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(Communicated by Paul Goerss)

Abstract. For smooth actions of G on spheres with exactly two fixed points,
the Laitinen Conjecture proposed an answer to the Smith question about the

G-modules determined on the tangent spaces at the two fixed points. Morimoto
obtained the first counterexample to the Laitinen Conjecture for G = Aut(A6).
By answering the Smith question for some finite solvable Oliver groups G, we
obtain new counterexamples to the Laitinen Conjecture, presented for the first
time in the case where G is solvable.

0. The Laitinen Conjecture

In 1960, P. A. Smith [17] posed the following question. If a finite group G acts
smoothly on a sphere with exactly two fixed points a and b, is it true that the real
G-modules determined on the tangent spaces at a and b are always isomorphic?

Smith Equivalence. For a finite group G, two real G-modules U and V are called
Smith equivalent if as real G-modules, U ∼= Ta(S) and V ∼= Tb(S) for a smooth
action of G on a homotopy sphere S with exactly two fixed points a and b.

The Smith equivalence of real G-modules has been studied by many authors,
and the Smith question has been answered in many cases (see [12] and [13] for long
lists of related references, and see [4], [6], [9], [14] and [20] for very recent results).

In 1996, E. Laitinen suggested an answer to the Smith question in the case where
G is an Oliver group (that is, G has a smooth fixed point free action on a disk [11]
or, equivalently, G has a smooth one fixed point action on a sphere [7]) and G acts
on the homotopy sphere S in such a way that the Laitinen Condition is satisfied:
the fixed point set Sg is connected for every g ∈ G of order 2k for k ≥ 3.

The answer (stated as a conjecture) is expressed by using the number rG of real
conjugacy classes in G of the elements g ∈ G not of prime power order.

Laitinen Conjecture. For any finite Oliver group G with rG ≥ 2, there exist two
Smith equivalent real G-modules which are not isomorphic, and the action of G on
the homotopy sphere in question satisfies the Laitinen Condition.

For a finite group G with rG = 0 or 1, any two Smith equivalent real G-modules
are isomorphic provided the Laitinen Condition holds; see [8, Lemmas 1.4 and 2.1].
Therefore, in the Laitinen Conjecture, the condition that rG ≥ 2 is necessary.
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By [8, Theorem A], for a finite perfect group G, there exist two non-isomorphic
Smith equivalent real G-modules, and the Laitinen Condition is satisfied if and only
if rG ≥ 2. In particular, the Laitinen Conjecture holds when G is perfect.

Morimoto [9] has obtained the first counterexample to the Laitinen Conjecture
by proving that for G = Aut(A6), any two Smith equivalent real G-modules are
isomorphic. Here rG = 2 (cf. [13]) and G is a non-solvable (and thus Oliver) group.
We obtain for the first time counterexamples to the Laitinen Conjecture for finite
solvable Oliver groups G. To reach this goal, we proceed as follows.

In Section 1, we restate the Smith isomorphism question and describe the Smith
diagram of inclusions. In Section 2, we study some conditions imposed on two
real G-modules which will be useful in proving that two Smith equivalent real G-
modules are isomorphic. In Section 3, we prove that two Smith equivalent real
G-modules are related to each other in a specific way depending on G and the
subgroups of G of index 2, and we present a refinement of the Smith diagram. In
Section 4, we recall how to obtain two Smith equivalent real G-modules which are
not isomorphic, and we emphasize the role played by the subgroup Gnil of G. In
Section 5, we prove six propositions for six different finite solvable Oliver groups
G to answer the Smith question — negatively in one case and affirmatively in five
other cases. As a result, we obtain counterexamples to the Laitinen Conjecture in
four cases of G.

We refer the reader to [2], [3], and [5] for the basic information on transformation
groups that we use in this paper.

1. The Smith diagram

In this section, G always denotes an arbitrary finite group. Let RO(G) be the
real representation ring of G. As a set, RO(G) consists of the differences U − V of
real G-modules U and V , where U − V = U ′ − V ′ if and only if U ⊕ V ′ ∼= U ′ ⊕ V .
In particular, U − V = 0 if and only if U ∼= V .

