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EXPLICIT ORTHOGONAL POLYNOMIALS
FOR RECIPROCAL POLYNOMIAL WEIGHTS ON (−∞,∞)

D. S. LUBINSKY

(Communicated by Andreas Seeger)

Abstract. Let S be a polynomial of degree 2n + 2, that is, positive on the
real axis, and let w = 1/S on (−∞,∞). We present an explicit formula for the
nth orthogonal polynomial and related quantities for the weight w. This is an
analogue for the real line of the classical Bernstein-Szegő formula for (−1, 1).

1. The result

The Bernstein-Szegő formula provides an explicit formula for orthogonal polyno-
mials for a weight of the form

√
1 − x2/S (x), x ∈ (−1, 1), where S is a polynomial

positive in (−1, 1), possibly with at most simple zeros at ±1. It plays a key role in
asymptotic analysis of orthogonal polynomials.

In this paper, we present an explicit formula for the nth degree orthogonal poly-
nomial for weights w on the whole real line of the form

(1.1) w = 1/S,

where S is a polynomial of degree 2n+2, positive on R. In addition, we give repre-
sentations for the (n+1)st reproducing kernel and Christoffel function. We present
elementary proofs, although they follow partly from the theory of de Branges spaces
[1]. The formulae do not seem to be recorded in de Branges’ book nor in the or-
thogonal polynomial literature [2], [3], [7], [8], [9]. We believe they will be useful in
analyzing orthogonal polynomials for weights on R.

Recall that we may define orthonormal polynomials {pm}n
m=0, where

(1.2) pm (x) = γmxm + · · · , γm > 0,

satisfying ∫ ∞

−∞
pjpkw = δjk.

Because the denominator S in w has degree 2n + 2, orthogonal polynomials of
degree higher than n are not defined. The (n + 1)st reproducing kernel for w is

(1.3) Kn+1 (x, y) =
n∑

j=0

pj (x) pj (y) .
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Inasmuch as S is a positive polynomial, we can write

(1.4) S (z) = E (z) E (z̄),

where E is a polynomial of degree n + 1, with all zeros in the lower half-plane
{z : Im z < 0}. We ensure E is unique by normalizing E so that

(1.5) E (i) is real and positive.

Write

(1.6) E (z) =
n+1∑
j=0

ejz
j , S (z) =

2n+2∑
j=0

sjz
j

and

(1.7) E∗ (z) = E (z̄).

Denote the first difference of a function f by

(1.8) [f, t, x] =
f (t) − f (x)

t − x
.

We shall need various Cauchy principal value integrals: for real x and suitable
functions h,

PVx

∫ ∞

−∞

h (t)
t − x

dt = lim
ε→0+

∫
|t−x|≥ε

h (t)
t − x

dt;

PV∞

∫ ∞

−∞
h (t) dt = lim

R→∞

∫ R

−R

h (t) dt;

PVx,∞

∫ ∞

−∞

h (t)
t − x

dt = lim
ε→0+,R→∞

∫
|t|≤R,|t−x|≥ε

h (t)
t − x

dt.

With the above assumptions on w, we prove:

Theorem 1. (a) For Im z > 0,

(1.9) E (z) = exp
(
− 1

2πi

∫ ∞

−∞

1 + tz

t − z

log w (t)
1 + t2

dt

)
and

(1.10) en+1 = s
1/2
2n+2 (−i)n+1 exp

(
1

2πi
PV∞

∫ ∞

−∞

log w (t)
1 + t2

t dt

)
.

(b) For z �= v,

(1.11) Kn+1 (z, v) =
i

2π

E (z) E∗ (v) − E∗ (z) E (v)
z − v

,

(1.12) Kn+1 (z, z) =
i

2π
(E′ (z) E∗ (z) − E (z) E∗′ (z)) .

(c)

(1.13) γn =
{

1
π

Im (en+1en)
}1/2

,

and

(1.14) pn (z) = − 1
γn

i

2π
(en+1E (z) − en+1E

∗ (z)) .
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Theorem 2. For x ∈ R,
(a)

(1.15) pn (x) w (x)1/2 =
s
1/2
2n+2

πγn
cos

(
nπ

2
+

1
2π

PVx,∞

∫ ∞

−∞

log w (t)
t − x

dt

)
.

