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ASYMPTOTIC BEHAVIOR OF NONEXPANSIVE MAPPINGS
IN FINITE DIMENSIONAL NORMED SPACES

BRIAN LINS

(Communicated by Marius Junge)

Abstract. If X is a finite dimensional real normed space, C is a closed convex
subset of X and f : C → C is nonexpansive with respect to the norm on X,
then we show that either f has a fixed point in C or there is a linear functional
ϕ ∈ X∗ such that limk→∞ ϕ(fk(x)) = ∞ for all x ∈ C.

1. Introduction

Let X be a real normed space with norm || · ||. Let X∗ denote the dual space of
X. Suppose that U is a subset of X. We say that a map f : U → X is nonexpansive
if ||f(x) − f(y)|| ≤ ||x − y|| for all x, y ∈ U .

For a nonexpansive map f : U → U , if χ = limk→∞ fk(x)/k exists for some
x ∈ U , then limk→∞ fk(y)/k = χ for all y ∈ U . The limit χ is called the cycle
time vector. For examples where the cycle time vector does not exist, see the
proof of Theorem 1.4 in [10], section 4 in [15], and also [6]. Even if the cycle
time vector fails to exist, it is known (Lemma 1, [13]) that there is a constant
A = limk→∞ ||fk(x)/k||, and A does not depend on x. We call this constant the
linear rate of growth of f .

The following theorem is due to Kohlberg and Neyman (Theorem 1.1 in [10]).

Theorem 1.1 (Kohlberg and Neyman [10]). Let C be a convex subset of a normed
space X and let f : C → C be nonexpansive. Then there exists a linear functional
ϕ ∈ X∗ with ||ϕ|| = 1 such that for every x ∈ C,

lim
k→∞

ϕ

(
fk(x)

k

)
= lim

k→∞

∣∣∣∣
∣∣∣∣f

k(x)
k

∣∣∣∣
∣∣∣∣ = inf

y∈C
||f(y) − y||.

If the linear rate of growth A = limk→∞ ||fk(x)/k|| > 0, then there is a linear
functional ϕ ∈ X∗ such that limk→∞ ϕ(fk(x)) = ∞. Even more can be said if X is
a reflexive Banach space. In that case, Rouhani and Kirk have shown (Theorem 1,
[18]) that if U ⊂ X and f : U → U is nonexpansive, then the weak topology
accumulation points of the sequence fk(x)/k, k ≥ 1 are contained in a convex
subset of the sphere centered at the origin with radius equal to the linear rate of
growth of f . Related results can be found in [10], as well as Proposition 1 in [13]
and the paragraph before Proposition 4.4 in [16].
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If the linear rate of growth of f is zero, these theorems tell us relatively little
about the asymptotic behavior of f . Of course, if f has a fixed point, then the
linear rate of growth A = 0. Certain special classes of maps, such as piecewise
affine maps (Theorem 2.1, [9]), have a fixed point whenever A = 0. However, there
are simple examples of nonexpansive maps with A = 0 which have no fixed points.
For example, the map

f(x) =
{

x + 1/x x > 1,
x + 1 x ≤ 1

is a nonexpansive map on R with no fixed points, even though the linear rate of
growth of f is zero.

The main result of this paper is the following theorem.

Theorem 1.2. Suppose that C is a closed convex set in a finite dimensional real
normed space X and f : C → C is a nonexpansive map. If f does not have a fixed
point in C, then there is a linear functional ϕ ∈ X∗ such that limk→∞ ϕ(fk(x)) = ∞
for all x ∈ C.

Note that Theorem 1.2 is closely related to Theorem 1.1, although Theorem 1.2
only applies to finite dimensional normed spaces. For infinite dimensional coun-
terexamples to Theorem 1.2, see Theorems 2.1 and 2.2 in [5]. The advantage of
Theorem 1.2 is that it tells us something about the asymptotic behavior of fixed
point free nonexpansive maps, even when the linear rate of growth is zero.

2. The horofunction boundary

The main tool we will use in this paper is the horofunction boundary of X.
The horofunction boundary has been used to study the asymptotic behavior of
unbounded nonexpansive maps in several settings (see [1], [7], [11], [12]).

