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A REMARK ON MULTIVALUED ALGEBRAIC GROUPS

ANAND PILLAY

(Communicated by Julia Knight)

Abstract. We point out how suitable algebraic n-valued groups (in the sense
of Buchstaber) give rise, in a reasonably canonical manner, to algebraic groups.
This is proved using the “group configuration theorem” of Hrushovski. In
particular this applies to all algebraic 2-valued groups.

1. Introduction and statement of results

Given a set X, (X)n denotes the family of n-element subsets of X, modified so
that we allow elements to have multiplicity > 1. So a typical element of (X)n could
be written as a formal sum k1x1+ · · ·+krxr or as {k1x1, . . . , krxr} where x1, . . . , xr

are distinct elements of X and k1, . . . , kr are positive integers whose sum is n. We
will say that y ∈ (X)n contains x ∈ X if x appears in y with multiplicity ≥ 1.

The notion of an n-valued group developed from work of Buchstaber and Novikov
in the 1970’s. Soon afterwards Buchstaber developed the theory of formal, or local,
n-valued Lie groups and introduced the notion of an n-valued algebraic group. Since
1993 Buchstaber and E. Rees have collaborated on the topological and algebraic
theory of n-valued groups. As defined in [1] an n-valued group is a set X equipped
with a distinguished element e and operations ∗ from X ×X to (X)n and inv from
X to X such that:

(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z for any x, y, z ∈ X,
(ii) e ∗ x = x ∗ e = nx for any x ∈ X,
(iii) both x ∗ inv(x) and inv(x) ∗ x contain e.
Possibly (i) (associativity) needs some explanation: by x ∗ (y ∗ z) we mean the

obvious element of (X)n2
, and likewise for (x∗y)∗z. So (i) says that these elements

of (X)n2
are equal.

Note that a 1-valued group (G, ·, inv) is the same thing as a group, and can also
be considered as an n-valued group (G, ∗) by writing a ∗ b = n(a · b).

There are reasonably obvious notions of an algebraic n-valued group. For ex-
ample, let X be a quasiprojective variety. Then (X)n = Xn/Sn (where Sn is the
symmetric group acting naturally on Xn) has also naturally the structure of an
algebraic variety. So we could view an “algebraic n-valued group” as a quasipro-
jective variety, equipped with morphisms µ : X × X → (X)n and inv : X → X
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and a distinguished element e such that writing µ(x, y) as x ∗ y, (X, ∗, inv, e) is an
n-valued group. Alternatively we could consider an arbitrary variety X and view
the operation ∗ as given by a subvariety Γ of X × X × X; namely, for a, b ∈ X,
Γ(a, b, z) is a 0-dimensional subvariety of X whose set of points, counted with mul-
tiplicities, is precisely a ∗ b. Our results will hold with either definition, although
we will be assuming that the underlying variety X is absolutely irreducible.

From now on, (X, ∗, inv, e) is an irreducible algebraic n-valued group, defined
over (in the obvious sense) a field k, and we will identify X with its set X(K) of
K-points for some algebraically closed field K of infinite transcendence degree over
k. Let m = dim(X). We will assume k to be algebraically closed.

We will also be assuming:
(iv) inv is generically finite-to-one, or equivalently the regular map inv : X → X

is dominant (the image of inv is Zariski dense).
For A any finite set of finite tuples from K, by dim(A/k) we mean the tran-

scendence degree of k(A) over k. A point a ∈ X(K) is said to be generic over k
if dim(a/k) = m (the dimension of the algebraic variety X). A similar statement
can be made for mutually generic, etc.

We will say that X is generically of type (k1, . . . , kr) if for some, equivalently
any, a, b ∈ X, which are mutually generic over k, a ∗ b = {k1x1, ..., krxr} (with the
xi distinct). Our main result is:

Proposition 1.1. Suppose that X is generically of type (1, 1, ..., 1). Then there is
a connected algebraic group (G, ·, e′) of dimension m, and a constructible subset R
of X × G, such that

(a) R projects dominantly onto both X and G,
(b) for any x ∈ X there are at most finitely many g ∈ G such that (x, g) ∈ R

and dually (so in particular the dimension of the Zariski closure of R is m),
(c) (e, e′) ∈ R,
(d) for mutually generic (x, g) and (y, h) in R, there is z ∈ x ∗ y such that

(z, g · h) ∈ R,
(e) for generic (x, g) ∈ R, (inv(x), g−1) ∈ R.