(b)

πKn+1 (x, x)w (x) = − 1
2π

∫ ∞

−∞
[log w, t, x]

t

1 + t2
dt

− 1
2π

∫ ∞

−∞

∂

∂x
[log w, t, x]

1 + tx

1 + t2
dt.(1.16)

(c) If s2n+1 = 0,

(1.17) γn =
1
π

{
s2n+2

2

∫ ∞

−∞
log

[
S (t)

s2n+2t2n+2

]
dt

}1/2

.

Remarks. (a) The function E is a Szegő/outer function associated with w for the
upper half-plane. It has been used in the relative asymptotics of G. Lopez Lago-
masino [6] and in the orthogonal rational functions of Bultheel et al. [2].

(b) It is easily seen that for Im z > 0,

(1.18) E∗ (z) = CE (z)
∏

a:E(a)=0

z − ā

z − a
,

where

C =
en+1

en+1
= (−1)n+1 exp

(
− 1

πi
PV∞

∫ ∞

−∞

log w (t)
1 + t2

t dt

)
.

(c) Of course if S is even, then s2n+1 is 0. The latter condition ensures that the
integral in (1.17) converges.

(d) Explicit formulae for the Christoffel function Kn (x, x)−1 for Bernstein-Szegő
weights appear in [3], [5], [7], [8], [9], [10]. We will present one application of (1.11)–
(1.12) in Section 3.

2. Proofs

As we noted above, our original proofs arose from de Branges spaces, but we
present elementary proofs. Let us choose E satisfying (1.4) and (1.5).

Proof of (1.9) of Theorem 1(a). Let H denote the right-hand side of (1.9) so that

H (z) = exp
(
− 1

2πi

∫ ∞

−∞

1 + tz

t − z

log w (t)
1 + t2

dt

)
.

Then for z = x + iy,

log |H (z)| = −Re
[

1
2πi

∫ ∞

−∞

1 + tz

t − z

log w (t)
1 + t2

dt

]

=
y

π

∫ ∞

−∞

log |E (t)|
(t − x)2 + y2

dt

= log |E (z)| ,(2.1)

by a Theorem in [4, p. 47]. This may be applied as E (z) is analytic and non-zero
in the closed upper half-plane, and log |E (z)| is O (log |z|) as |z| → ∞. Since H/E
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is analytic there, we deduce that for some C with |C| = 1, E = CH. Now by
hypothesis, E (i) is real and positive, while

H (i) = exp
(
− 1

2π

∫ ∞

−∞

log w (t)
1 + t2

dt

)
> 0,

so C = 1. �

Proof of (1.10) of Theorem 1(a). We first show that

(2.2) 1 − iz = exp

(
1

2πi

∫ ∞

−∞

log
(
1 + t2

)
1 + t2

1 + tz

t − z
dt

)
, Im z > 0.

Indeed, 1 − iz serves as the Szegő function for the weight 1/
(
1 + t2

)
, so (1.9) of

Theorem 1 applied to the weight 1/
(
1 + t2

)
gives this identity. Then for Im z > 0,

(2.3) E (z) / (1 − iz)n+1 = exp (I1 + I2) ,

where

I1 = − 1
2πi

∫ ∞

−∞

log
[
w (t) s2n+2

(
1 + t2

)n+1
]

1 + t2
1 + tz

t − z
dt,

I2 =
log s2n+2

2πi

∫ ∞

−∞

1
1 + t2

1 + tz

t − z
dt.

The integrand in I2 has simple poles in the upper half-plane at i and z and is
O

(
t−2

)
as |t| → ∞, so the residue calculus gives

(2.4) I2 =
log s2n+2

2
.

