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INFINITELY GENERATED LAWSON HOMOLOGY GROUPS
ON SOME RATIONAL PROJECTIVE VARIETIES

WENCHUAN HU

(Communicated by Daniel Ruberman)

Abstract. We construct rational projective 4-dimensional varieties with the
property that certain Lawson homology groups tensored with Q are infinite
dimensional Q-vector spaces. More generally, for each pair of integers p and
k, with k ≥ 0, p > 0, we find a projective variety Y such that LpH2p+k(Y ) is
infinitely generated.

We also construct two singular rational projective 3-dimensional varieties
Y and Y ′ with the same homeomorphism type but different Lawson homol-
ogy groups; specifically, L1H3(Y ) is not isomorphic to L1H3(Y ′) even up to
torsion.

1. Introduction

This paper gives examples of singular rational projective 4-dimensional varieties
with infinitely generated Lawson homology groups even modulo torsion. This is
totally different from the smooth case ([14], also [8]), where it is known that all
Lawson homology groups of rational fourfolds are finitely generated.

This paper also gives examples of singular rational projective 3-dimensional va-
rieties with the same homeomorphism type but different Lawson homology groups.

For an algebraic variety X over C, the Lawson homology LpHk(X) of p-cycles
is defined by

LpHk(X) := πk−2p(Zp(X)), k ≥ 2p ≥ 0,

where Zp(X) is provided with a natural topology. For general background, the
reader is referred to the survey paper [12].

Clemens showed that the Griffiths group of 1-cycles (which is defined to be
the group of algebraic 1-cycles homologically equivalent to zero modulo l-cycles
algebraically equivalent to zero) may be infinitely generated even modulo the torsion
elements for general quintic hypersurfaces in P4 (cf. [2]). E. Friedlander showed
that L1H2(X) is exactly the algebraic 1-cycles modulo algebraic equivalence (cf.
[5]). Hence the Griffiths group of 1-cycles for X is a subgroup of L1H2(X).

This leads to the following question:
(Q): Can one show that LpH2p+j(X) is not finitely generated for some projective

variety X where j > 0 ?
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In this paper we shall construct, for any given integers p and j > 0, examples
of rational varieties X for which LpH2p+j(X), as an abelian group, is infinitely
generated. Thus, we answer affirmatively the above question:

Theorem 1.1. There exists a rational projective variety X with dim(X) = 4 such
that L1H3(X) ⊗ Q is not a finite dimensional Q-vector space.

By using the projective bundle theorem given by Friedlander and Gabber ([6]),
we have the following corollary:

Corollary 1.2. For any p ≥ 1, there exists a projective algebraic variety X such
that LpH2p+1(X) is not a finitely generated abelian group.

More generally, we have

Theorem 1.3. For integers p and k, with k ≥ 0, p > 0, we can find a projective
variety Y such that LpH2p+k(Y ) is infinitely generated.

Remark 1.4. The lack of smoothness is essential here. Compare Theorem 1.1 with
the following result proved by C. Peters.

Theorem 1.5 (Peters [14]). For any smooth projective variety X over C with
Ch0(X) ⊗ Q ∼= Q, the natural map Φ : L1H∗(X) ⊗ Q → H∗(X, Q) is injective. In
particular, L1H∗(X) ⊗ Q is a finite dimensional Q-vector space.

Note that a rational variety X (smooth or not) has the property that Ch0(X)⊗
Q ∼= Q. This property holds on a more general class of varieties called rationally
connected varieties (cf. [10]), although it was known much earlier on rational vari-
eties.

Applying the same construction to hypersurfaces in P3, we obtain the following:

Theorem 1.6. There exist two rational 3-dimensional projective varieties Y and
Y ′ which are homeomorphic but for which the Lawson homology groups L1H3(Y )
and L1H3(Y ′) are not isomorphic even up to torsion.

Remark 1.7. In fact, the varieties in Theorem 1.6 have exactly one isolated singular
point.

Remark 1.8. As in Theorem 1.3, the existence of a singular point of Y and Y ′ in
Theorem 1.6 is essential. If Y , Y ′ are two smooth rational projective varieties, then
L1H3(Y ) ∼= L1H3(Y ′) and hence L1H3(Y, Q) ∼= L1H3(Y ′, Q).

2. Lawson homology

In this section we briefly review the definitions and results used in the next
section. Let X be a projective variety of dimension m over C. The group of p-
cycles on X is the free abelian group Zp(X) generated by irreducible p-dimensional
subvarieties.

Definition 2.1. The Lawson homology LpHk(X) of p-cycles on X is defined by

LpHk(X) := πk−2p(Zp(X)), k ≥ 2p ≥ 0,

where Zp(X) is provided with a natural, compactly generated topology (cf. [5], [11]
and [12]).
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Definition 2.2. The Griffiths group Griffp(X) of p-cycles on X is defined by

Griffp(X) := Zp(X)hom/Zp(X)alg,

where Zp(X)hom denotes algebraic p-cycles homologous to zero and Zp(X)alg

denotes algebraic p-cycles which are algebraically equivalent to zero.

