊗OP2(−2) → Ip → 0, where Ip is
the ideal sheaf of p. Consequently the sequence 0 → OP2(2) → E → Ip⊗OP2(2) → 0
is exact, and c2(E) = 5.

Finally we assume that E is stable. Then it follows from [OSS, Chapter II,
Lemma 1.2.5] that H0(P2, E⊗OP2(−2)) = 0. We apply the Riemann-Roch theorem
to E ⊗OP2(−1). Now det(E ⊗OP2(−1)) = OP2(2) and c2(E ⊗OP2(−1)) = c2(E)−3.
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The Riemann-Roch theorem tells us that

χ(P2, E ⊗ OP2(−1)) =
1
2
(det(E ⊗ OP2(−1)) − KP2) det(E ⊗ OP2(−1))

− c2(E ⊗ OP2(−1)) + 2χ(P2,OP2)

= 10 − c2(E).

Suppose that c2(E) ≤ 9. Then either h0(P2, E ⊗ OP2(−1)) > 0 or h2(P2, E ⊗
OP2(−1)) > 0. By Serre duality, the latter indicates that 0 < h0(P2, KP2 ⊗
E∨ ⊗ OP2(1)) = h0(P2, E ⊗ OP2(−6)). However, since we know that H0(P2, E ⊗
OP2(−2)) = 0, we obtain h0(P2, E⊗OP2(−6)) = 0. Therefore h0(P2, E⊗OP2(−1)) >
0. Take a nonzero global section t ∈ H0(P2, E ⊗OP2(−1)). If (t)0 = ∅, then we get
an exact sequence (E ⊗OP2(−1))∨ → OP2 → 0. Thus the sequence 0 → OP2 → E ⊗
OP2(−1) → OP2(2) → 0 is exact, so that 0 → OP2(1) → E → OP2(3) → 0 is exact.
We have Ext1(OP2(3),OP2(1)) = Ext1(OP2 ,OP2(−2)) = H1(P2,OP2(−2)) = 0, and
so E = OP2(3)⊕OP2(1). However, we have H0(P2, E⊗OP2(−2)) = H0(P2,OP2(1)⊕
OP2(−1)) 	= 0. This is a contradiction. Moreover, since H0(P2, E ⊗ OP2(−2)) = 0,
the case where dim(t)0 = 1 is also impossible. Thus dim(t)0 = 0. Set Y = (t)0.
Then deg Y = c2(E ⊗ OP2(−1)) = c2(E) − 3. The Koszul complex induces an ex-
act sequence 0 → OP2(−2) → (E ⊗ OP2(−1))∨ = E ⊗ OP2(−3) → IY → 0, where
IY is the ideal sheaf of Y . Hence the sequence 0 → OP2(−1) → E ⊗ OP2(−2) →
IY ⊗ OP2(1) → 0 is exact. Since H0(P2, E ⊗ OP2(−2)) = 0 by assumption and
H1(P2,OP2(−1)) = 0, we have H0(P2, IY ⊗OP2(1)) = 0. This means that Y is not
contained in a line. Hence deg Y ≥ 3, i.e., c2(E) ≥ 6. Consequently, if E is stable,
then we see that c2(E) ≥ 6.

Thus we conclude that c2(E) ≥ 3 when E is ample with c1(E) = 4. To sum up,
under the assumption in the theorem, there exists an ample vector bundle E of rank
two on P2 with c1(E) = 4 and 3 ≤ c2(E) ≤ 10 such that (X, L) = (PP2(E), H(E)).
We have completed the proof of the theorem. �

The argument developed in this section enables us to prove the following propo-
sition. Statement (3) was proved in [M] when E is very ample.

Proposition. Let E be an ample vector bundle of rank two on P2 with c1(E) = 4.
Then

(1) c2(E) = 3 if and only if E = OP2(3) ⊕OP2(1);
(2) c2(E) = 4 if and only if E = OP2(2)⊕2;
(3) c2(E) = 6 if and only if E is the cokernel of a bundle monomorphism

OP2(1)⊕2 → T⊕2
P2 , where TP2 is the tangent bundle of P2.

Proof. The argument developed in this section implies the following when E is an
ample vector bundle of rank two on P2 with c1(E) = 4:

(i) c2(E) = 3 if and only if E is not semistable;
(ii) c2(E) = 4 or 5 if and only if E is not stable but semistable;
(iii) c2(E) ≥ 6 if and only if E is stable.
(1) The “if” part is obvious. Assume that c2(E) = 3. Then E is not semistable,

so that E = OP2(3) ⊕OP2(1).
(2) The “if” part is also obvious. If c2(E) = 4, then E is not stable but semistable.

Thus we see that E = OP2(2)⊕2.
(3) Assume that the sequence 0 → OP2(1)⊕2 → T⊕2

P2 → E → 0 is exact. Then
E is ample because TP2 is ample. Moreover, c1(E) = c1(T⊕2

P2 ) − c1(OP2(1)⊕2) = 4,



THREEFOLDS CONTAINING BORDIGA SURFACES AS AMPLE DIVISORS 1639

and c2(E) = c2(T⊕2
P2 ) − c1(E)c1(OP2(1)⊕2) − c2(OP2(1)⊕2) = 6. Hence it suffices to

prove the “only if” part.
Suppose that E is an ample vector bundle of rank two on P2 with c1(E) = 4

and c2(E) = 6. Then E is stable. Let us consider the vector bundle E ⊗ OP2(−2),
which is also stable. Then c1(E ⊗ OP2(−2)) = c1(E) + 2c1(OP2(−2)) = 0, and
c2(E ⊗ OP2(−2)) = c2(E) + c1(E)c1(OP2(−2)) + c1(OP2(−2))2 = 2. It follows
from the Beilinson spectral sequence that E ⊗ OP2(−2) is the cokernel of a bundle
monomorphism OP2(−1)⊕2 → (Ω1

P2 ⊗ OP2(1))⊕2 [OSS, Example 2, p. 248]. Since
Ω1

P2 = TP2 ⊗OP2(−3), the sequence

0 → OP2(−1)⊕2 → (TP2 ⊗OP2(−2))⊕2 → E ⊗OP2(−2) → 0

is exact. This directly leads us to the conclusion that E is the cokernel of a bundle
monomorphism OP2(1)⊕2 → T⊕2

P2 . �
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