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REGULARITY INDEX OF HILBERT FUNCTIONS
OF POWERS OF IDEALS

TRAN NAM TRUNG

(Communicated by Bernd Ulrich)

Abstract. Let I be a homogeneous ideal of a Noetherian standard graded
algebra A over an Artinian ring A0, and let M be a finitely generated graded
A-module. It is shown that the regularity index of the Hilbert function of InM
is a linear function of n for all n large enough.

1. Introduction

Throughout this paper we assume that A is a Noetherian standard graded algebra
over an Artinian ring A0. For a finitely generated graded A-module M , HM (m) :=
�A0(Mm), m ∈ Z, is called the Hilbert function of M . It is well-known that
there is a polynomial PM (x) ∈ Q[x] called the Hilbert polynomial of M such that
HM (m) = PM (m) for all m large enough. The regularity index of the Hilbert
function of M is defined by

ri(M) := min{m0 | HM (m) = PM (m) ∀m � m0}.
Let I be a homogeneous ideal of A. In this paper, we are interested in the following
problem posed in [3]: is ri(InM) a linear function of n for all n � 0? This prob-
lem comes from the asymptotic behaviour of the so-called Castelnuovo-Mumford
regularity reg(InM). It was first shown in [2] and [4] for the case M = A being a
polynomial ring over a field, and then in [6] for the general case that reg(InM) is a
linear function of n for all n � 0. Since the regularity index ri(InM) is less than
or equal to the Castelnuovo-Mumford regularity reg(InM) + 1, it is bounded by a
linear function of n.

L. T. Hoa and E. Hyry showed that ri(In) is a linear function of n for all
n � 0 if I is a polynomial ideal generated in one or two degrees (see [3, Lemma
5 and Theorem 3]). The coefficient of this function is a generating degree of I.
Their method is based on a bigraded free resolution of the Rees algebra R(I) of
I. To deal with the general case, they used the Hilbert-Poincaré series of R(I) to
translate the above problem to a purely combinatorial problem in polynomials of
one variable (see [3]). Our method here is somewhat different from the suggestion
by Hoa and Hyry. We also translate the above problem to a combinatorial problem.
In general, instead of studying polynomials of one variable separately as in [3], we
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study them together in an interaction with a formal power series in two variables
(see Theorem 1). By this method, we can prove the following main result.

Main Theorem. Let I be a homogeneous ideal of a standard graded algebra A over
an Artinian ring A0, and let M be a Z-graded A-module. Assume that InM �= 0
for all n � 1. Then the regularity index ri(InM) is a linear function of n for
all n large enough. The leading coefficient of this function is one of the generating
degrees of I.

2. A combinatorial result

In the paper we make the following convention: The degree of the zero polynomial
is −1.

Theorem 1. Given a sequence of polynomials P0(x), P1(x), P2(x), . . . ∈ Q[x], as-
sume that there are a polynomial P (x, y) ∈ Q[x, y] and non-negative integers
ν1, . . . , νp, n1, . . . , np such that

∞∑
n=0

Pn(x)yn =
P (x, y)

(1 − yxν1)n1 · · · (1 − yxνp)np
.

Then deg Pn(x) is a linear function of n for all n � 0. Moreover, if P (x, y) is not
divisible by (1−yxν1)n1 · · · (1−yxνp)np , then the leading coefficient of this function
is one of the numbers ν1, . . . , νp.

Proof. We may assume that ν1 < ν2 < · · · < νp and ni � 1 for all i = 1, . . . , p. For
each i = 1, . . . , p, let

Qx,i :=
∏
j �=i

(1 − yxνj )nj .

In the polynomial ring Q(x)[y] of the variable y over the field Q(x), each polynomial
1 − yxνi is irreducible and any two polynomials 1− yxνi and 1 − yxνj are coprime
for i �= j. Therefore, the polynomials Qx,1(y), Qx,2(y), . . . , Qx,p(y) are coprime
and we can find p polynomials Ax,1(y), Ax,2(y), . . . , Ax,p(y) ∈ Q(x)[y] such that

Ax,1(y)Qx,1(y) + Ax,2(y)Qx,2(y) + · · · + Ax,p(y)Qx,p(y) = 1.

This implies

1
(1 − yxν1)n1 · · · (1 − yνp)np

=
p∑

i=1

Ax,i(y)
(1 − yxνi)ni

and

(1)
∞∑

n=0

Pn(x)yn =
P (x, y)

(1 − yxνi)ni · · · (1 − yxνp)np
=

p∑
i=1

P (x, y)Ax,i(y)
(1 − yxνi)ni

.