Next, log
[
w (t) s2n+2

(
1 + t2

)n+1
]

= O
(

1
t

)
as |t| → ∞. Thus the integrand in I1

is bounded in absolute value for z = iy, y ≥ 1 and all t by

C
1

(1 + t2) (1 + |t|)
1 + |t| y
|t| + y

≤ C

1 + t2
.

Here C is independent of t and z. We may then apply Lebesgue’s Dominated
Convergence Theorem to I1, with z = iy, y → ∞, to deduce that

I1 → 1
2πi

∫ ∞

−∞

log
[
w (t) s2n+2

(
1 + t2

)n+1
]

1 + t2
t dt

=
1

2πi
PV∞

∫ ∞

−∞

log w (t)
1 + t2

t dt,(2.5)

as

PV∞

∫ ∞

−∞

t

1 + t2
dt = 0 = PV∞

∫ ∞

−∞

log
(
1 + t2

)
1 + t2

t dt,

the integrands being odd. Substituting (2.5) and (2.4) into (2.3) and also letting
z = iy, y → ∞, in the left-hand side there, gives (1.10). �

Proof of Theorem 1(b). We need prove only (1.11), for (1.12) then follows by
l’Hospital’s rule. Set

G (u, v) =
i

2π

E (u)E∗ (v) − E∗ (u)E (v)
u − v

.
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Observe that for fixed v, G (u, v) is a polynomial of degree at most n in u. Assume
that P is a polynomial of degree ≤ n and that Imu > 0. Now for real t, w (t) =
1/ (E (t)E∗ (t)), so∫ ∞

−∞
P (t) G (u, t)w (t) dt

=
i

2π

(
E∗ (u)

∫ ∞

−∞

P (t)
E∗ (t) (t − u)

dt − E (u)
∫ ∞

−∞

P (t)
E (t) (t − u)

dt

)
.(2.6)

Recall that E has all its zeros in the lower half-plane, so E∗ has all its zeros in
the upper half-plane. Then the integrand P (t)

E∗(t)(t−u) in the first integral is analytic

in the closed lower half-plane and is O
(
|t|−2

)
as |t| → ∞. By Cauchy’s integral

theorem, the first integral is 0. Next, the integrand P (t)
E(t)(t−u) in the second integral

is analytic in the closed upper half-plane, except for a simple pole at u (unless
P (u) = 0) and is O

(
|t|−2

)
as |t| → ∞. The residue theorem shows that∫ ∞

−∞

P (t)
E (t) (t − u)

dt = 2πi
P (u)
E (u)

.

Substituting this into (2.6) gives∫ ∞

−∞
P (t)G (u, t)w (t) dt = P (u)

for Imu > 0. As both sides are polynomials in u, analytic continuation gives it for
all u. Finally, (1.11) follows from the uniqueness of reproducing kernels:

Kn+1 (u, v) =
∫ ∞

−∞
Kn+1 (t, v) G (u, t)w (t) dt = G (u, v) .

�

Proof of Theorem 1(c). We note that since pn+1 is not defined, we cannot use the
Christoffel-Darboux formula for Kn+1. However, we can use it for Kn:

Kn+1 (u, v) =
γn−1

γn

pn (u) pn−1 (v) − pn (v) pn−1 (u)
u − v

+ pn (u) pn (v) .

Multiplying by u − v leads to
γn−1

γn
(pn (u) pn−1 (v) − pn (v) pn−1 (u)) + (u − v) pn (u) pn (v)

= (u − v) Kn+1 (u, v) =
i

2π
(E (u)E∗ (v) − E∗ (u)E (v)) ,

by (1.11). Now we compare the coefficients of un+1 on both sides above:

(2.7) γnpn (v) =
i

2π
(en+1E

∗ (v) − en+1E (v)) ,

giving (1.14). For (1.13), we compare the coefficients of vn on both sides above:

γ2
n =

i

2π
(en+1en − en+1en) .

(Note that the coefficient of vn+1 on the right-hand side in (2.7) is zero.) �
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Proof of Theorem 2(a). From (1.14), for real x,

πγnpn (x) = Im (en+1E (x)) .