Let Sm(G) be the subset of RO(G) consisting of the differences U −V of Smith
equivalent real G-modules U and V . Then the Smith isomorphism question can be
restated as follows: Is it true that Sm(G) = 0?

Definition 1.1. For a set N of natural numbers, two real G-modules U and V are
called N -matched if χU (g) = χV (g) for each element g ∈ G of order |g| ∈ N , where
χU and χV are the characters of U and V , respectively.

For a set N of natural numbers, let Sm(G)N consist of the differences U − V of
Smith equivalent N -matched real G-modules U and V . Henceforth, we set

P = {1} ∪ {pk : p prime, k ≥ 1}, R = {2k : k ≥ 3}, and S = P \ R.

Now, we recall arguments showing that Sm(G) = Sm(G)S .

Theorem 1.2. Any two Smith equivalent real G-modules are S-matched, and thus

Sm(G) = Sm(G)S .

In particular, if G has no element of order 8, then Sm(G)P = Sm(G).

Proof. Let U and V be two real G-modules such that U ∼= Ta(S) and V ∼= Tb(S)
for a smooth action of G on a homotopy sphere S with SG = {a, b}. We shall prove
that χU (g) = χV (g) for any element g ∈ G of order |g| ∈ S, i.e. |g| = 1, 2, 4, or pk

for an odd prime p and an integer k ≥ 1.



THE LAITINEN CONJECTURE 2149

Clearly, χU (e) = dim S = χV (e) for the neutral element e ∈ G. For g ∈ G with
|g| = pk for a prime p and an integer k ≥ 1, one gets dim Ug = dim Sg = dim V g

by Smith theory and the Slice Theorem.
If dimSg > 0, then Sg is connected, so U and V are isomorphic when restricted

to the cyclic subgroup of G generated by g, and thus χU (g) = χV (g). If dim Sg = 0,
then χU (g) = χV (g) in each of the following cases:

(1) p is odd and k = 1: by the results of Atiyah–Bott [1],
(2) p is odd and k ≥ 2: by the results of Sanchez [15],
(3) p = 2 and k = 1 or 2: by character theory arguments.

Clearly, if G has no element of order 8, then Sm(G)P = Sm(G)S = Sm(G). �
For a set N of natural numbers, let RO(G)N consist of the differences U − V of

N -matched real G-modules U and V . Clearly, RO(G)N is a subgroup of RO(G).
Consider the homomorphism

RO(G)N → Z, U − V �→ dimUG − dim V G, and its kernel

RO(G)G
N = {U − V ∈ RO(G)N : dimUG = dimV G}.

By the Slice Theorem, the following lemma holds.

Lemma 1.3. The difference of two Smith equivalent N -matched real G-modules is
in the kernel RO(G)G

N , i.e. Sm(G)N ⊆ RO(G)G
N .

As free abelian subgroups, RO(G)G
P ≤ RO(G)G

S ≤ RO(G). Thus, Theorem 1.2
and Lemma 1.3 yield the following Smith diagram consisting of inclusions:

Sm(G)P −−−−→ RO(G)G
P⏐⏐�

⏐⏐�

Sm(G) −−−−→ RO(G)G
S .

We say that two elements g and h of G are real conjugate in G (written g ∼± h)
if g is conjugate to h or h−1. Then ∼± is an equivalence relation on G, and the
resulting class (g)± is called the real conjugate class in G of g.

Recall that as a group, RO(G) is a free abelian group whose rank is equal to the
number of real conjugacy classes (g)± in G of elements g ∈ G.

Definition 1.4. For a set N of natural numbers, define rNG to be the number of
real conjugacy classes (g)± in G of elements g ∈ G such that |g| /∈ N .

Clearly, rPG (resp. rSG) is the number of real conjugacy classes of elements of G
whose order is divisible by two distinct primes (resp. by two distinct primes or 8).
Henceforth, following [8], we shall write rG = rPG.

