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SUBANALYTIC BLOW-Cm FUNCTIONS

ANDREAS FISCHER AND KRZYSZTOF KURDYKA

(Communicated by Varghese Mathai)

Abstract. We describe rings of subanalytic functions which become continu-
ously differentiable after finitely many local blowings-up with analytic centers.

1. Introduction

An arc-analytic function is a function that is analytic along every analytic arc.
Arc-analytic functions were introduced in [13] and have been successfully studied
in various papers under the additional hypothesis that they are semialgebraic or
subanalytic; see for example [2, 5, 14, 15]. For instance every blow-analytic function
in the sense of Kuo [11] is subanalytic and arc-analytic. Also a weak version of the
inverse is true [2, 17]: every subanalytic and arc-analytic function becomes analytic
after composition with some finite sequences of local blowings-up with smooth
analytic centers. In general an arc-analytic function is not analytic. However, if we
assume that a function is C∞ along each C∞ arc, then this function is actually of
the class C∞; this is due to J. Boman [4].

Let m > 0 be an integer. In the present paper we investigate subanalytic func-
tions which become m times continuously differentiable after composition with a
finite sequence of local blowings-up. In analogy to Kuo’s notation, we call such a
function a blow-Cm function. For an introduction of the notion and major prop-
erties of blowings-up in the subanalytic setting, see [1]. A general introduction to
semialgebraic and subanalytic geometry is provided by [18].

Throughout the paper, every manifold is assumed to be of pure dimension, Haus-
dorff and equipped with a countable basis for its topology. We consider continuously
differentiable versions of the concept of arc-analyticity. There are three versions we
will discuss: Let M be a real analytic manifold. A function f : M → R is called

(a) a Cm
ω function if f is Cm-smooth along all analytic arcs,

(b) a Cm
m,sub function if f is Cm-smooth along all subanalytic Cm arcs,

(c) a Cm
m function if f is Cm-smooth along all Cm arcs.

Every Cm
m function is Cm

m,sub-smooth, and every Cm
m,sub function is Cm

ω -smooth. We
will show that these inclusions are proper even in the subanalytic category. In
general, a Cm

ω function is not necessarily continuous; see the example of [3]. But
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subanalytic Cm
ω functions are continuous. This enables us to study them with the

help of Parusinski’s Rectilinearization Theorem. As an application of this theorem,
we prove the following theorem.

Theorem 1.1. Let M be a real analytic manifold, and let f : M → R be a suban-
alytic Cm

ω function. Then f is blow-Cm.

A Cm-singular point of a function f is a point at which f is not Cm-smooth. The
centers of a blowing-up are always analytic manifolds whose dimension is bounded
by dim(M)− 2. By [19] (see also [2, 12]), the set of Cm-singular points of a suban-
alytic function is again subanalytic. Hence, we obtain the following statement.

Theorem 1.2. Let M be a real analytic manifold, and let f : M → R be a sub-
analytic arc-Cm function. Then the set S of Cm-singular points of f is subanalytic
and satisfies

dim(S) ≤ dim(M) − 2.

In Section 2, we briefly recall Parusiński’s Rectilinearization Theorem and some
facts about subanalytic Peano differentiable functions which we need to investigate
the examples presented in Section 3. In Section 4 we prove Theorem 1.1.

2. Basics

We will use Parusiński’s Rectilinearization Theorem; cf. [17, Theorem 2.7].

Theorem 2.1 (Parusiński). Let U be an open subset of R
n and let f : U → R be

a continuous subanalytic function. Then there exist a locally finite collection Ψ of
real analytic morphisms φα : Wα → R

n such that
(a) each Wα contains a compact subset Kα such that

⋃
α φα(Kα) is a neigh-

bourhood of cl(U);
(b) for each α there exist ri ∈ N, i = 1, . . . , n, such that φα = σα ◦ ψα, where

σα is the composition of a finite sequence of local blowings-up with analytic
center and

ψα(x) = (ε1x
r1
1 , . . . , εnxrn

n )
for some εi = ±1;

(c) for any choice of signs ε = (ε1, . . . , εn) ∈ {1,−1}n and ψα as in Theo-
rem 2.1 (b), the composition f ◦ σα ◦ ψα is analytic.

We will give examples to distinguish the notions of differentiability along curves.
This requires the concept of Peano differentiable functions.

Definition 2.2. Let U ⊂ R
n be open. A function f : U → R is called m times

Peano differentiable, in short f ∈ Pm(U, R), if for every u ∈ U there is a polynomial
p such that

f(x) − f(u) = p(x − u) + o(‖x − u‖m) as x → u.