We take non-tangential boundary values z → x from the upper half-plane in (1.9).
The Sokhotsky-Plemelj formulae give

(2.8) E (x) = exp
(
− 1

2πi
PVx

∫ ∞

−∞

log w (t)
1 + t2

1 + tx

t − x
dt − 1

2
log w (x)

)
,

and this and (1.10) give

πγnpn (x) w (x)1/2 = s
1/2
2n+2 Im

[
in+1 exp

(
− 1

2πi
PV∞

∫ ∞

−∞

log w (t)
1 + t2

t dt

− 1
2πi

PVx

∫ ∞

−∞

log w (t)
1 + t2

1 + tx

t − x
dt

)]

= s
1/2
2n+2 Im

[
in+1 exp

(
− 1

2πi
PVx,∞

∫ ∞

−∞

log w (t)
t − x

dt

)]
.

�

Proof of Theorem 2(b). For real x, and E as above, we define a phase function ϕ
(cf. [1, p. 54]) by

(2.9) E (x) = |E (x)| e−iϕ(x).

Here, as in [1, p. 54], ϕ is an increasing differentiable function. We have, as there,

(2.10) Kn+1 (x, x) =
1
π
|E (x)|2 ϕ′ (x) =

1
π

w (x)−1 ϕ′ (x) .

Indeed, for real x,
E∗ (x) = |E (x)| eiϕ(x),

so for real t �= x, (1.11) gives

Kn+1 (x, t) =
|E (x)| |E (t)|

π

sin (ϕ (x) − ϕ (t))
x − t

.

L’Hospital’s rule gives the first equality in (2.10). Next, from (2.8) and the definition
of ϕ, we have for some constant C independent of x,

(2.11) ϕ (x) = − 1
2π

PVx

∫ ∞

−∞

log w (t)
1 + t2

1 + tx

t − x
dt + C.

The residue theorem shows that for Im z > 0,

(2.12)
1

2πi

∫ ∞

−∞

1
1 + t2

1 + tz

t − z
dt =

1
2
,

so also for real x, the Sokhotsky-Plemelj formulae give

1
2πi

PVx

∫ ∞

−∞

1
1 + t2

1 + tx

t − x
dt +

1
2

=
1
2
;

thus

(2.13)
1

2πi
PVx

∫ ∞

−∞

1
1 + t2

1 + tx

t − x
dt = 0.
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Hence we may write

ϕ (x) = − 1
2π

∫ ∞

−∞

log w (t) − log w (x)
t − x

1 + tx

1 + t2
dt + C

= − 1
2π

∫ ∞

−∞
[log w, t, x]

1 + tx

1 + t2
dt + C,

where the integral is now a Lebesgue integral. Then

ϕ′ (x) = − 1
2π

∫ ∞

−∞
[log w, t, x]

t

1 + t2
dt − 1

2π

∫ ∞

−∞

∂

∂x
[log w, t, x]

1 + tx

1 + t2
dt.

The interchange of derivative and integral is justified by uniform in x (and absolute)
convergence of the differentiated integrals. Finally, apply (2.10). �

Proof of Theorem 2(c). We compute γn by comparing both sides of (2.10) as x →
∞. First observe that if a > 0 and

wa (x) =
(
x2 + a2

)−(n+1)
,

then the Szegő/outer function Ea for the weight wa is given by

Ea (z) = (a − iz)n+1 and E∗
a (z) = (a + iz)n+1 .

If Kn+1 (wa, ·, ·) denotes the kernel for wa, (1.11) leads to

Kn+1 (wa,x + iy, x − iy) =

(
x2 + (a + y

)2)n+1 −
(
x2 + (a − y

)2)n+1

4πy
.

Letting y → 0+ and using l’Hospital’s rule give

Kn+1 (wa, x, x) =
n + 1

π
a

(
x2 + a2

)n

and

(2.14) Kn+1 (wa, x, x)wa (x) =
(n + 1) a

π (x2 + a2)
.

Next, if we write

Ea (x) = |Ea (x)| e−iϕa(x),

then, as in (2.11),

(2.15) ϕa (x) = − 1
2π

PVx

∫ ∞

−∞

log wa (t)
1 + t2

1 + tx

t − x
dt + Ca.