Remark 2.3. It was shown by Friedlander that LpH2p(X) ∼= Zp(X)/Zp(X)alg (cf.
[5]). Hence the Griffiths group Griffp(X) is a subgroup of the Lawson homology
LpH2p(X). Therefore, for any projective variety X (note that its homology groups
are finitely generated), Griffp(X) is infinitely generated if and only if LpH2p(X) is.

Remark 2.4. For a quasi-projective variety U , LpHk(U) is also well-defined and
independent of the projective embedding (cf. [13], [12]).

Let V ⊂ U be a Zariski open subset of a quasi-projective variety U . Set Z =
U − V . Then we have

Theorem 2.5 ([13]). There is a long exact sequence for the pair (U, Z), i.e.,

(2.1) · · · → LpHk(Z) → LpHk(U) → LpHk(V ) → LpHk−1(Z) → · · · .

Remark 2.6. For any quasi-projective variety U , L0Hk(U) ∼= HBM
k (U), where

HBM
k (U) is the Borel-Moore homology. This follows from the Dold-Thom The-

orem [3].

As a direct application of this long exact sequence, one has the following results
[13]:

Proposition 2.7. (a) By the Complex Suspension Theorem [11], we have{
LpH2n(Cn) = Z, if 0 ≤ p ≤ n,
LpHk(Cn) = 0, if 0 ≤ 2p ≤ k �= 2n.

(b) Let U = Cn and Vn−1 ⊂ Cn be a closed algebraic set. Set Vn = Cn − Vn−1.
Then we have

0 → LpH2n+1(Vn) → LpH2n(Vn−1) → LpH2n(Cn) → LpH2n(Vn) → LpH2n−1(Vn−1) → 0

and

LpHk+1(Vn) ∼= LpHk(Vn−1), k �= 2n, 2n + 1.

3. An elementary construction

Construction: Let X = (f(x0, · · · , xn+1) = 0) be a smooth hypersurface in
Pn+1 with degree d such that X ∩ (x0 = 0) is smooth, and let Vn := X −X ∩{Pn =
(x0 = 0)} be the affine part, i.e. Vn ⊂ Cn+1. Define Vn+1 := Cn+1−Vn. Then Vn+1

can be viewed as an affine variety in Cn+2 defined by xn+2 ·f(1, x1, · · · , xn+1)−1 =
0, where Vn = (f(1, x1, · · · , xn+1) = 0). Denote by Vn+1 the projective closure of
Vn+1 in Pn+2 and set Zn = Vn+1 − Vn+1. Note that Vn+1 ⊂ Pn+2 is given by
xn+2 · f(x0, x1, · · · , xn+1)−xd+1

0 = 0. The construction here makes it clear how to
use the localization exact sequence (cf. Theorem 2.5).

We leave the study of this case, where n = 1 and X is a smooth plane curve, as
an exercise.
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3.1. Application to the case n = 2. In this subsection, we will show that there
exist two rational projective 3-dimensional varieties with the same singular homol-
ogy groups but different Lawson homology.

The following result proved by Friedlander will be used several times:

Theorem 3.1 (Friedlander [5]). Let X be any smooth projective variety of dimen-
sion n. Then we have the following isomorphisms:⎧⎪⎪⎨

⎪⎪⎩
Ln−1H2n(X) ∼= Z,
Ln−1H2n−1(X) ∼= H2n−1(X, Z),
Ln−1H2n−2(X) ∼= Hn−1,n−1(X, Z) = NS(X),
Ln−1Hk(X) = 0 for k > 2n.

For a finitely generated abelian group G, we denote by rk(G) the rank of G.
Let X ⊂ P3 be a smooth surface with degree d = 4 such that C := X ∩ P2 is a

smooth curve in P2. Then V2 = X − X ∩ P2.

Lemma 3.2. rk(L1H2(X)) = rk(L1H2(V2)) + 1; rk(L1H3(V2)) = 0.

Proof. Note that X is a smooth hypersurface in P3 and so H3(X) = 0 by the Weak
Lefschetz Theorem. By Theorem 3.1, we get L1H3(X) ∼= H3(X) = 0. Now by
applying Theorem 2.5 to the pair (X, C), we get

0 → L1H3(V2) → L1H2(C) → L1H2(X) → L1H2(V2) → 0.

Note that L1H2(C) ∼= Z and the map L1H2(C) → L1H2(X) is injective because
the composition of it with L1H2(X) → L1H2(P3) = Z is the degree map. So
we get L1H3(V2) = 0. Therefore, by the above long exact sequence, we have
rk(L1H2(X)) = rk(L1H2(V2)) + 1. �
Lemma 3.3. rk(L1H2(Z2)) = 1; rk(L1H3(Z2)) = 6; rk(L1H4(Z2)) = 2.