Proposition 1.1 is proved in section 3 using a straightforward lemma (3.1) about
n-valued algebraic groups of type (1, 1, . . . , 1) and some model theory, more pre-
cisely the “group configuration theorem”. Lemma 3.1 holds trivially if X is of type
(n); hence the conclusion of Proposition 1.1 holds for arbitrary 2-valued algebraic
groups.

It is not hard to see that if G1 is another connected algebraic group satisfying
the conclusion of Proposition 1.1 (with, say, R1 in place of R), then G and G1 will
be isogenous.

If G is a connected algebraic group and A is a finite group of (rational) automor-
phisms of G of cardinality n, then one obtains an n-valued algebraic group structure
on X = G/A in the obvious way. This is called a coset group by Victor Buchstaber;
note that it is generically of type (1, 1, ..., 1). So Proposition 1.1 applies to X and,
by what we have said above, recovers G up to isogeny.

It would be natural for a model-theorist to try to study “definable” multivalued
groups in arbitrary stable theories, and formulate the results of this paper at a
greater level of generality. Our definitions and proofs adapt quite straightforwardly
to the context of ω-stable theories. We leave further generalizations to the interested
reader.
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We have made an effort to make the paper accessible to non-model-theorists.
So we will use mainly the language of algebraic geometry at least in the sense of
André Weil. We will also make some use of the language of model theory, and (as
suggested by the referee) in section 2 we give explanations and translations of these
notions, as well as stating the group configuration theorem in the context we need
it.

Thanks to Victor Buchstaber for suggesting that these observations be written
up for publication.

2. Preliminaries

We start by repeating a few notions from the introduction. As there, k < K will
be algebraically closed fields such that K has infinite transcendence degree over k,
and for X an irreducible algebraic variety defined over k we identify X with its set
X(K) of K-rational points. We will usually be able to work in a given affine open
subset of X defined over k, so identified with a subset of Kn. So we will speak of
points of X as points a ∈ Kn (for suitable n). We call a a generic point of X over
k if dim(a/k) =def tr.deg(k(a)/k) = dim(X). By the irreducibility of X, for any
generic points a, b of X over k there is f ∈ Aut(K/k) (automorphisms of K fixing
k pointwise) such that f(a) = b. We say here that a and b have the same type over
k. In fact, we will take the following as a definition: for any finite tuple a from
K, the type of a over k (written tp(a/k)) is the orbit of a under Aut(K/k), and a
realization of tp(a/k) is just a point in that orbit.

A set {a1, . . . , ar} of tuples from K is said to be independent over k if
dim(a1a2...ar/k) = dim(a1/k) + · · · + dim(ar/k). Given an irreducible variety
X over k, by mutually generic points of X over k we mean generic points a, b of X
over k which are also independent over k.

Recall that a constructible subset of Kn is a finite union of locally Zariski closed
subsets of Kn, and likewise for a constructible subset of a variety. It makes sense
to speak of a constructible set being defined over k.

An important notion: definability of types from stability theory says, in the
special case of the theory of algebraic closed fields:

Fact 2.1. Let R ⊂ Kn+m be constructible over k. Let a ∈ Km and p = tp(a/k).
Then S = {c ∈ Kn: for some (any) a′ realizing p which is independent from c over
k, (c, a) ∈ R} is constructible over k.

Actually, Fact 2.1 is easy to prove algebraic-geometrically. It is enough to deal
with the special case where R is itself a subvariety of Kn+m. Let Ra ⊆ Kn be
the variety {x ∈ Kn : (x, a) ∈ R}. Let p = tp(a/k). Then it is easy to check
that S =

⋂
{Ra′ : a′ realizes p}, which is a variety by Noetherianity of the Zariski

topology and is clearly defined over k.
We will now state the group configuration theorem of Hrushovski in our context.

We refer the interested reader to Theorem 5.4.5 of [2] for the most general model-
theoretic statement and proof.

Definition 2.2. A group configuration (in K over k) consists of a set {a, b, c, x, d, f}
of finite tuples from K and distinguished “lines” {a, b, c}, {a, x, d}, {x, b, f}, {d, f, c}
such that

(i) each noncollinear triple from {a, b, c, x, d, f} is independent over k,
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(ii) each element of each collinear triple is in the algebraic closure of the other two
(so, for example, considering the collinear triple {a, b, c} this says that a ∈ k(b, c)alg,
b ∈ k(a, c)alg and c ∈ k(a, b)alg).