We will define the horofunction boundary for a finite dimensional real normed
space X. Let C(X) denote the set of continuous real-valued maps on X endowed
with the topology of uniform convergence on compacta. Define Φ to be the map
Φ : x �→ gx, where

gx(y) = ||y − x|| − ||x||.
Note that Φ is a continuous embedding of X into C(X). Since X is not compact,
the image Φ(X) will not be closed in C(X). The closure of Φ(X) is called the
Busemann compactification of X, and we denote it by clΦ(X). The boundary of
X under this compactification is X(∞) = cl Φ(X)\Φ(X). The elements of X(∞)
are called horofunctions. Note that any horofunction h ∈ X(∞) can be written

(2.1) h(y) = lim
k→∞

||y − xk|| − ||xk||,

where 〈xk〉k≥0 is a sequence of points in X such that the limit above converges
uniformly to h on compact sets. For more details about this compactification, see
[2]; and for more information about the horofunction boundary of finite dimensional
normed spaces, see [8] and [19].

In order to prove Theorem 1.2, we must first establish the following relationship
between nonexpansive maps and the horofunctions on X.

Theorem 2.1. Let C be a closed convex subset of a finite dimensional real normed
space X. Let f : C → C be nonexpansive and suppose that f has no fixed point in
C. Then there is a horofunction h ∈ X(∞) such that limk→∞ h(fk(x)) = −∞ for
all x ∈ C.
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The proof of Theorem 2.1 depends on the following two lemmas. Note that
Lemma 2.1 is a special case of Theorem 1 in [14].

Lemma 2.1. Suppose that C is a closed convex subset of X and f : C → C is
nonexpansive. If f has no fixed point in C, then for every x ∈ C the sequence
〈fk(x)〉k≥0 is not bounded.

Proof. Suppose that there is a constant M > 0 such that ||fk(x)|| < M for all
k ≥ 0. Let ω denote the set of accumulation points of the sequence 〈fk(x)〉k≥0.
Note that ω is nonempty, closed and bounded. Dafermos and Slemrod have shown
(Theorem 1, [4]) that f is an invertible isometry on ω and f maps ω onto itself.
For each y ∈ ω and R > 0, let BR(y) = {z ∈ C : ||y − z|| ≤ R}. Choose R > 2M
and let U =

⋂
y∈ω BR(y). Then U is a nonempty, compact, convex subset of X.

Since f is nonexpansive and f(ω) = ω, it follows that f(U) ⊂ U . Therefore, the
Brouwer fixed point theorem implies that f has a fixed point in U , which is a
contradiction. �

Remark 2.1. Ca�lka has shown (Theorem 5.6, [3]) that if f is a nonexpansive map
on a finitely totally bounded metric space and 〈fk(x)〉k≥0 contains a bounded
subsequence, then 〈fk(x)〉k≥0 is bounded. In particular, this result applies to fi-
nite dimensional normed spaces and therefore the conclusion of Lemma 2.1 can be
strengthened to state that limk→∞ ||fk(x)|| = ∞.

Lemma 2.2. Let y ∈ X be an element with ||y|| = 1. Let 0 < λ < 1. For any
R > r > 0 and any z ∈ X with ||z|| ≤ R, if ||z − Ry|| ≤ λR, then ||z − ry|| ≤
R − (1 − λ)r.

Proof. Suppose that ||z − ry|| > R − (1 − λ)r. By the Hahn-Banach theorem
there is some ϕ ∈ X∗ with ||ϕ|| = 1 and ||z − ry|| = ϕ(z − ry) > R − (1 − λ)r.
Then, ϕ(z) − ϕ(ry) > R − (1 − λ)r, so ϕ(ry) < ϕ(z) − R + (1 − λ)r. Since
ϕ(z) ≤ ||z|| ≤ R it follows that ϕ(ry) < (1 − λ)r and hence ϕ(y) < (1 − λ). By
scaling, (R − r)ϕ(y) = ϕ(Ry − ry) < (1 − λ)(R − r). So

ϕ(z − Ry) = ϕ(z − ry) − ϕ(Ry − ry) > R − (1 − λ)r − (1 − λ)(R − r) = λR.

Since ||z − Ry|| ≥ ϕ(z − Ry) > λR, we have a contradiction. �

Proof of Theorem 2.1. Fix an x0 ∈ C and let xk = fk(x0) for k ≥ 1. By Lemma 2.1
the sequence 〈xk〉k≥0 is not bounded. Therefore, we may choose an increasing
sequence of integers 〈ki〉i≥1 such that limi→∞ ||xki

|| = ∞ and, for each i ≥ 1,

(2.2) ||xki
|| > ||xm|| for all m < ki.