Proof. Note that Z2 = V3 − V3 is defined by (x4 · f(0, x1, ..., x3) = 0, x0 = 0) in P4.
Let C ′ = (x4 = 0) ∩ (f(0, x1, · · · , x3) = 0) in the hyperplane (x0 = 0) ⊂ P3. It is
easy to see that C ′ ∼= C. Then Z2 = P2 ∪ ΣC, where ΣC means the join of C and
the point p = [0 : · · · : 0 : 1]. By applying Theorem 2.5 to the pair (Z2, ΣC), we get

(3.1) · · · → L1H3(Z2 − ΣC) → L1H2(ΣC) → L1H2(Z2) → L1H2(Z2 − ΣC) → 0.

Note that Z2 − ΣC ∼= P2 − C, L1H3(P2 − C) = 0 and L1H2(P2 − C) = 0.
So L1H3(Z2 − ΣC) = 0 and L1H2(Z2 − ΣC) = 0. Therefore rk(L1H2(Z2)) =
rkL1H2(ΣC) = 1 by Equation (3.1).

By applying Theorem 2.5 to the pair (Z2, P
2), we get

(3.2) · · · → L1H4(P2) → L1H4(Z2) → L1H4(Z2 − P2) → L1H3(P2) → · · · .

Since Z2 − P2 ∼= ΣC − C, we have L1H5(Z2 − P2) ∼= L1H5(ΣC − C) = 0 and
L1H4(Z2 − P2) ∼= L1H4(ΣC − C) ∼= Z. Note that L1H4(P2) ∼= H4(P2) ∼= Z and
L1H3(P2) ∼= H3(P2) = 0. Hence the last statement follows from Equation (3.2).

Recall that the Complex Suspension Theorem says that the suspension map
Σ : Y → ΣY induces an isomorphism LmHk(Y ) ∼= Lm+1Hk+2(ΣY ) for k ≥ 2m ≥ 0
and any complex projective variety (not necessarily smooth or irreducible). In
particular, we have L1H3(ΣC) ∼= L0H1(C). By the Dold-Thom Theorem, we
have L0H1(C) ∼= H1(C). By assumption, C is a smooth plane curve of degree 4.
The adjunction formula gives rk(H1(C)) = 6. The second statement follows from
Equation (3.1). �
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Lemma 3.4. rk(L1H2(V3)) ≤ 1; rk(L1H3(V3)) = rk(L1H2(X))+rk(L1H2(V3))+4.

Proof. Applying Theorem 2.5 to the pair (V3, Z2) with p = 1, we have

0 → L1H3(Z2) → L1H3(V3) → L1H3(V3) → L1H2(Z2) → L1H2(V3) → 0

since Lemma 3.2 gives L1H2(V3) = 0 and Proposition 2.7 gives L1H4(V3) ∼=
L1H3(V2) = 0. Hence rk(L1H2(V3)) ≤ 1 by Lemma 3.3. Moreover, we have
rk(L1H3(Z2))− rk(L1H3(V3))+rk(L1H3(V3))− rk(L1H2(Z2))+rk(L1H2(V3)) = 0.
By Lemmas 3.2 and 3.3 and part (b) in Proposition 2.7, we get

6 − rk(L1H3(V3)) + (rk(L1H2(X)) − 1) − 1 + rk(L1H2(V3)) = 0

and the second formula follows. �
Lemma 3.5. Sing(V3) ∼= {X ∩ (x0 = 0)} ∪ {p} ∼= C ∪ {p}, where p = [0 : · · · 0 : 1].

Proof. The proof follows from a direct computation. By definition,

Sing(V3) =
{

F (x0, x1, x2, x3, x4) = 0,
dF (x0, x1, x2, x3, x4) = 0

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xd+1
0 − x4 · f(x0, x1, x2, x3) = 0,

(d + 1)x0 − x4 · ∂f
∂x0

= 0,

−x4 · ∂f
∂x1

= 0,

−x4 · ∂f
∂x2

= 0,

−x4 · ∂f
∂x3

= 0,

f(x0, x1, x2, x3) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0 = 0,

x4 · ∂f
∂x0

= 0,

x4 · ∂f
∂x1

= 0,

x4 · ∂f
∂x2

= 0,

x4 · ∂f
∂x3

= 0,

f(x0, x1, x2, x3) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=
{

x0 = x4 = f(x0, x1, x2, x3) = 0
}
∪

{
x0 = f =

∂f

∂x0
=

∂f

∂x1
=

∂f

∂x2
=

∂f

∂x3
= 0

}
∼= {x0 = x4 = f(x0, x1, x2, x3) = 0} ∪ {p} ∼= C ∪ {p}

since C = (f = 0) is smooth by our assumption. �
Remark 3.6. Note that p is an isolated singular point and the singularity C =
X ∩ (x0 = 0) is of A4-type since degX = 4. From the computation in the proof
of Lemma 3.5, we know p is not on C. We can resolve the singularity of the A4-
type part by blowing up twice over the singularity, i.e., by blowing up over the
singularity for the first time and then blowing up the singularity of the proper
transform of the first blowup (cf. [4]). We denote by Ṽ3 the proper transform of V3

with the exceptional divisor D1 for the first blowup and by
˜̃
V3 the proper transform

of Ṽ3 with the exceptional divisor D2 for the second blowup. Both D1 and D2 are
isomorphic to a fiber bundle over C with fibre the union of two P1 intersecting at
exactly one point. See the appendix for the computation of a concrete example.