Note that the definition implies that dim(a/k) = dim(b/k) = · · · = dim(d/k).

Proposition 2.3. Let {a, b, c, x, d, f} be a group configuration in K over k. Then
there is a connected algebraic group (G, ·) defined over k and generic points a′, b′, c′

of G over k such that a′ · b′ = c′ and k(a)alg = k(a′)alg, k(b) = k(b′)alg and
k(c) = k(c′)alg.

3. Proofs

An important ingredient is the following:

Lemma 3.1. Under the assumptions of Proposition 1.1 (X is an irreducible m-
dimensional algebraic n-valued group over k of type (1, . . . , 1) satisfying also (iv)),
let a, b ∈ X be mutually generic over k, and let c ∈ a ∗ b. Then

(i) a ∈ c ∗ inv(b), b ∈ inv(a) ∗ c, and
(ii) dim(a, b, c/k) = dim(a, b/k) = dim(b, c/k) = dim(a, c/k) = 2m.

Proof. Let a ∗ b = {c1, . . . , cn}. Consider a ∗ (b ∗ inv(b)). It contains a ∗ e = na
(a with multiplicity n). By associativity a appears with multiplicity at least n in
(a∗b)∗inv(b). So a ∈ ci∗inv(b) for some i = 1, . . . , n. By assumption (iv), k(b)alg =
k(inv(b))alg; hence k(a, b)alg = k(ci, inv(b))alg whereby dim(ci, inv(b)/k) = 2m
from which it follows that ci and inv(b) are mutually generic (over k) elements
of X. So a appears with multiplicity 1 in ci ∗ inv(b). Hence a ∈ cj ∗ inv(b) for
some j �= i. Repeating the argument, we conclude that cj and inv(b) are mutually
generic and a appears with multiplicity 1 in cj ∗ inv(b). Continuing (using the fact
that na ∈ (a ∗ b) ∗ (inv(b))) we conclude that for each i = 1, . . . , n, a ∈ ci ∗ inv(b)
and ci and inv(b) are mutually generic elements of X.

Considering instead (inv(a) ∗ a) ∗ b and repeating the argument, we see that for
each i = 1, . . . , n, b ∈ inv(a) ∗ ci, and ci and inv(a) are mutually generic.

So we obtain (i), and using also that k(a)alg = k(inv(a))alg and k(b) =
k(inv(b))alg we obtain (ii). Lemma 3.1 is proved. �

We now prove Proposition 1.1. Let a, b be mutually generic in X over k and let
c ∈ a∗b. The first step is to recover from X the “group configuration”. Let x ∈ X be
chosen generic over k(a, b). By associativity a∗((x∗inv(x))∗b) = (a∗x)∗(inv(x)∗b).
Now c is on the left-hand side. So there are d ∈ a ∗ x and f ∈ inv(x) ∗ b such that
c ∈ d ∗ f . Our configuration consists of the points a, b, c, x, d, f and the “lines”
{a, b, c}, {a, x, d}, {x, b, f}, {d, f, c}. Note that k(x)alg = k(inv(x))alg (by (iv)).

By Lemma 3.1, we have
(*) each noncollinear triple from {a, b, c, x, d, f} is independent over k, and each

element of each collinear triple is in the algebraic closure of the other two.
By the group configuration theorem, Proposition 2.3, we have

Lemma 3.2. There is a connected m-dimensional algebraic group (G, ·,−1 , e′) de-
fined over k and generic points a′, b′, c′ of G over k such that a′ · b′ = c′ and
k(a)alg = k(a′)alg, k(b)alg = k(b′)alg and k(c)alg = k(c′)alg.

We now find the R from Proposition 1.1. We can find an automorphism α of K
over k which fixes (c, c′) and takes (a, a′) to (a1, a

′
1), where (a1, a

′
1) is independent
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from (a, a′, b, b′, c, c′) over k. (Namely, dim(a1, a
′
1/k(a, a′, b, b′, c, c′)) = m.) Let

(b1, b
′
1) = α(b, b′).

So
(a) a′ · b′ = c′ and a′

1 · b′1 = c′; hence ((a′
1)−1 · a′) · b′ = b′1.

Put a′
2 = (a′

1)−1 · a′.
Also
(b) c ∈ a ∗ b and c ∈ a1 ∗ b1.
By Lemma 3.1, b1 ∈ inv(a1) ∗ c, so by associativity there is a2 ∈ inv(a1) ∗a such

that b1 ∈ a2 ∗ b.
So we have
(c) b′1 = a′

2 · b′ and b1 ∈ a2 ∗ b.