Lemma 1.5. For a set N of natural numbers, the following holds.
(1) The free abelian group RO(G)G

N = 0 if and only if rNG = 0 or 1.
(2) For rNG ≥ 2, the rank of RO(G)G

N equals rNG − 1.

Proof. As a group, RO(G) is a free abelian group whose rank is the dimension
of the real vector space R ⊗Z RO(G). According to [16, Corollary 1, p. 96],
R ⊗Z RO(G) can be regarded as the space of all real-valued functions χ on G
that are constant on each real conjugacy class (g)±, for g ∈ G. Every χ is of the
form χ =

∑
(g)± r(g)±f(g)± , where r(g)± ∈ R and f(g)± takes the value 1 on (g)±

and 0 otherwise.
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The restriction to the space R ⊗Z RO(G)N corresponds to imposing on χ the
condition that χ(g) = r(g)± = 0 for every element g ∈ G with |g| ∈ N . Therefore,
the functions f(g)± with |g| /∈ N form a basis of R ⊗Z RO(G)N , and thus

rank RO(G)N = dim
(
R ⊗Z RO(G)N

)
= rNG .

As χ �→ χG is an epimorphism of R ⊗Z RO(G)N onto Z when RO(G)N �= 0,

rank RO(G)G
N = dim

(
R ⊗Z RO(G)G

N
)

= rNG − 1,

which completes the proof (cf. [8, the proof of Lemma 2.1, p. 303]). �

2. P-matched Smith equivalent real G-modules

Lemma 2.1. Let G be a finite group and let U and V be two Smith equivalent real
G-modules. Then the following three conditions are equivalent.

(1) U and V are P-matched, where P = {pk : p prime, k ≥ 1} ∪ {1}.
(2) U and V are R-matched, where R = {2k : k ≥ 3}.
(3) If dimUg = dimV g = 0 for g ∈ G with |g| ∈ R, then χU (g) = χV (g).

Proof. As the G-modules U and V are Smith equivalent, U and V are S-matched
by Theorem 1.2. Hence, as P = R ∪ S, the conditions (1) and (2) are equivalent.
Clearly, (2) implies (3) by Definition 1.1. Finally, (3) implies (2) since if |g| ∈ R,
then dimUg = dim Sg = dimV g and thus χU (g) = χV (g) by (3) if dim Sg = 0 or
by the fact that Sg is connected if dim Sg > 0 (cf. the proof of Theorem 1.2). �

Corollary 2.2. Let G be a finite group. Then Sm(G) = Sm(G)P if and only if
(3) in Lemma 2.1 holds for any two Smith equivalent real G-modules U and V .

Definition 2.3. For a finite group G, define iG as the number of isomorphism
classes of the irreducible real G-modules W such that dim W g = 0 for some element
g ∈ G with |g| ∈ R.

Let G be a finite group. Then for any element g ∈ G of order 2 or 4, it follows
that gH ⊂ (g)± for H = 〈g2〉, the cyclic subgroup of G generated by g2.

Definition 2.4. Let G be a finite group. We say that G satisfies the 2-condition
if gH ⊂ (g)± for every element g ∈ G with |g| ∈ R, where H = 〈g2〉.

Theorem 2.5. Let G be a finite group with iG = 0 or 1 or such that G satisfies the
2-condition. Then any two Smith equivalent real G-modules are P-matched, and
thus Sm(G) = Sm(G)P .

Proof. Let U and V be two real G-modules such that U ∼= Ta(S) and V ∼= Tb(S)
for a smooth action of G on a homotopy sphere S with SG = {a, b}. We shall prove
that U and V are P-matched, which (by Lemma 2.1) is equivalent to proving that
if dim Ug = dimV g = 0 for g ∈ G with |g| ∈ R, then χU (g) = χV (g).