By Taylor’s Theorem, every Cm function is m times Peano differentiable. The
sets of Cm-singular points of Pm functions have been studied in [9] (see also [7]) for
the o-minimal context. Every continuous subanalytic function is locally definable
in the o-minimal structure Ran consisting of all globally subanalytic sets; cf. [6,
page 506]. A subanalytic set A ⊂ R

n is called globally subanalytic if τn(A) is
subanalytic where

τn(x) =

(
x1√

1 + x2
1

, . . . ,
xn√

1 + x2
n

)
;
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see for example [6, page 506]. The theorems in [9] are stated for o-minimal expan-
sions of real closed fields. However, for the subanalytic category the result of our
interest (cf. [9, Theorem 1.1]) reads as follows:

Theorem 2.3. Let U ⊂ R
n be open, and let f : U → R be a subanalytic Pm

function. Then the set S of Cm-singular points is subanalytic and

dim(S) ≤ n − 2.

In particular unary subanalytic Pm functions are Cm-smooth. Note that every
subanalytic Pm function is actually Cm

ω . Hence from Theorem 1.1 follows:

Corollary 2.4. Every subanalytic Pm function is blow-Cm.

3. Examples

Next we discuss the announced examples.

Example 3.1. Let ϕ : R → R be a semialgebraic Cm function that vanishes outside
of (0, 2) and for which ϕ(1) = 1. Let

A :=
{

(x, y) ∈ R
2 : x > 0, xm+1/2 < y < 3xm+1/2

}
.

Let f : R
2 → R be the function

f(x, y) =

{
xm/2+1/8ϕ

( y

xm+1/2
− 1

)
, if (x, y) ∈ A,

0, otherwise.

Then f is a semialgebraic Cm
ω function that is not Cm

m,sub-smooth.

Proof. First we prove that f is Cm
ω -smooth.

Outside of (0, 0) the function f is Cm-smooth. It remains to study the origin.
Let

φ = (φ1, φ2) : (−1, 1) → R
2

be an analytic curve with φ(0) = (0, 0).
Assume that φ′

1(0) = 0, and that φ1(t) > 0 for t > 0 small enough. Then

φ1(t) is O
(
t2

)
as t → 0

so that
f ◦ φ(t) is O

(
tm+1/4

)
as t → 0.

Hence f ◦ φ is m times Peano differentiable at t = 0. Note that f ◦ φ(t) restricted
to (−1/2, 1/2) is Ran-definable. Thus f ◦ φ is Cm-smooth in some pointed neigh-
bourhood of 0. By Theorem 2.3, the function f ◦ φ is Cm-smooth.

If φ′
1(0) �= 0, then we claim that f ◦φ is locally zero at 0. Again we may assume

that φ1(t) > 0 for t > 0 sufficiently small. If φ′
2(0) > 0, then the germ of φ at

0+ lies above A, and if φ′
2(0) ≤ 0, then the germ lies below A. In both cases, the

function f ◦ φ(t) = 0 for t sufficiently close to 0.
Hence f is a Cm

ω function.
To see that f is not a Cm

m,sub function we show that f is not Cm-smooth along
the semialgebraic Cm curve φ : (−1, 1) → R

2 given by

φ(t) :=

{(
t, 2tm+1/2

)
, if t > 0,

(t, 0), if t ≤ 0.
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The composition f ◦ φ(t) = 0 for t ≤ 0. But for t > 0,

f ◦ φ(t) = tm/2+1/8,

which cannot be extended to 0 as a Cm function. �
Remark 3.1. By the previous example we see that the class of subanalytic Cm

ω

functions is not closed under compositions. The classes of subanalytic Cm
m and

Cm
m,sub functions are closed under compositions.

Example 3.3. Let the semialgebraic function f : R
2 → R be defined by

f(x, y) :=

⎧⎨
⎩ym+1ϕ

(
x

y2m2 − 2
)

, y > 0,

0, y ≤ 0,

where ϕ : R → R is defined by

ϕ(t) :=

{
t
(
1 − t2

)m+1
, if t ∈ (−1, 1),

0, otherwise.

Then f is m times Peano differentiable. Thus f is Cm
m,sub-smooth. But f is not a

Cm
m function.

Proof. The function f is Cm-smooth outside of the origin. The function ϕ is
bounded, so that

f(x, y) is o (‖(x, y)‖m) as (x, y) → (0, 0).

Hence f is m times Peano differentiable, so f is Cm
m,sub-smooth.

Next we present a Cm curve along which f is not even C1-smooth. Let φ :
(−1, 1) → R

2 be the curve given by

φ(t) :=
(
2t2m2

+ t2m2+1 sin
(
t−m−1/2

)
, t

)
.

It is straightforward to verify that φ is a Cm curve. We note the first derivative of
the first component of φ for t > 0:

(3.1) φ′
1(t) = 2m2t2m2−1

(
1 + sin

(
t−m− 1

2

))
−

(
m +

1
2

)
t2m2−m− 1

2 cos
(
t−m− 1

2

)
.

The partial derivative of f with respect to y is continuous. Hence it suffices to
study ∂f/∂x. For y > 0,

(3.2)
∂f

∂x
(x, y) = y−2m2+mϕ′

(
xy−2m2 − 2

)
.