Furthermore, since the unit sphere in X is compact, we may also choose 〈ki〉 so
that there is a ȳ ∈ X, ||ȳ|| = 1, such that

(2.3)
∣∣∣∣
∣∣∣∣ xki

||xki
|| − ȳ

∣∣∣∣
∣∣∣∣ ≤ 2−i for all i ≥ 1.

Given such a sequence 〈ki〉, we claim that

(2.4) ||xki
− xkj−m|| ≤ ||xkj

|| − 1
4
||xki

||

whenever i and m are fixed, m ≥ 0 and j is sufficiently large. Assume this claim
for now.



2390 BRIAN LINS

Since X is locally compact, the Arzelà-Ascoli theorem implies that by taking a
refinement of 〈ki〉 we may assume the horofunction h defined below exists for all
x ∈ X:

h(x) = lim
j→∞

||x − xkj
|| − ||xkj

||.

By the nonexpansiveness of f , we observe that

h(xki+m) = lim
j→∞

||xki+m − xkj
|| − ||xkj

|| ≤ lim inf
j→∞

||xki
− xkj−m|| − ||xkj

||.

Now, by eq. (2.4), ||xki
−xkj−m|| ≤ ||xkj

||− 1
4 ||xki

|| for j sufficiently large. Therefore
we obtain

h(xki+m) ≤ −1
4
||xki

||.

This implies that limm→∞ h(xm) = limm→∞ h(fm(x0)) = −∞.
Now suppose that x is any element in C. Then

h(fm(x)) = lim
j→∞

||fm(x) − xkj
|| − ||xkj

||

≤ lim inf
j→∞

||fm(x) − fm(x0)|| + ||fm(x0) − xkj
|| − ||xkj

||

≤ ||fm(x) − fm(x0)|| + h(fm(x0)) ≤ ||x − x0|| + h(fm(x0))

by the nonexpansiveness of f . In particular, limm→∞ h(fm(x)) = −∞ since
limm→∞ h(fm(x0)) = −∞.

It remains to prove eq. (2.4). For each i ≥ 1, let Ri = ||xki
||. With this notation,

we can rewrite eq. (2.3) as

(2.5) ||xki
− Riȳ|| ≤ 2−i||xki

||, ∀ i ≥ 1.

Fix some i ≥ 1 and m ≥ 0. Note that

||xkj−m − Rj ȳ|| ≤ ||xkj−m − xkj
|| + ||xkj

− Rj ȳ||

≤ ||xkj−m − xkj
|| + 2−j ||xkj

|| ≤
m∑

l=1

||xkj−m+l−1 − xkj−m+l|| + 2−j ||xkj
||

≤
m∑

l=1

||f l−1(x) − f l(x)|| + 2−j ||xkj
|| ≤ m||f(x) − x|| + 2−j ||xkj

||

by the nonexpansiveness of f and the triangle inequality. Thus

(2.6) ||xkj−m − Rj ȳ|| ≤ m||f(x) − x|| + 2−j ||xkj
||.

Since m||f(x) − x|| is a constant and limj→∞ ||xkj
|| = ∞, equation (2.6) implies

that for j large enough, ||xkj−m−Rj ȳ|| ≤ 1
4 ||xkj

||. Furthermore, ||xkj−m|| ≤ ||xkj
||

by eq. (2.2). Using Lemma 2.2 with λ = 1
4 , r = ||xki

||, R = ||xkj
||, y = ȳ and

z = xkj−m we obtain

(2.7) ||xkj−m − Riȳ|| ≤ ||xkj
|| − 3

4
||xki

||.

Therefore,

||xki
− xkj−m|| ≤ ||xki

− Riȳ|| + ||Riȳ − xkj−m||

≤ 2−i||xki
|| + ||xkj

|| − 3
4
||xki

||
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by eqns. (2.5) and (2.7). Thus, for i ≥ 1 and j large enough,

||xki
− xkj−m|| ≤ ||xkj

|| − 1
4
||xki

||,

which proves eq. (2.4). �

3. Proof of the main theorem

Given a function g : X → R, we define the epigraph of g to be

epi g = {(x, t) | x ∈ R
n, t ∈ R, t ≥ g(x)}.