Let P (x, y)Ax,i(y) = ai0(x)+ai1(x)y+· · ·+aimi
(x)ymi , where ai0(x), . . . , aimi

(x) ∈
Q(x). Fix 1 � i � p. Since

1
(1 − yxνi)ni

=
∞∑

m=0

(
m + ni − 1

ni − 1

)
xmνiym,
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we have

P (x, y)Ax,i(y)
(1 − yxνi)ni

=
∞∑

n=0

⎡
⎣ mi∑

j=0

(
n − j + ni − 1

ni − 1

)
aij(x)x(n−j)νi

⎤
⎦ yn

=
∞∑

n=0

⎡
⎣ mi∑

j=0

(
n − j + ni − 1

ni − 1

)
aij(x)x−jνi

⎤
⎦xnνiyn

=
∞∑

n=0

Ri(x, n)xnνiyn,

where

(2) Ri(x, n) =
mi∑
j=0

(
n − j + ni − 1

ni − 1

)
aij(x)x−jνi .

Hence, by (1), we get
∞∑

n=0

Pn(x)yn =
∞∑

n=0

[
p∑

i=0

Ri(x, n)xnνi

]
yn.

This gives

(3) Pn(x) =
p∑

i=0

Ri(x, n)xnνi .

Let n0 = max{m1, . . . , mp}. For all n � n0, the right side of (2) is the value
of a polynomial Rx,i(y) ∈ Q(x)[y]. This means that Ri(x, n) = Rx,i(n) for all
n � n0. Choose p polynomials Q1(x, y), . . . , Qp(x, y) ∈ Q[x, y] and a polynomial
D(x) ∈ Q[x] with D(x) �= 0 such that

Rx,i(y) =
Qi(x, y)
D(x)

for all i = 1, . . . , p.

By (3), we then get

(4) D(x)Pn(x) =
p∑

i=1

Qi(x, n)xnνi for all n � n0.

There are two cases:

Case 1. Q1(x, y) = · · · = Qp(x, y) = 0. Then Pn(x) = 0 for all n � n0 and
deg Pn(x) = −1 for all n � n0. This case is equivalent to the condition that P (x, y)
is divisible by (1 − yxν1)n1 · · · (1 − yxνp)np .

Case 2. Not all Q1(x, y), . . . , Qp(x, y) are zero. Assume Qt(x, y) �= 0 for some
t = 1, . . . , p. Let

Qt(x, y) = c0(y) + c1(y)x + · · · + cdt
(y)xdt ,

where dt = degx(Qt(x, y)) � 0 and c0(y), c1(y), . . . , cdt
(y) ∈ Q[y] with cdt

(y) �= 0.
Since cdt

(y) �= 0, there is λt such that cdt
(n) �= 0 for all n � λt. Therefore

(5) deg(Qt(x, n)xnνt) = nνt + dt for all n � λt.
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Let k = max{i | Qi(x, y) �= 0}. If Qt(x, y) �= 0 and t �= k, then t < k. Since νt < νk,
by (5) we get

(6) deg(Qt(x)xνtn) < deg(Qk(x)xνkn) for all n > max{dt − dk + 1, λt, λk}.

Let N = max{n0, dt − dk + 1, λt, λk | 1 � t � p and Qt(x, y) �= 0}. By (4) and (6)
we then obtain

deg(D(x)Pn(x)) = deg(Qk(x, n)xνkn) for all n > N.

Hence deg Pn(x) = νkn + dk − deg D(x) for all n > N .

�

3. Proof of the main theorem

In order to apply the result of the previous section we first recall a relationship be-
tween the Hilbert-Poincaré series and the regularity index. Let A = A0[θ1, . . . , θr],
deg(θi) = 1 for all i = 1, . . . , r. Let M be a Z-graded A-module. For an integer
j, M(j) denotes the Z-graded A-module with the grading given by M(j)a = Ma+j

for all a ∈ Z. It is obvious that ri(InM(j)) = ri(InM) − j for all n � 0. Shifting
M by a suitable integer j, we may assume that M is positively graded, i.e., Ma = 0
for all a < 0. It is obvious that all modules InM are also positively graded. Then,
by the Hilbert-Serre theorem, the Hilbert-Poincaré series of M can be written as

(7) HPM (x) :=
∞∑

a=0

�A0(Ma)xa =
P (x)

(1 − x)r
, for some P (x) ∈ Z[x].

If M �= 0, we have deg P (x) � 0.

Lemma 2. If M �= 0, then ri(M) = deg P (x) − r + 1.