Now
˜̃
V3 has only one singular point, denoted by q.
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Lemma 3.7. The singular point q in
˜̃
V3 can be resolved by one blowup whose

exceptional divisor is isomorphic to X.

Proof. Note that
˜̃
V3 is obtained by taking the proper transform of blowups away

from q and so the singularity type of q is exactly the same as that of p in V3. In
the following we focus on the resolution of the singularity for V3 at p. We need to
show that the proper transform of V3 under the blowup of P4 at p is smooth away
from the 1-dimensional singularity and the exceptional divisor is isomorphic to X.

Recall that V3 ⊂ P4 is defined by a single equation x4 · f(x0, x1, x2, x3)− x5
0 = 0

and p = [0 : 0 : 0 : 0 : 1]. Hence locally, p is in the open affine subset (x4 �= 0) ⊂ P4.
Note that (x4 �= 0) ∼= C4 with affine coordinates (x0, x1, x2, x3). Then p is the origin
of C4 and the defining equation of V3 in (x4 �= 0) = C4 is f(x0, x1, x2, x3)−x5

0 = 0.
Set U3 := V3 ∩ (x4 �= 0).

Let C̃4 be the blowup of C4 at the origin. Hence C̃4 is given by the system of
equations (xiyj = xjyi, 0 ≤ i �= j ≤ 3) in C4 × P3, where [y0, y1, y2, y3] are the
homogeneous coordinates of P3. Hence the inverse image ρ−1(U3) of U3 under the
blowup ρ : C̃4 → C4 is given by the system of equations{

xiyj = xjyi, 0 ≤ i �= j ≤ 3,
f(x0, x1, x2, x3) − x5

0 = 0.

Note that C̃4 is covered by 4 affine parts: (yi �= 0), i = 0, 1, 2, 3. On (y0 �= 0),
the defining equations for C̃4 are simplified to be the system of equations

xi = x0yi, i = 1, 2, 3,

and ρ−1(U3) in (y0 �= 0) is given by{
xi = x0yi, i = 1, 2, 3,
f(x0, x1, x2, x3) − x5

0 = 0.

Plug in xi = x0yi, i = 1, 2, 3, to the equation f(x0, x1, x2, x3) − x5
0 = 0. Then

we get f(x0, x0y1, x0y2, x0y3) − x5
0 = 0; i.e., x4

0 · f(1, y1, y2, y3) − x5
0 = 0 since f is

homogeneous of degree 4. So either x4
0 = 0 or f(1, y1, y2, y3) − x0 = 0. Therefore

the proper transform of U3 on the affine part (y0 �= 0) is defined by{
xi = x0yi, i = 1, 2, 3,
f(1, y1, y2, y3) − x0 = 0,

for which the smoothness is easy to see from the definition and the choice of f .
The exceptional divisor is defined by⎧⎨

⎩
xi = x0yi, i = 1, 2, 3,
f(1, y1, y2, y3) − x0 = 0,
x4

0 = 0,

which is equivalent to f(1, y1, y2, y3) = 0 in 0 × (y0 �= 0) ⊂ C4 × P3. This is the
affine part of X in P3. The computation on other open affine parts is the same as
above. This completes the proof of the lemma. �

We denote by W3 the proper transform of the blowup in the above lemma. Note
that W3 is a smooth rational threefold. We have the following property on W3:
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Proposition 3.8. For a smooth surface X ⊂ P3 of fixed degree d = 4 such that
X ∩ (x0 = 0) is smooth, the W3 thus constructed is a smooth rational threefold
with a fixed homeomorphic type; i.e., for two smooth surfaces X and X ′ of the
same degree d in P3, the corresponding smooth rational threefolds W3 and W ′

3 are
homeomorphic.

Proof. Note that V 3 is a hypersurface in P4. Let (Ft(x0, · · · , x4) = 0) ⊂ P4 be a
family of hypersurfaces such that V 3 = (F0 = 0) is transversal to the hypersurface
H = (x0 = 0). Let ∆ be a neighborhood of t = 0 such that (Ft = 0) is transversal
to H for all t ∈ ∆. Let Γ ⊂ P4 × ∆ be the (analytic) variety defined by F (x, t) :=
Ft(x) = 0. Then we have the following incidence correspondence:

Γ ⊂ P4 × ∆
↓ π ↓ π
∆ = ∆,

with π−1(t) ∩ Γ = Γt.
The same type of computation in Remark 3.6 and Lemma 3.7 works for a fam-

ily of singularities. The reader is referred to a more general discussion for the
simultaneous resolution of rational singularities to [1] and [15]. The singularity in
Lemma 3.7 is not rational, but in this case, the proof of Lemma 3.7 word-for-word
works for the family case except that x4·f(x0, x1, x2, x3)−x5