We say that g is convex if epi g is a convex subset of X × R. Note that any
horofunction h ∈ X(∞) is convex. After all, suppose that (y1, t1), (y2, t2) ∈ epi h.
Then, t1 ≥ h(y1) and t2 ≥ h(y2). Suppose that 0 < λ < 1. By eq. (2.1),

h(λy1 + (1 − λ)y2) = lim
k→∞

||λy1 + (1 − λ)y2 − xk|| − ||xk||

for some sequence 〈xk〉k≥0 in X. Note that

||λy1 + (1 − λ)y2 − xk|| ≤ λ||y1 − xk|| + (1 − λ)||y2 − xk||

and therefore,

h(λy1 + (1 − λ)y2) ≤ lim
k→∞

λ(||y1 − xk|| − ||xk||) + (1 − λ)(||y2 − xk|| − ||xk||)

= λh(y1) + (1 − λ)h(y2).

From this it follows that λt1 + (1 − λ)t2 ≥ h(λy1 + (1 − λ)y2) and therefore

(λy1 + (1 − λ)y2, λt1 + (1 − λ)t2) ∈ epi h.

The following lemma is an immediate consequence of Corollary 12.1.2 in [17],
although we give a proof here for the sake of completeness.

Lemma 3.1. For any horofunction h ∈ X(∞) there exist some ϕ ∈ X∗ and b ∈ R

such that h(x) ≥ −ϕ(x) + b for every x ∈ X.

Proof. Since h is a continuous convex function, epih is a closed convex set. Fix
an x0 ∈ X and t0 ∈ R such that t0 < h(x0) and therefore (x0, t0) /∈ epi h. Since
epi h is convex, the Hahn-Banach theorem implies that there is a linear functional
Ψ on X × R and a constant c ∈ R such that Ψ((x, t)) ≥ c for all (x, t) ∈ epi h
and Ψ((x0, t0)) < c. Note that the linear functional Ψ can be written Ψ((x, t)) =
ψ(x) + at, where ψ ∈ X∗ and a ∈ R. In particular, ψ(x) + ah(x) ≥ c for all x ∈ X.
Since ψ(x0) + ah(x0) ≥ c while ψ(x0) + at0 < c, it follows that a(h(x0) − t0) > 0.
Thus, a > 0. By rearranging terms, we can see that h(x) ≥ a−1c − a−1ψ(x). To
complete the proof, we let ϕ = a−1ψ and b = a−1c. �

Remark 3.1. The conclusion of Lemma 3.1 holds for any continuous convex func-
tion. Readers familiar with convex functions may note that we could have proven
Lemma 3.1 by using the fact that every continuous convex function is subdifferen-
tiable (Theorem 23.4, [17]).

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. By Theorem 2.1, there is a horofunction h ∈ X(∞) such
that

lim
k→∞

h(fk(x)) = −∞, for all x ∈ C.

Lemma 3.1 implies that there is some ϕ ∈ X∗ and b ∈ R such that h(x) ≥ −ϕ(x)+b
for all x ∈ X. Thus, ϕ(x) ≥ −h(x) + b for all x ∈ X. It immediately follows that
limk→∞ ϕ(fk(x)) = ∞ for all x ∈ C. �

Acknowledgement

The author would like to thank the reviewer for several helpful comments and
suggestions.

References

1. A. F. Beardon. Iteration of contractions and analytic maps, J. London Math. Soc. 41 (1990),

141-150. MR1063551 (91i:51025)
2. D. Burago, Y. Burago, and S. Ivanov. A Course in Metric Geometry, Graduate Studies in

Mathematics, vol. 33, Amer. Math. Soc., Providence, RI, 2001. MR1835418 (2002e:53053)
3. A. Ca�lka. On conditions under which isometries have bounded orbits, Colloq. Math. 48 (1984),

219-227. MR758530 (85m:54027)
4. C. M. Dafermos and M. Slemrod. Asymptotic behavior of nonlinear contraction semigroups,

J. Functional Anal. 13 (1973), 97-106. MR0346611 (49:11336)
5. M. Edelstein. On non-expansive mappings of Banach spaces, Proc. Camb. Phil. Soc. 60 (1964),

439-447. MR0164222 (29:1521)
6. J. Gunawardena and M. Keane. On the existence of cycle times for some nonexpansive maps,

Technical Report HPL-BRIMS-95-003, Hewlett-Packard Labs, 1995.
7. A. Karlsson. Non-expanding maps and Busemann functions, Ergodic Theory and Dynamical

Systems 21 (2001), 1447-1457. MR1855841 (2002f:37055)
8. A. Karlsson, V. Metz and G. Noskov. Horoballs in simplices and Minkowski spaces, Int. J.

Math. Math. Sci. (2006), Art. ID 23656, 20 pages. MR2268510 (2007k:53047)
9. E. Kohlberg. Invariant half-lines of nonexpansive piecewise-linear transformations, Math.