Assume iG = 0. Let |g| ∈ R. The Slice Theorem implies that dimSg ≥ dim W g

for every irreducible summand W of U or V . As iG = 0, dimW g > 0 and therefore
dim Ug = dimV g > 0. So, there is nothing to prove (cf. [8, Lemma 2.6]).

Assume iG = 1. Let dim Ug = dimV g = 0 with |g| ∈ R. As iG = 1, the
irreducible summands of U and V are all isomorphic to the unique irreducible real
G-module, say W , such that dimW g = 0. Therefore U ∼= mW ∼= V for an integer
m ≥ 1, and thus χU (g) = χV (g).
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Assume G satisfies the 2-condition. Set χ = χU − χV . We claim that χ(g) = 0
for any g ∈ G of order 2k for k ≥ 0. We prove this claim by induction on k.

If k = 0, then g = e and thus χ(g) = dimU −dim V = 0. Fix k ≥ 1, and assume
χ(h) = 0 for all h ∈ G of order 2� with � < k. Let g ∈ G be of order 2k, and
let C = 〈g〉 and H = 〈g2〉. As G satisfies the 2-condition, gH ⊂ (g)± and thus
χ(gh) = χ(g) for all h ∈ H. Therefore

∑
h∈H χ(gh) = |H|χ(g). By the assumption,

χ(h) = 0 for all h ∈ H. Hence, by the fixed point set character formula,

dimUg − dim V g =
1
|C|

∑

x∈C

χ(x) =
1
|C|

∑

h∈H

(
χ(gh) + χ(h)

)
=

|H|
|C| χ(g).

As dimUg = dim V g, it follows that χ(g) = 0, and thus χU (g) = χV (g). �

3. A refinement of the Smith diagram

Let G be a finite group and let H be a normal subgroup of G. If X is a G-space,
then XH has a natural action of G/H such that (XH)G/H = XG.

For a set N of natural numbers, consider the homomorphism

RO(G)N → RO(G/H), U − V �→ UH − V H , and its kernel

RO(G, H)N = {U − V ∈ RO(G)N : UH ∼= V H as G/H-modules}.
Clearly, RO(G, G)N = RO(G)G

N and RO(G, H)N ≤ RO(G)G
N for any normal

subgroup H of G. We note that in [13] RO(G, H)P is denoted by IO(G, H).

Lemma 3.1. Let G be a finite group and let N be a set of natural numbers. Then

Sm(G)N ⊆
⋂

L

RO(G, L)N ,

where L runs over all subgroups of G with index 1 or 2.

Proof. By Lemma 1.3, Sm(G)N ⊆ RO(G)G
N = RO(G, G)N . Let L be a subgroup

of G of index 2. Then L is normal in G. Let U − V ∈ Sm(G)N be represented
by two Smith equivalent N -matched real G-modules U and V . Then UL and V L

are both direct sums of 1-dimensional real G/L-modules and, as real G/L-modules,
UL ∼= V L by [9, Proposition 2.2]. Therefore U − V ∈ RO(G, L)N . �
Lemma 3.2. Let G be a finite group and let N be a set of natural numbers. Then

⋂

L

RO(G, L)N = RO(G,
⋂

L

L)N ,

where L runs over all subgroups of G with index 1 or 2.

Proof. Set H =
⋂

L L, where L runs over all subgroups of G with index 1 or 2. For
any subgroup L of G with index 1 or 2, g2 ∈ L for all g ∈ G, and therefore g2 ∈ H
for all g ∈ G. Hence the elements of G/H are of order 1 or 2, and thus the quotient
group G/H is an elementary abelian 2-group.

Let x1, . . . xn be a set of generators of G/H. For each i = 1, . . . , n, let Hi be the
inverse image of 〈x1, . . . , xi−1, xi+1, . . . , xn〉 under the quotient map G → G/H. As
RO(G, H)N = {U − V ∈ RO(G)N : UH ∼= V H as G/H-modules} and

RO(G/H)N =
n⊕

i=1

RO(G/Hi)N ,

the equality RO(G, H)N =
⋂

L RO(G, L)N holds. �
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Set G1,2 =
⋂

L L, where L runs over all subgroups of G with index 1 or 2. Then,
by Lemmas 3.1 and 3.2, the following corollary holds.