Note that ϕ′(0) = 1. Hence, combining the equations (3.1) and (3.2) we can write
(f ◦ φ)′(t) for positive t as follows:

(f ◦ φ)′(t) =
∂f

∂y
(φ(t))φ′

2(t) +
∂f

∂x
(φ(t))φ′

1(t)

=
∂f

∂y
(φ(t)) + ϕ′

(
t sin

(
t−m− 1

2

))
2m2tm−1

(
1 + sin

(
t−m− 1

2

))

+ ϕ′
(
t sin

(
t−m− 1

2

)) (
−

(
m +

1
2

)
t−

1
2 cos

(
t−m− 1

2

))
.

The first two summands are bounded, while the third summand is not locally
bounded at t = 0. Thus f ◦ φ(t) is not continuously differentiable at t = 0. �
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4. Proof of the main theorem

We prepare the proof of Theorem 1.1 by the following observation. Let B1(0)
denote the open unit-ball in R

n.

Lemma 4.1. Let f, g : B1(0) → R be Cm functions. Assume that the function
f : B1(0) → R,

F (x) :=

{
f(x), if x1 ≤ 0,

g(x), if x1 > 0,

is Cm-smooth along every line segment contained in B1(0). Then F is Cm-smooth.

Proof. We may assume that g vanishes identically. Then, it remains to prove that
for every ξ ∈ B1(0) ∩ {x1 = 0} and every α ∈ N

n with α1 + · · · + αn ≤ m,

Dαf(ξ) = 0,

because in this case, the Hestenes Lemma (cf. [10], [20]) implies that F is Cm-
smooth.

We express Dαf(ξ) as a linear combination of higher-order directional deriva-
tives. This is possible by [8, Proof of Theorem 1.4]. All directional derivatives of F
at ξ vanish, as F = 0 for x1 > 0. But f = F for x1 ≤ 0, so that every directional
derivative of f at ξ vanishes. Thus F is Cm-smooth. �

Lemma 4.2. Any subanalytic Cm
ω function f : M → R is continuous.

Proof. Assume that f is not continuous at a. Then, by the curve selection (cf. [16],
[2], [6, 1.17]), there exists an analytic map γ : (−1, 1) → M with γ(0) = a and
γ(t) �= a for t �= 0 such that limt↘0 f ◦ γ(t) �= f(a). But f ◦ γ(0) = f(a) and f ◦ γ
is at least continuous. Thus f must be continuous. �

Proof of Theorem 1.1. The problem is local, so that we may assume that M = U ⊂
R

n is a neighbourhood of the origin. Since every Cm
ω function is continuous, we can

apply Parusiński’s theorem to f and U and obtain a family {φα = σα ◦ ψα} which
satisfies the conclusion of Theorem 2.1. Let σ = σα, and fix the corresponding
ri ∈ N. Then, for each ε = (ε1, . . . , εn) ∈ {1,−1}n and ψ as defined in Theorem 2.1
(b), the function f ◦ σ ◦ ψ is analytic. Hence

f ◦ σ ◦ ψ(x) =
∑

β

aβ

n∏
i=1

xβi

i .

On the quadrant Qε = {x ∈ R
n : εixi ≥ 0 for i = 1, . . . , n} we have

f ◦ σ(x) =
∑

β

aβ

n∏
i=1

(εixi)βi/ri .

But σ is analytic; hence f ◦ σ is a Cm
ω function. Assume that there is a multi-index

γ = (γ1, . . . , γn) with
γ1

r1
+ · · · + γn

rn
< m

such that at least one of the ri does not divide γi, and aγ �= 0. Then, for generic
c = (c1, . . . , ĉi, . . . , cn) with εjcj ≥ 0 for j �= i, the function

f ◦ σ(c1, . . . , ci−1, εit, ci+1, . . . , cn)
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has the Puiseux expansion with non-zero coefficient at tγi/ri . This contradicts the
fact that f ◦ σ is Cm

ω -smooth.
Therefore, the function f ◦ σ restricted to Qε is Cm-smooth. By [21], it extends

to a Cm function Fε defined on some open neighbourhood of Qε. Thus, f ◦ σ is
the gluing of the Fε restricted to Qε. Recall that f ◦ σ is Cm

ω -smooth. Lemma 4.1
implies that f ◦ σ is Cm-smooth in the set

U \
⋃
� �=k

{x ∈ R
n : x� = xk = 0}.

The derivatives of f ◦ σ extend continuously to U , so again by [21], the function
f ◦ σ is Cm-smooth. �
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Japonaises, 155–162, Sémin. Congr., 10, Soc. Math. France, Paris, 2005. MR2145953
(2006c:32007)

16. S. �Lojasiewicz, Ensembles semi-analytiques, preprint, Inst. Hautes Études Sci. (1965), acces-
sible online: http://perso.univ-rennesl.fr/michel.coste/.
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