Oper. Res. 5 (1980), 366-372. MR594851 (82a:55005)
10. E. Kohlberg and A. Neyman. Asymptotic behavior of nonexpansive mappings in normed linear

spaces, Israel J. Math. 38 (1981), 269-275. MR617673 (83g:47056)
11. B. Lins. A Denjoy-Wolff theorem for Hilbert metric nonexpansive maps on polyhedral domains,

Math. Proc. Camb. Phil. Soc. 143 (2007), 157-164. MR2340981 (2008i:47102)
12. R. D. Nussbaum. Fixed point theorems and Denjoy-Wolff theorems for Hilbert’s projective

metric in infinite dimensions, Topological Methods in Nonlinear Analysis 29 (2007), 199-249.

MR2345061
13. A. T. Plant and S. Reich. The asymptotics of nonexpansive iterations, J. Functional Anal.

54 (1983), 308-319. MR724526 (85a:47055)
14. S. Reich. Fixed point iterations of nonexpansive mappings, Pacific J. Math. 60 (1975), 195-

198. MR0428130 (55:1159)
15. S. Reich. Extension problems for accretive sets in Banach spaces, J. Functional Anal. 26

(1977) 378-395. MR0477893 (57:17393)
16. S. Reich. On the asymptotic behavior of nonlinear semigroups and the range of accretive

operators, J. Math. Anal. Appl. 79 (1981), 113-126. MR603380 (82c:47066)
17. R. T. Rockafeller. Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

MR0274683 (43:445)
18. B. D. Rouhani and W. A. Kirk. Asymptotic properties of nonexpansive iterations in reflexive

spaces, J. Math. Anal. Appl. 236 (1999), 281-289. MR1704583 (2001a:47056)
19. C. Walsh. The horofunction boundary of finite-dimensional normed spaces, Math. Proc. Camb.

Phil. Soc. 142 (2007), 497-507. MR2329698 (2008e:53150)

Department of Mathematics and Computer Science, Hampden-Sydney College,

Hampden-Sydney, Virginia 23943

E-mail address: blins@hsc.edu

http://www.ams.org/mathscinet-getitem?mr=1063551
http://www.ams.org/mathscinet-getitem?mr=1063551
http://www.ams.org/mathscinet-getitem?mr=1835418
http://www.ams.org/mathscinet-getitem?mr=1835418
http://www.ams.org/mathscinet-getitem?mr=758530
http://www.ams.org/mathscinet-getitem?mr=758530
http://www.ams.org/mathscinet-getitem?mr=0346611
http://www.ams.org/mathscinet-getitem?mr=0346611
http://www.ams.org/mathscinet-getitem?mr=0164222
http://www.ams.org/mathscinet-getitem?mr=0164222
http://www.ams.org/mathscinet-getitem?mr=1855841
http://www.ams.org/mathscinet-getitem?mr=1855841
http://www.ams.org/mathscinet-getitem?mr=2268510
http://www.ams.org/mathscinet-getitem?mr=2268510
http://www.ams.org/mathscinet-getitem?mr=594851
http://www.ams.org/mathscinet-getitem?mr=594851
http://www.ams.org/mathscinet-getitem?mr=617673
http://www.ams.org/mathscinet-getitem?mr=617673
http://www.ams.org/mathscinet-getitem?mr=2340981
http://www.ams.org/mathscinet-getitem?mr=2340981
http://www.ams.org/mathscinet-getitem?mr=2345061
http://www.ams.org/mathscinet-getitem?mr=724526
http://www.ams.org/mathscinet-getitem?mr=724526
http://www.ams.org/mathscinet-getitem?mr=0428130
http://www.ams.org/mathscinet-getitem?mr=0428130
http://www.ams.org/mathscinet-getitem?mr=0477893
http://www.ams.org/mathscinet-getitem?mr=0477893
http://www.ams.org/mathscinet-getitem?mr=603380
http://www.ams.org/mathscinet-getitem?mr=603380
http://www.ams.org/mathscinet-getitem?mr=0274683
http://www.ams.org/mathscinet-getitem?mr=0274683
http://www.ams.org/mathscinet-getitem?mr=1704583
http://www.ams.org/mathscinet-getitem?mr=1704583
http://www.ams.org/mathscinet-getitem?mr=2329698
http://www.ams.org/mathscinet-getitem?mr=2329698

	1. Introduction
	2. The horofunction boundary
	3. Proof of the main theorem
	Acknowledgement
	References