Lemma 3.3. dim(a2/k) = dim(a′
2/k) = dim(a2, a

′
2/k) = m, and (a2, a

′
2) is inde-

pendent from each of (b, b′) and (b1, b
′
1) over k.

Proof. It is clear from Lemma 3.1 that dim(a2/k) = dim(a′
2/k) = m. Now

(a2, a
′
2) ∈ k(a, a′, a1, a

′
1)alg and (a, a′, a1, a

′
1) is independent from (b, b′) over k.

So (a2, a
′
2) is independent from (b, b′) over k. But (a2, a

′
2) ∈ k(b, b′, b1, b

′
1)

alg, and
dim(b1, b

′
1/k(b, b′)) = m. This forces dim(a2, a

′
2/k) to be at most m, hence exactly

m. The rest of the lemma follows. �

Let V ⊆ X × G be the irreducible algebraic variety over k whose generic point
is (b, b′). So (as (b1, b

′
1) = α(b, b′)) (b1, b

′
1) is also a generic point of V over k. Note

that dim(V ) = m. Using the model-theoretic notation explained in section 2, let
p = tp(b, b′/k), the “generic type” of V , and so the realizations of p are precisely
the generic points (over k) of V . R will be a kind of “stabilizer” of V or p.

More precisely let R ⊂ X × G be the set of (y, y′) such that for some (any)
realization (d, d′) of p independent from (y, y′) over k there is (d1, d

′
1) realizing p

such that d′1 = y′ · d′, d1 ∈ y ∗ d, d ∈ inv(y) ∗ d1 and y ∈ d1 ∗ inv(d). By Fact 2.1
R is constructible over k.

Lemma 3.4. (i) (a2, a
′
2) ∈ R.

(ii) For any y ∈ X there are at most finitely many y′ ∈ G such that (y, y′) ∈ R,
and dually. (Hence using (i), R has dimension m.)

(iii) If (y, y′) ∈ R is generic over k, namely dim(y, y′/k) = m, then (inv(y), y′−1)
∈ R.

(iv) If (y, y′) ∈ R and (y1, y
′
1) ∈ R are mutually generic over k, then there is

z ∈ y ∗ y1 such that (z, y′ · y′
1) ∈ R.

Proof. (i) is clear from Lemmas 3.3 and 3.1.
(ii) Suppose for a contradiction that (y, y′) ∈ R and y /∈ k(y′)alg. So dim(y, y′/k)

> dim(y′/k). Let (d, d′) realize p, independently from (y, y′) over k. So

(∗∗) dim(y, y′, d/k) > m + dim(y′/k).

Let (d1, d
′
1) be a realization of p given by the definition above of (y, y′) being

in R. Hence dim(y′, d, d′, d1, d
′
1/k) = m + dim(y′/k). But y ∈ k(d, d1)alg, so

dim(y, y′, d, d′, d1, d
′
1/k) = m + dim(y′/k), contradicting (**).

(iii) follows from Lemma 3.1.
(iv) Let (y, y′) and (y1, y

′
1) be mutually generic elements of R. This means that

dim(y, y′, y1, y
′
1/k) = 2m. Let (d, d′) realize p independently of (y, y′, y1, y

′
1) over

k. Let (d1, d
′
1) be a realization of p witnessing that (y, y′) ∈ R (namely d′1 = y′ · d′,
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d1 ∈ y∗d, etc.). Then (d1, d
′
1) is independent of (y, y′, y1, y

′
1) over k, so again we find

(d2, d
′
2) realizing p witnessing that (y1, y

′
1) ∈ R (namely y′

2 = y′
1 ·d′1, etc.). It is easy

to see that (d, d′) and (d2, d
′
2) are independent over k. Note that (y′

1 · y′) · d′ = d′2.
Also by associativity of ∗, there is z ∈ y1 ∗ y such that d2 ∈ z ∗ d. The same
argument as in the proof of Lemma 3.3 shows that (z, y′

1 · y′) is independent from
(d, d′) over k. Hence (z, y′

1 · y′) ∈ R, as required. �
Lemma 3.4 finishes the proof of Proposition 1.1. Note that as a2, a′

2 are generic
points of X, G respectively over k, then part (i) of Lemma 3.4 gives that R projects
dominantly to both X and G. Also it is immediate that (e, e′) ∈ R.
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