Corollary 3.3. Let G be a finite group and let N be a set of natural numbers.
Then Sm(G)N ⊆ RO(G, G1,2)N .

Corollary 3.3 and Theorem 1.2 yield immediately the following refinement of the
Smith diagram from Section 1:

Sm(G)P −−−−→ RO(G, G1,2)P −−−−→ RO(G)G
P⏐⏐�

⏐⏐�
⏐⏐�

Sm(G) −−−−→ RO(G, G1,2)S −−−−→ RO(G)G
S

where all maps are inclusions.

4. Construction of Smith equivalent G-modules

Let G be a finite group. For a prime p, let Op(G) be the smallest group among
normal subgroups of G with index being a power of p. Let Lp(G) consist of the
subgroups of G which contain Op(G). Set L(G) =

⋃
Lp(G), where the union is over

all primes p. Let P(G) be the family of prime power order subgroups of G, including
the trivial subgroup of G. A finite group G is called a gap group if P(G)∩L(G) = ∅

and if there exists a real G-module V which is L(G)-free, i.e. dim V L = 0 for each
L ∈ L(G) and V satisfies the gap condition asserting that dimV P > 2 dimV H for
all subgroups P < H ≤ G with P ∈ P(G).

For a set N of natural numbers, let RO(G)LN consist of the differences U − V in
RO(G) of L(G)-free and N -matched real G-modules U and V .

Now, we restate the Realization Theorem obtained in [13, p. 850].

Theorem 4.1. For a finite Oliver gap group G, every element of RO(G)LP is the
difference of two real G-modules U and V , where U ∼= Ta(S) and V ∼= Tb(S) for a
smooth action of G on some sphere S such that SG = {a, b} and Sg is connected
for every element g ∈ G of prime power order. In particular, RO(G)LP ⊆ Sm(G)P .

By arguing as in the proof of [13, Subgroup Lemma, p. 858], we see that for any
finite group G and any set N of natural numbers,

RO(G,
⋂

p

Op(G))N ≤ RO(G)LN ≤
⋂

p

RO(G, Op(G))N ≤ RO(G)G
N .

Set Gnil =
⋂

p Op(G). The group Gnil is the smallest group among all normal
subgroups H of G such that the quotient group G/H is nilpotent.

Corollary 4.2. Let G be a finite Oliver gap group. Then

RO(G, Gnil)P ⊆ RO(G)LP ⊆ Sm(G)P .

For any normal subgroup H of G, let rG/H be the number of real conjugacy
classes in G/H of cosets gH which contain elements of G not of prime power order.
Then rG ≥ rG/H ≥ rG/H . We note that in [13], rG = aG and rG/H = bG/H .

The following lemma goes back to [13, Second Rank Lemma, p. 856].

Lemma 4.3. For a finite group G and H � G, the following two conclusions hold.
(1) RO(G, H)P = 0 if and only if rG = rG/H .
(2) For rG > rG/H , the rank of RO(G, H)P equals rG − rG/H .
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5. Examples of Smith equivalent G-modules

By [11], the smallest finite Oliver group is the alternating group A5 of order 60,
and the smallest finite solvable Oliver groups are of order 72, including Z3 × S4

and S3 × A4. By [13], Sm(A5) = 0 (see [13, Theorems C1–C3, pp. 851–852] for
computation of Sm(G) for specific finite groups G, including G = An or Sn).

In the GAP libraries [21], SmallGroup(ord, n) denotes the finite n-th group of
order ord. We compute Sm(SmallGroup(ord, n)) for some values of ord and n.

First, we prove that the Laitinen Conjecture holds for G = SmallGroup(72, 42);
next, we show that Sm(G) = 0 for G = SmallGroup(72, 43).