0 = 0 (resp. C4) must be
replaced by F (x0, · · · , x4, t) = 0 (resp. C4×∆). Therefore, we get a smooth variety
Γ̃ by blowing up twice along the 2-dimensional singularity of Sing(Γ) and once for
the remaining 1-dimensional singularity of Sing(Γ). Denote by E the exceptional
divisor of the last step. We claim that the map π̃ : Γ̃ → ∆ is a smooth proper sub-
mersion. In fact, let v be a vector field of ∆ and let ṽ be a lifting in Γ(Γ̃, T Γ̃) such
that π̃∗(ṽ) = v. Denote by ϕt (resp. ϕ̃t) the flow generated by v (resp. ṽ). Then
ϕ̃t : Γ̃0 → Γ̃t gives the homeomorphism between two fibers of π̃ from Ehresmann’s
Theorem (cf. [16]). This implies the result of the proposition. �

From this proposition, we have the following:

Corollary 3.9. For all smooth surfaces X ⊂ P3 of fixed degree d = 4, the
˜̃
V3 thus

constructed has a fixed homeomorphism type.

Remark 3.10. A similar statement in Corollary 3.9 holds for arbitrary fixed degree
d. However, in the general case, the 2-dimensional singularity V3 can be resolved by
[d+1

2 ] blowups (cf. Appendix and [4] for more details). The last proper transform
of these blowups has a fixed homeomorphism type.

The proof of Corollary 3.9. For a smooth projective surface X ⊂ P3, we can find
suitable coordinates such that (x0 = 0) ∩ X is a smooth irreducible curve. In the
proof of the proposition, we actually can choose ṽ such that 1) ṽ is tangent to
Γ; 2) ṽ is tangent to the exceptional divisor E defined in Proposition 3.8. So the
exceptional divisor Et of each fiber at t ∈ ∆ is the intersection of the fiber π̃−1(t)
and the exceptional divisor E, i.e., π̃−1(t) ∩ E = Et. Then the flow of ṽ gives the
homeomorphism of any two fibers of π since E is smooth.

To see this, let X, X ′ ⊂ P3 be two smooth hypersurfaces of degree d and let˜̃
V3 (resp.

˜̃
V ′

3) be the corresponding varieties constructed in Remark 3.6. We also
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denote W3 (resp. W ′
3) to be the proper transform of

˜̃
V3 (resp.

˜̃
V ′

3) by resolving
the corresponding isolated singular point. (If we use the notation as in the proof
of Proposition 3.8, then W3 = Γ̃t0 (resp. W ′

3 = Γ̃t′0 for some t0, t
′
0 ∈ ∆).) Then

Et0 = E ∩ Γ̃t0 = E ∩ W3 (resp. Et′0 = E ∩ Γ̃t′0 = E ∩ W ′
3).

Since the flow ϕ̃t preserves E, the horizonal map ϕ̃ induced by the flow ϕ̃t in
the following diagram

W3
ϕ̃→ W ′

3

↓ σ ↓ σ′˜̃
V3

˜̃
V ′

3

maps Et0 onto Et′0 . Hence we have a homeomorphism g :
˜̃
V3 − {p}

∼=→
˜̃
V ′

3 − {p′},

where p (resp. p′) is the corresponding singular point of
˜̃
V3 (resp.

˜̃
V ′

3).

Then the homeomorphism G :
˜̃
V3 →

˜̃
V ′

3 is defined by

G(x) =
{

g(x), if x �= p,
p′, if x = p.

Note that the continuity of G thus defined can be verified by the definition.
Indeed, the inverse image of any open set U ′ � p′ under G is σ ◦ ϕ−1 ◦ σ′−1(U ′),
which is open since σ is the quotient map and E ⊂ ϕ−1 ◦ σ′−1(U ′).

Therefore, G is a continuous bijective map between compact complex algebraic
varieties and so G is a homeomorphism. �

We want to show that some Lawson homology group of
˜̃
V3 may vary when the

smooth X varies in P3.

Theorem 3.11. There exist two rational 3-dimensional projective varieties Y , Y ′

such that Y is homeomorphic to Y ′ but the Lawson homology group L1H3(Y ) is not
isomorphic to L1H3(Y ′) even up to torsion.

Proof. If X ⊂ P3 is a general smooth quartic surface, then the Picard group
Pic(X) ∼= Z by the Noether-Lefschetz Theorem. For details, see e.g. Voisin [16].
But it is well known that there are still many special smooth quartic surfaces X ′

in P3 such that X ′ ∩ (x0 = 0) is smooth and rk(Pic(X ′)) is as large as 20. Note
that by Theorem 3.1 and the Weak Lefschetz Theorem, L1H2(X) ∼= Pic(X) for any
smooth surface X in P3.

Now we choose smooth X with L1H2(X) ∼= Z and X ′ with L1H2(X ′) ∼= Z20.