Let

ga (t) = log [w (t) s2n+2/wa (t)] = log

[
s2n+2

(
t2 + a2

)n+1

S (t)

]
.

In view of (2.11), (2.13) and (2.15), we may then write

(2.16) ϕ (x) − ϕa (x) = − 1
2π

PVx

∫ ∞

−∞

ga (t)
1 + t2

1 + tx

t − x
dt + C − Ca,
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and then (2.14), followed by (2.10) and (2.16), gives

πKn+1 (x, x)w (x) − (n + 1) a

x2 + a2
= πKn+1 (x, x)w (x) − πKn+1 (wa, x, x)wa (x)

= ϕ′ (x) − ϕ′
a (x)

=
d

dx

[
− 1

2π
PVx

∫ ∞

−∞

ga (t)
1 + t2

1 + tx

t − x
dt

]
.(2.17)

Since s2n+1 = 0, it is easily seen that for each j ≥ 0,

(2.18) g(j)
a (t) = O(|t|−j−2) as |t| → ∞.

As
1

1 + t2
1 + tx

t − x
=

1
t − x

− t

1 + t2
,

the decay of ga at ∞ enables us to deduce that

(2.19) πKn+1 (x, x)w (x) − (n + 1) a

x2 + a2
=

d

dx

[
− 1

2π
PVx

∫ ∞

−∞

ga (t)
t − x

dt

]
.

It is well known that the derivative of a Cauchy principal value is a Hadamard finite
part integral, but we sketch what we need here. Fix x, let R > |x|, and split

PVx

∫ ∞

−∞

ga (t)
t − x

dt = PVx

(∫ R

−R

+
∫

R\[−R,R]

)
ga (t)
t − x

dt =: FR (x) + GR (x) .

Here, because the differentiated integrand has uniformly convergent integral,

G′
R (x) =

∫
R\[−R,R]

ga (t)
(t − x)2

dt.

Note too that G′
R (x) → 0 as R → ∞. Next, adding and subtracting a principal

value integral give

FR (x) =
∫ R

−R

ga (t) − ga (x)
t − x

dt + ga (x) ln
∣∣∣∣R − x

R + x

∣∣∣∣ ,

so, again, as the differentiated integrand has uniformly convergent integral,

F ′
R (x) =

∫ R

−R

ga (t) − ga (x) − g′a (x) (t − x)
(t − x)2

dt

+ g′a (x) ln
∣∣∣∣R − x

R + x

∣∣∣∣ + ga (x)
(

1
x − R

− 1
x + R

)

= PVx

∫ R

−R

ga (t) − ga (x)
(t − x)2

dt + ga (x)
(

1
x − R

− 1
x + R

)
.

As R → ∞, the decay of ga at ∞ ensures that

F ′
R (x) → PVx

∫ ∞

−∞

ga (t) − ga (x)
(t − x)2

dt.

We deduce that
d

dx

[
PVx

∫ ∞

−∞

ga (t)
t − x

dt

]
= PVx

∫ ∞

−∞

ga (t) − ga (x)
(t − x)2

dt.
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Thus, from (2.19),

πx2Kn+1 (x, x)w (x) − (n + 1) ax2

x2 + a2
= −x2

2π
PVx

∫ ∞

−∞

ga (t) − ga (x)
(t − x)2

dt

= − 1
2π

∫ ∞

−∞
ha (t, x) dt,(2.20)

where

ha (t, x) =

⎧⎨
⎩

x2[ga(t)−ga(x)]

(t−x)2
, t /∈

[
x
2 , 3x

2

]
,

x2[ga(t)−ga(x)−g′
a(x)(t−x)]

(t−x)2
, t ∈

[
x
2 , 3x

2

]
.

Observe that for each fixed t,

lim
x→∞

ha (t, x) = ga (t) .

(We use (2.18) for this.) We next obtain an integrable bound on ha (t, x) that is
independent of large x. If t ∈

(
−∞, x

2

)
,

|ha (t, x)| ≤ C |ga (t)| + C

1 + t2
.