Proposition 5.1. For G = SmallGroup(72, 42), the following holds.
(1) G is a finite solvable Oliver group, and G is a gap group.
(2) rG = 3 and Sm(G)P = Sm(G) ∼= Z.

Moreover, each element of Sm(G) is the difference of two real G-modules U and V
with U ∼= Ta(S) and V ∼= Tb(S) for a smooth action on some sphere S such that
SG = {a, b} and Sg is connected for every g ∈ G of prime power order.

Proof. The group G = SmallGroup(72, 42) is isomorphic to Z3 × S4 and can be
regarded as a subgroup of S7 generated by the elements (1, 2, 3), (4, 5), (4, 5, 6, 7).
In particular, G is a finite solvable Oliver group, with O2(G) ∼= Z3×A4 and O3(G) ∼=
S4. Moreover, Gnil ∼= A4, G/Gnil ∼= Z6, and we have rG = 3, corresponding to the
elements

x = (1, 2, 3)(4, 5), y = (1, 2, 3)(4, 5)(6, 7), and z = (1, 2, 3)(4, 5, 6, 7)

of order 6, 6, and 12, respectively. As xGnil �= yGnil and xGnil = zGnil, we obtain
that rG/Gnil = 2. As G1,2 = O2(G) we have xG1,2 �= yG1,2 and xG1,2 = zG1,2.
Hence rG/G1,2 = 2. By applying [19, Theorem B] for C = 〈z〉, we deduce that G is
a gap group, and thus by Corollaries 3.3 and 4.2 and Lemma 4.3,

Z ∼= RO(G, Gnil)P ⊆ RO(G)LP ⊆ Sm(G)P ⊆ RO(G, G1,2)P ∼= Z.

The inclusions occurring here are actually equalities, because RO(G, Gnil)P is the
kernel of a homomorphism determined on RO(G)P containing RO(G, G1,2)P . As
G has no element of order 8, Sm(G) = Sm(G)P ∼= Z by Theorem 1.2. Moreover,
the claim about the elements of Sm(G) follows from Theorem 4.1. �

Proposition 5.2. For G = SmallGroup(72, 43), the following holds.
(1) G is a finite solvable Oliver group, and G is not a gap group.
(2) rG = 1 and Sm(G)P = Sm(G) = 0.

Proof. The group G = SmallGroup(72, 43) is isomorphic to (Z3 × A4) � Z2 and
can be regarded as a subgroup of S7 generated by the elements (1, 2, 3), (4, 5, 6),
(5, 6, 7), (1, 2)(4, 5). In particular, G is a finite solvable Oliver group with quotients
D6 and S4, with O2(G) = 〈(1, 2, 3), (4, 5, 6), (5, 6, 7)〉 ∼= Z3 × A4 and O3(G) = G.
Therefore, Gnil = O2(G) and G/Gnil ∼= Z2.

As S4 is not a gap group, it follows from [18, Corollary 4.6 and Proposition 6.4]
that the product D6 × S4 is not a gap group, and as G is a subgroup of D6 × S4

with index 2, G is not a gap group by [10, Proposition 3.1].
Note that rG = 1, corresponding to the element (1, 2, 3)(4, 5) of G of order 6.

Therefore Sm(G)P = 0 by Lemmas 1.3 and 1.5. As G has no element of order 8,
Sm(G) = Sm(G)P = 0 by Theorem 1.2. �
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Now, for the first time, we give counterexamples to the Laitinen Conjecture for
finite solvable Oliver groups G. In contrast to the conclusion (2) of Proposition 5.2,
in four cases of G, we shall prove that rG ≥ 2 and Sm(G)P = Sm(G) = 0.

Proposition 5.3. For G = SmallGroup(72, 44), the following holds.
(1) G is a finite solvable Oliver group, and G is a gap group.
(2) rG = 2 and Sm(G)P = Sm(G) = 0.