Set Y :=
˜̃
V3 and Y ′ :=

˜̃
V ′

3 . Let W3 (resp. W ′
3) be as in Proposition 3.8. From the

proof of Lemma 2.1 in [8], we have the commutative diagram

· · · → L1H3(E) → L1H3(W3) → L1H3(W3 − E) → L1H2(E) → · · ·
↓ ↓ ↓∼= ↓

· · · → L1H3(q) → L1H3(Y ) → L1H3(Y − q) → L1H2(q) → · · ·

By Lemma 3.7, we know that E ∼= X. By Theorem 3.1, we have L1H3(X) ∼=
H3(X). By the Lefschetz Hyperplane Theorem, we know that X is simply con-
nected. Since q is a point, we have L1H3(Y ) ∼= L1H3(Y − q) ∼= L1H3(W3 −E) and
L1H2(Y ) ∼= L1H2(Y − q) ∼= L1H2(W3 − E).
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The top row of the above commutative diagram turns into the long exact se-
quence

0→L1H3(W3)→L1H3(Y )→L1H2(X) → L1H2(W3) → L1H2(Y ) → 0.

Therefore, we have

(3.3) rkL1H3(W3) − rkL1H3(Y ) + rkL1H2(X) − rkL1H2(W3) + rkL1H2(Y ) = 0.

Since W3 is a smooth rational threefold, we have L1H3(W3) ∼= H3(W3) and
L1H2(W3) ∼= H2(W3) (cf. Prop. 6.16 in [7]). By Proposition 3.8 we have Hi(W3) ∼=
Hi(W ′

3) for all i. Hence from Equation (3.3), we get the following formula for
rkL1H3(Y ):

(3.4) rkL1H3(Y ) = rkH3(W3) + rkL1H2(X) − rkH2(W3) + rkL1H2(Y ).

By applying Theorem 2.5 to (Ṽ3, D1), we get

· · · → L1H2(D1) → L1H2(Ṽ3) → L1H2(Ṽ3 − D1) → 0.

Hence
rkL1H2(Ṽ3) ≤ rkL1H2(D1) + rkL1H2(Ṽ3 − D1)

= rkL1H2(D1) + rkL1H2(V3 − q)
= rkL1H2(D1) + rkL1H2(V3)
≤ rkL1H2(D1) + 1 (Lemma 3.4).

Similarly,

rkL1H2(
˜̃
V3) ≤ rkL1H2(D2) + rkL1H2(Ṽ3).

Therefore,

rkL1H2(
˜̃
V3) ≤ rkL1H2(D2) + rkL1H2(D1) + 1.

Since D1 (also D2) is isomorphic to a P1 ∪ P1-bundle over a smooth curve C, it
is easy to compute, by using Theorem 2.5 and the Projective Bundle Theorem [6],
that

rkL1H2(D1) ≤ rkL1H2(C) + 2 · rkL0H0(C) = 1 + 2 × 1 = 3.

Therefore

rkL1H2(
˜̃
V3) ≤ 3 + 3 + 1 = 7.

The same computation applies to
˜̃
V ′

3 , and we get

rkL1H2(
˜̃
V ′

3) ≤ 3 + 3 + 1 = 7.

From this together with Equation (3.4), we have

rkL1H3(
˜̃
V3) ≤ rkH3(W3) + rkL1H2(X) − rkH2(W3) + 7

= rkH3(W3) − rkH2(W3) + 8 (since L1H2(X) ∼= Z).

On the other hand, we have

rkL1H3(
˜̃
V ′

3) ≥ rkH3(W ′
3) + rkL1H2(X ′) − rkH2(W ′

3)
= rkH3(W3) + rkL1H2(X ′) − rkH2(W3)
= rkH3(W3) − rkH2(W3) + 20 (since L1H2(X ′) ∼= Z20).

This shows that L1H3(
˜̃
V3) is not isomorphic to L1H3(

˜̃
V ′

3). �
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3.2. Application to the case n = 3. With this construction, if we choose n = 3
and X ⊂ P4 to be a general hypersurface of degree d = 5, then V3 = X − X ∩ P3

and S := X ∩ P3 is a smooth surface in P3.

The proof of Theorem 1.1: By applying Theorem 2.5 to the pair (X, S), we get

· · · → L1H3(V3) → L1H2(S) → L1H2(X) → L1H2(V3) → 0.(3.5)

The above long exact sequence (3.5) remains exact after being tensored with Q.
Note that L1H2(X)⊗Q ⊃ Griff1(X)⊗Q is an infinite dimensional Q-vector space
by [2]. Recall that L1H2(S) is finitely generated since dimS = 2 by Theorem 2.5.
Hence L1H2(V3)⊗Q is an infinite dimensional Q-vector space. By Proposition 2.7,
we have L1H3(V4) ⊗ Q ∼= L1H2(V3) ⊗ Q is an infinite dimensional Q-vector space.

Note that Z3 = V4 − V4 is defined by (x5 · f(0, x1, ..., x4) = 0, x0 = 0) in P5. Let
S′ = (x5 = 0) ∩ (f(0, x1, ..., x4) = 0) in the hyperplane (x0 = 0) ⊂ P5. It is easy to
see that S′ ∼= S. Then Z3 = P3 ∪ Σp(S), where Σp(S) means the join of S and the
point p = [0 : · · · : 0 : 1]. By applying Theorem 2.5 to the pair (Z3, ΣS), we get

(3.6) · · · → L1H3(Z3 − ΣS) → L1H2(ΣS) → L1H2(Z3) → L1H2(Z3 − ΣS) → 0.