Proof. See [1, Proposition 4.1.12] or [5, Theorem 1.1 and Proposition 1.2]. �

Now we can prove the main theorem as follows. In order to study the behaviour
of ri(InM) we use a bigraded structure on the Rees algebra R(I) =

⊕
n�0 In de-

fined by R(I)(a,n) = [In]a. The Rees module R(I, M) =
⊕

n�0 InM is a finitely
generated bigraded R(I)-module with R(I, M)(a,n) = [InM ]a. Assume that I
is generated by homogeneous polynomials f1, . . . , fs with d1 := deg f1, d2 :=
deg f2, . . . , ds := deg fs. Then R(I) = A0[θ1, . . . , θr, f1t, . . . , fst] is a finitely gen-
erated bigraded algebra over the Artinian ring A0 with deg θi = (1, 0), for all
i = 1, . . . , r and deg fjt = (dj , 1) for all j = 1, . . . , s. Since M is a positively
graded A-module, the Rees module R(I, M) is a positively bigraded R(I)-module,
i.e., R(I, M)(a,n) = 0 for all a < 0 or n < 0. The multi-graded version of the
Hilbert-Serre theorem (see [5, Theorem 2.3]) says that the Hilbert-Poincaré series
of the R(I)-module R(I, M) can be written as

HPR(I,M)(x, y) :=
∑

a,n�0

�A0(R(I, M)(a,n))xayn =
∑

a,n�0

�A0([I
nM ]a)xayn

=
P (x, y)

(1 − x)r(1 − yxd1) · · · (1 − yxds)
,(8)
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where P (x, y) ∈ Z[x, y]. For each n � 0, by (7), there is a polynomial Pn(x) ∈ Z[x]
such that

(9) HPInM (x) =
∞∑

a=0

�A0([I
nM ]a)xa =

Pn(x)
(1 − x)r

.

Together with (8), we then have the identity

(10)
∞∑

n=0

Pn(x)yn =
P (x, y)

(1 − yxd1) · · · (1 − yxds)
.

Note that P (x, y) is divisible by (1 − yxd1) · · · (1 − yxds) in the ring Q[x, y] if and
only if Pn(x) = 0 for all n � 0. But then InM = 0 for all n � 0. Hence
by the assumption, P (x, y) is not divisible by (1 − yxd1) · · · (1 − yxds). By (10)
and Theorem 1, deg Pn(x) is a linear function of n for all n � 0. The leading
coefficient of this function is di for some i ∈ {1, . . . , s}. By (9) and Lemma 2,
ri(InM) = deg Pn(x) − r + 1. Hence ri(InM) is a linear function of n with the
leading coefficient di for all n � 0. �

The following consequence answers the question posed in [3] on the asymptotic
behaviour of the function ri(In) for a homogeneous ideal I in a polynomial ring.

Corollary 3. Let A = K[X1, . . . , Xr] be a polynomial ring over a field K and I a
non-zero proper homogeneous ideal of A. Let f1, . . . , fs be a minimal homogeneous
basis of I and di = deg fi for all i = 1, . . . , s. Then we have

a) ri(In) is a linear function of n for all n � 0.
b) ri(In) is a linear function of n for all n � 0, where In is the integral closure

of In.
In each case, the leading coefficient of the corresponding linear function is one

of the numbers d1, . . . , ds.

Proof. The statement (a) is the main theorem in the case M = A. The statement
(b) follows from the fact that In = In−n0In0 for some n0 � 0 and all n � n0. �
Remark. Let A = K[x1, . . . , xr] be a polynomial ring over a field K. Let M be
a finitely generated graded R-module. Assume that M has a minimal graded free
resolution:

0 −→ Fp −→ · · · −→ F1 −→ F0 −→ M −→ 0.

Let bi(M) denote the maximal degree of the generators of Fi. The Castelnuovo-
Mumford regularity of M is defined by

reg(M) = max{bi(M) − i | i = 0, . . . , p}.
If I is a non-zero proper homogeneous ideal of A, then reg(In) = p(I)n + b for
all n � 0, where p(I) is a certain well-defined generating degree of I (see [2] and
[4]) and b ∈ N. Let ri(In) = d(I)n + c for all n � 0. Since ri(In) � reg(In), we
always have d(I) � p(I). Of course, the equality occurs if the ideal I is generated
by elements of the same degree. In general, d(I) may be arbitrarily less than p(I).

Example ([3, Example 6]). Let r, s � 1, and

I = (x1x3, x2x3, x1x2x4)r(x2
5, x5x

2
6)

s ⊂ A = K[x1, x2, x3, x4, x5, x6].

This ideal is generated in r + s + 1 degrees: 2(r + s), . . . , 2(r + s) + s, . . . , 3(r + s).
One can show that ri(In) = (2r + 3s)n − 1 for all n � 1, while there is b ∈ N such
that reg(In) = 3(r + s)n + b for all n � 0.
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