Proof. The group G = SmallGroup(72, 44) is isomorphic to S3 ×A4 and can be re-
garded a subgroup of S7 generated by the elements (1, 2), (1, 2, 3), (4, 5, 6), (5, 6, 7).
In particular, G is a finite solvable Oliver group, with

O2(G) ∼= Z3 × A4 and O3(G) ∼= S3 × Z
2
2.

Hence, Gnil ∼= Z3 × Z
2
2 and G/Gnil ∼= Z6. Moreover, rG = 2, corresponding to the

following elements of order 6:

x = (1, 2)(4, 5, 6) ∈ O2(G) and y = (1, 2, 3)(4, 5)(6, 7) /∈ O2(G).

Note that G is a gap group by [18, Lemma 5.1] and [10, Lemma 3.2].
As G1,2 = O2(G), we have rG/G1,2 = 2, corresponding to the cosets xG1,2 and

yG1,2; thus rG = rG/G1,2 , and hence Sm(G)P = 0 by Corollary 3.3 and Lemma 4.3.
As G has no element of order 8, Sm(G) = Sm(G)P = 0 by Theorem 1.2. �
Proposition 5.4. For G = SmallGroup(288, 1025), the following holds.

(1) G is a finite solvable Oliver group, and G is a gap group.
(2) rG = 2 and Sm(G)P = Sm(G) = 0.

Proof. The group G = SmallGroup(288, 1025) is isomorphic to (Z2
2 �Z3)2 �Z2 and

can be regarded as a subgroup of S8 generated by the elements

(1, 2)(3, 4), (1, 3)(2, 4), (2, 3, 4), (5, 6)(7, 8),

(5, 7)(6, 8), (6, 7, 8), (1, 5)(2, 6)(3, 7)(4, 8).

In particular, G is a finite solvable Oliver group with

O2(G) ∼= (Z2
2 � Z3)2 and O3(G) ∼= (Z2

2 × Z
2
2) � Z3 � Z2;

thus O2(G) and O3(G) are subgroups of G with indexes 2 and 3, respectively.
Moreover, O3(G) is generated by the following elements:

(1, 2)(3, 4), (1, 3)(2, 4), (5, 6)(7, 8), (5, 7)(6, 8),

(2, 3, 4)(6, 8, 7), (1, 5)(2, 6)(3, 7)(4, 8).

It follows that Gnil ∼= (Z2
2×Z

2
2)�Z3 and G/Gnil ∼= Z6. Now, rG = 2, corresponding

to the following two elements of order 6:

x = (1, 2)(3, 4)(6, 7, 8) ∈ O2(G) and

y = (1, 5)(2, 6)(3, 7)(4, 8) ∗ (2, 3, 4)(6, 7, 8)

= (1, 5)(2, 7, 4, 6, 3, 8) /∈ O2(G).

Note that G � O2(G) has the element y3 of order 2, unique up to conjugacy, and
the centralizer of y3 in G is isomorphic to A4 ×Z2. Therefore, G is a gap group by
[19, Proposition 4.2 and Theorem C].

As G1,2 = O2(G), we have rG/G1,2 = 2, corresponding to the cosets xG1,2 and
yG1,2; thus rG = rG/G1,2 , and hence Sm(G)P = 0 by Corollary 3.3 and Lemma
4.3. As G has no element of order 8, Sm(G) = Sm(G)P = 0 by Theorem 1.2. �
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Proposition 5.5. For G = SmallGroup(432, 734), the following holds.
(1) G is a finite solvable Oliver group, and G is not a gap group.
(2) rG = 2 and Sm(G)P = Sm(G) = 0.

Proof. The group G = SmallGroup(432, 734) is isomorphic to Aff(2, 3) and can be
regarded as a subgroup of S9 generated by the elements

(1, 2, 3)(4, 5, 6)(7, 8, 9), (1, 9, 5)(2, 7, 6)(3, 8, 4), (4, 5, 6)(7, 9, 8),

(2, 5, 3, 9)(4, 8, 7, 6), (2, 8, 3, 6)(4, 9, 7, 5), (4, 7)(5, 8)(6, 9).