Note that Z3 − ΣS ∼= P3 − S. Therefore L1H2(Z3) ⊗ Q is finite dimensional
since both L1H2(ΣS) ⊗ Q ∼= L0H0(S, Q) ∼= Q ([11]) and L1H2(P3 − S) ⊗ Q are.
By the same type of argument, we have L1H3(Z3) ⊗ Q is finite dimensional since
both L1H3(ΣS) ⊗ Q ∼= L0H1(S, Q) = 0 (note that S is simply connected) and
L1H3(P3 − S) ⊗ Q are.

By applying Theorem 2.5 to the pair (V4, Z3), we have the following long exact
sequence:

(3.7) · · · → L1H3(Z3) → L1H3(V4) → L1H3(V4) → L1H2(Z3) → · · · .

From (3.7), the infinite dimensionality of L1H3(V3) ⊗ Q, and the finite dimen-
sionality of L1H2(Z3) ⊗ Q and L1H3(Z3) ⊗ Q, we obtain that L1H3(V4) ⊗ Q is an
infinitely dimensional Q-vector space. This completes the proof of Theorem 1.1. �

We can continue the procedure. Set V5 := C5−V4. Then V5 can be viewed as an
affine variety in C6 defined by x6 ·(x5 ·f(1, x1, · · · , x4)−1)−1 = 0. Set Z4 = V5−V5,
and so on. It can be shown in the same way that L1H3(Z4) is finitely generated
by using Theorem 2.5 and Lawson’s Complex Suspension Theorem. Note that
L1H4(V5) ∼= L1H3(V4) by Proposition 2.7 and so L1H4(V5) is infinitely generated
since L1H3(V4) is.

By applying Theorem 2.5 to the pair (V5, Z4), we get the long exact sequence

(3.8) · · · → L1H4(Z4) → L1H4(V5) → L1H4(V5) → L1H3(Z4) → · · · .

Since L1H3(Z4) is finitely generated, we obtain that L1H4(V5) is infinitely gen-
erated by Equation (3.8).

Proposition 3.12. In this construction, L1Hk(Vk+1) is not finitely generated for
k ≥ 3.

By the Complex Suspension Theorem [11], Lp+1H2p+k(ΣpVk+1) ∼= L1Hk(Vk+1).
Therefore we get:

Theorem 3.13. For integers p and k, with k > 0, p > 0, we can find a rational
projective variety Y such that LpH2p+k(Y ) is infinitely generated.
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Remark 3.14. If k = 0 and p > 0, there also exist projective varieties Y such that
LpH2p(Y ) is infinitely generated. This follows from the Projective Bundle Theorem
[6] and a result of Clemens [2].

Remark 3.15. All the Y thus constructed above are singular projective varieties.
Can one find some smooth projective variety such that the answer to the question
(Q) is positive? Yes, we can. By using a completely different method, the author
has constructed examples of smooth projective varieties such that (Q) is true (cf.
[9]).

Remark 3.16. Note that all Vk+1 are singular rational projective varieties. For
smooth rational projective varieties Y , L1H∗(Y ) ⊗ Q are finite dimensional Q-
vector spaces ([14]). The author showed that L1H∗(Y ) are finitely generated abelian
groups [8].

4. Appendix

Let f(x0, · · · , x4) be a general homogeneous polynomial of degree 5, and let X be
a hypersurface of degree 6 in P5 given by F (x0, · · · , x5) := x5f(x0, · · · , x4)−x6

0 = 0.
It is easy to see from the proof of Lemma 3.5 that the singular point set of X is the
union of a smooth 2-dimensional variety Y given by x0 = x5 = f(x0, x1, · · · , x4) = 0
and an isolated point q defined by {x0 = f = ∂f

∂x0
= ∂f

∂x1
= ∂f

∂x2
= · · · = ∂f

∂x5
= 0}.

It can be calculated that q = [0 : · · · 0 : 1]. The two dimensional singularity Y of
X is a singularity of A5-type. Recall that a point O ∈ V ⊂ C3 is a singularity of
An-type on V if locally V is defined by xy − zn+1 = 0 and O = (0, 0, 0) ∈ C3. The
reader is referred to [4] for the resolution of singularities of An-type.

Let σ : P̃5
Y → P5 be the blowup of P5 along the surface Y and X̃Y be the proper

transform in the blowup P̃5
Y . Denote by E = P(NY/P5) the exceptional divisor of

the blowup. Then D = E∩X̃Y ⊂ P(NY/P5) corresponds to the image of the tangent
cones TpX ⊂ Tp(P5) in P(NY/P5) at points p ∈ Y .