Similarly if t ∈
(

3x
2 ,∞

)
, this bound holds. If t ∈

[
x
2 , 3x

2

]
, then for some ξ in this

interval, (2.18) shows that

|ha (t, x)| =
x2

2
|g′′a (ξ)| ≤ C

1 + t2
.

In all occurrences, C is independent of x and t. It follows that we may apply
Lebesgue’s Dominated Convergence Theorem to the integral on the right-hand side
of (2.20) and let x → ∞ on both sides to deduce that

πγ2
n

s2n+2
− (n + 1) a = − 1

2π

∫ ∞

−∞
ga (t) dt.

Now we let a → 0+ and use the definition of ga (and an easier Dominated Conver-
gence) to deduce that

πγ2
n

s2n+2
= − 1

2π

∫ ∞

−∞
log

[
s2n+2t

2n+2

S (t)

]
dt.

�

3. An application to reciprocal entire weights

Suppose zj = xj + iyj , j ≥ 1, with all yj < 0 and

(3.1)
∞∑

j=1

(
xj

|zj |

)2

< ∞.

Let

E (z) =
∞∏

j=1

(
1 − z

zj

)
and En (z) =

n+1∏
j=1

(
1 − z

zj

)
, n ≥ 1.

Assume that E is entire, and let

W =
1

|E|2
and wn =

1
|En|2

, n ≥ 1.
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For real x, it is easily seen that

wn

W
(x) ≥

∞∏
j=n+2

(
1 −

(
xj

|zj |

)2
)

=: ρn.

Let Kn+1 (W, ·, ·) and Kn+1 (wn, ·, ·) denote the nth reproducing kernels for W and
wn respectively. This last inequality and extremal properties of Kn+1 yield

Kn+1 (W, z, z̄) ≥ ρ−1
n Kn+1 (wn, z, z̄) for all z ∈ C.

In view of (3.1), ρn → 1 as n → ∞. Then the explicit formula (1.11) for
Kn+1 (wn, z, z̄) and the fact that En → E as n → ∞ give, for non-real z,

(3.2) lim inf
n→∞

Kn+1 (W, z, z̄) ≥ i

2π

E (z) E∗ (z̄) − E∗ (z) E (z̄)
z − z̄

.

For real z, we instead use (1.12). Now let H (E) be the de Branges space corre-
sponding to E. This consists [1, p. 50 ff.] of all entire functions g for which both
g/E and g∗/E belong to the Hardy 2 space of the upper half-plane H2 (C+), with∫ ∞

−∞

∣∣∣ g

E

∣∣∣2 < ∞.

The reproducing kernel for this space is [1, p. 51]

K (z, v) =
i

2π

E (z)E∗ (v) − E∗ (z)E (v)
z − v

, z �= v,

with a confluent form when z = v. Moreover, for such g, we have [1, p. 53]

|g (z)|2 ≤ K (z, z̄)
∫ ∞

−∞

∣∣∣ g

E

∣∣∣2 , z ∈ C.

Since H (E) contains all polynomials, we may apply this last inequality to g (t) =
Kn+1 (W, t, z̄) for fixed z and deduce that

Kn+1 (W, z, z̄)2 ≤ K (z, z̄)
∫ ∞

−∞
|Kn+1 (W, t, z̄)|2 W (t) dt = K (z, z̄)Kn+1 (W, z, z̄) ,

so

Kn+1 (W, z, z̄) ≤ K (z, z̄) .

Together with (3.2), this yields, for non-real z,

lim
n→∞

Kn (W, z, z̄) = K (z, z̄) =
i

2π

E (z) E∗ (z̄) − E∗ (z) E (z̄)
z − z̄

.

Similarly, for x real,

lim
n→∞

Kn (W, x, x) = K (x, x) =
i

2π
(E′ (x)E∗ (x) − E (x)E∗′ (x)) .

In particular, as this is finite, the moment problem corresponding to W is indeter-
minate (cf. [3]).
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