In particular, G is a finite solvable Oliver group, O3(G) = G, and O2(G) = Gnil

is isomorphic to the solvable Oliver subgroup of S9 generated by the elements

(1, 2, 3)(4, 5, 6)(7, 8, 9), (1, 9, 5)(2, 7, 6)(3, 8, 4), (4, 5, 6)(7, 9, 8),

(2, 5, 3, 9)(4, 8, 7, 6), (2, 8, 3, 6)(4, 9, 7, 5).

As Gnil is of order 216, G/Gnil ∼= Z2. Now, rG = 2, corresponding to the elements

x = (2, 5, 3, 9)(4, 8, 7, 6) ∗ (4, 5, 6)(7, 9, 8) = (2, 6, 5, 3, 8, 9)(4, 7) ∈ Gnil and

y = (4, 7)(5, 8)(6, 9) ∗ (1, 2, 3)(4, 5, 6)(7, 8, 9) = (1, 2, 3)(4, 8, 6, 7, 5, 9) /∈ Gnil,

both of order 6. Note that G is not a gap group by [18, Corollary 4.6].
As G1,2 = Gnil, we have rG/G1,2 = 2, corresponding to the cosets xG1,2 and

yG1,2. Thus rG = rG/G1,2 and Sm(G)P = 0 by Corollary 3.3 and Lemma 4.3. The
elements g ∈ G of 2-power order are real conjugate in G, and thus G satisfies the
2-condition in Definition 2.4. Hence Sm(G) = Sm(G)P = 0 by Theorem 2.5. �
Proposition 5.6. For G = SmallGroup(576, 8654), the following holds.

(1) G is a finite solvable Oliver group of order 576, and G is not a gap group.
(2) rG = 3 and Sm(G)P = Sm(G) = 0.

Proof. The group G = SmallGroup(576, 8654) is isomorphic to (A4 ×A4) � Z
2
2 and

can be regarded as a subgroup of S8 generated by the elements

(1, 2, 3), (2, 3, 4), (5, 6, 7), (6, 7, 8), (1, 2)(5, 6), (1, 5)(2, 6)(3, 7)(4, 8).

In particular, G is a finite solvable Oliver group, O3(G) = G, and O2(G) =
Gnil ∼= A4×A4 is generated by the elements (1, 2, 3), (2, 3, 4), (5, 6, 7), and (6, 7, 8).
Moreover, G/Gnil = {Gnil, a Gnil, b Gnil, c Gnil} ∼= Z2 × Z2 where a = (1, 2)(5, 6),
b = (1, 5)(2, 6)(3, 7)(4, 8), and c = ab = (1, 6)(2, 5)(3, 7)(4, 8).

Let K = 〈a〉O2(G), which is a subgroup of G with index 2. Since K is a subgroup
of S4 × S4 with index 2, which is not a gap group by [18, Theorem 6.8], K itself is
not a gap group by [10, Proposition 3.1], and therefore G is not a gap group again
by [10, Proposition 3.1]. Now, rG = 3, corresponding to the elements of order 6:

x = b ∗ (1, 2, 3)(5, 6, 7) = (1, 6, 3, 5, 2, 7)(4, 8),

y = c ∗ (2, 3, 4)(5, 7, 8) = (1, 6)(2, 7, 4, 5, 3, 8),

z = (1, 2)(3, 4)(6, 7, 8) ∈ Gnil.

The cosets xGnil, yGnil, and zGnil = Gnil are distinct from each other.
There are three subgroups of G with index 2, namely 〈a〉Gnil, 〈b〉Gnil, and 〈c〉Gnil.

Therefore, G1,2 = Gnil and rG/G1,2 = 3, corresponding to the cosets xG1,2, yG1,2,
and zG1,2. Hence rG = rG/G1,2 and Sm(G)P = 0 by Corollary 3.3 and Lemma 4.3.
As G has no element of order 8, Sm(G) = Sm(G)P = 0 by Theorem 1.2. �
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