Now

TpX =
{ ∑

i0+···i5=2

∂2F

∂xi0
0 · · · ∂xi5

5

xi0
0 · · ·xi5

5 = 0
}

,

a degree 2 polynomial in P5. Direct computation shows that

TpX =
{

∂f

∂x0
(p)x0x5 + · · · + ∂f

∂x4
(p)x4x5) = 0

}

= (x5 = 0) ∪
{

∂f

∂x0
(p)x0 + · · · + ∂f

∂x4
(p)x4) = 0

}
.

Hence D = X̃Y ∩ E is a fiber bundle over Y with singular conics as fibers.
Clearly, X̃Y is smooth away from D and q̃, where q̃ = σ−1(q). Since D ⊂ E is a
3-dimensional variety with singular point set Sing(D) ∼= Y , we can show that the
singularity of X̃Y is Y ∪ {q̃}:

Proposition 4.1. The proper transform X̃Y is a 4-dimensional variety in P(NY/P5)
with singularity S ∼= Y ∪ {q̃}, where q̃ is an isolated singular point and Y is the
singularity of A3-type.
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Proof. From the proof of Lemma 3.5, we see that the singular points S of X consist
of two components. One is a smooth surface and the other is an isolated point q.

Since f is nonsingular on Y = {x0 = f(0, x1, · · · , x4) = 0}, we have df �= 0 on
Y . Let us restrict ourselves to a neighborhood of a point p in Y . There, we can
take the neighborhood of p as the affine space C5 with p the origin. Hence we can
choose y = f as a coordinate in the neighborhood of each point on Y since it is
smooth. Locally, Y is defined by x0 = x5 = y = 0 in C5. We denote it by Y0. For
convenience, we denote by x = x0 and z = x5 the other two normal coordinates to
Y0. The blowup (̃C5)Y0 of C5 along Y0 is defined by the system of equations⎧⎨

⎩
xv = uy,
xw = uz,
yw = zv

in C5×P2, where [u : v : w] is the homogeneous coordinate on P2. Let σ : (̃C5)Y0 →
C5 be the map of this blowup. Then the inverse image of X is given by the following
equations:

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

x6 − yz = 0,
xv = uy,
xw = uz,
yw = zv.

The above equations define two divisors on (̃C5)Y0 . One of them is the excep-
tional divisor E0, the intersection of E with (̃C5)Y0 and the other is exactly the
proper transform X̃Y0 of X0 in (̃C5)Y0 , where X0 is the part of X in C5.

We want to show that X̃Y0 is smooth away from Y0. Now it is clear. The blowup
(̃C5)Y0 is covered by 3 open charts: (u �= 0), (v �= 0) and (w �= 0).

On the chart (u �= 0), we can set u = 1. The equations for the inverse image of
X0 under σ are given by ⎧⎪⎪⎨

⎪⎪⎩
x6 − yz = 0,
xv = y,
xw = z,
yw = zv.

The equations xv = y and xw = z imply yw = zv. Replacing y and z by xv and
xw, respectively, we can factor x2 in the first equation x6 − (xv)(xw) = 0. Hence
the proper transform X̃Y0 is given by⎧⎨

⎩
x4 − vw = 0,
xv = y,
xw = z,

and the exceptional divisor for X̃Y0 → X0 is given by⎧⎪⎪⎨
⎪⎪⎩

x2 = 0,
x4 − vw = 0,
xv = y,
xw = z;

i.e., x = y = z = v = 0 or x = y = z = w = 0. Each component is a holomorphic
line over (x = y = z = v = w = 0) ∼= Y0.
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From the definition, the singularity of X̃Y0 is given by equations x4 − vw =
0, y − xv = 0, z − xw = 0 and

rank
(

∂(x4 − vw, y − xv, z − xw)
∂(x, y, z, v, w)

)
≤ 2,

which is x = y = z = v = w = 0; i.e., it is isomorphic to Y0.
A similar calculation works for the charts (v �= 0) and (w �= 0), and the proper

transform X̃Y0 is smooth everywhere. This completes the proof of the proposition.
�

Denote by Ỹ the 2-dimensional singularity of X̃Y . Let σ̃ :
˜̃
P5

Y → P̃5
Y be the

blowup of P̃5
Y along Ỹ . Let ˜̃

XY be the proper transformation of X̃Y under σ̃. Set
˜̃q = σ̃−1(q̃).

Proposition 4.2. The singularity of the proper transform ˜̃
XY is isomorphic to

Y ∪ {˜̃q}, where ˜̃q is an isolated singular point and the 2-dimensional singularity is
of A1-type.

Proof. One blowup at the singularity reduces the singularity of An-type to An−2-
type (cf. [4]). A detailed computation from A5-type to A3-type has been given in
Proposition 4.1. �

Remark 4.3. The 2-dimensional singularity of X can be resolved by blowing up
one more time. In general, an An-type singularity can be resolved by blowing up
[n+1

2 ] times (cf. [4]). The 1-dimensional singularity in the example we used in
subsection 3.1 is of A4-type, as stated in Remark 3.6, so it can be resolved by two
blowups. The isolated singularity q can be resolved by one blowup, as we have done
in Lemma 3.7.
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