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PERTURBATIVE SOLUTIONS TO THE EXTENDED
CONSTANT SCALAR CURVATURE EQUATIONS
ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS
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ABSTRACT. The extended constant scalar curvature equations is a particular
case of the conformal contraint equations introduced by H. Friedrich. It was
first studied by A. Butscher in an asymptotically flat setting. We prove the
local existence of solutions to the extended constant scalar curvature equa-
tions near some asymptotically hyperbolic Einstein metrics. This gives a new
local construction of asymptotically hyperbolic metrics with constant scalar
curvature.

1. INTRODUCTION

The study of constant scalar curvature metrics plays a particulary important part
in Riemannian geometry and in general relativity. For instance in the Riemannian
point of view it gives rise to the well-known Yamabe problem when working in
a conformal class. For general relativity, constant scalar curvature Riemannian
metrics are particular solutions to the constraint equations, for instance in the time-
symmetric case, the constraint equations being constraints on the initial data for
Einstein equations (see [6] for instance). In [4], [5], A. Butscher studied a system
of equations called the “extended constraint equations”, which are equivalent to
the usual constraints. This new system has the advantage that, as in the case of
the Einstein equation for Riemannian metrics, it can naturally be modified to a
determined elliptic system by adding a gauge-breaking term.

In the asymptotically flat setting, A. Butscher proves in [4], [5] that this system
can be solved near the usual Euclidean metric.

The present note is a study of the extended constraint equations on asymptot-
ically hyperbolic (A.H.) manifolds, in the time-symmetric case, near an Einstein
metric. The problem we are studying here is then reduced to a purely Riemannian
problem of scalar curvature. It will appear that the proof is more simple in the A.H.
context due to the fact we do not have to handle a cokernel. Let us now introduce
some notation and the system we want to study. For a Riemannian metric g on a
manifold M™, let us denote by R(g) the scalar curvature of g. In the asymptotically
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hyperbolic setting, the constant scalar curvature equation is

(1.1) R(g) = —n(n—1).
The extended scalar curvature equation is

(1.2) Ric(g) + (n —1)g = S,
(1.3) divy § =0,

where, for a metric g, a symmetric two-tensor T and a one-form &,
1 o

(1.4) S=T—-—=Tr,(T)g+ LE
o

is a trace-free symmetric two-tensor and L is the conformal killing operator (see
section 2). At this stage it is important to remark that equation ([3]) is a conse-
quence of ([2) by the Bianchi identity. Taking the trace of equation ([2]) we see
that any solution g has constant scalar curvature satisfying (ILT). Reciprocally any
metric of constant scalar curvature R(g) = —n(n — 1) is a solution of () with,
for instance, £ = 0 and T = Ric(g) + (n — 1)g

We fix a smooth asymptotically hyperbolic metric gg. The weighted Holder
spaces C*< we will work with are the ones used by Lee [Q]E Cke consist of tensor
fields of the form v = p*u for u in the usual Holder space C*©, with the norm

lollgre = 1lp"vllcne,

|-||ck.« being the usual Hoélder norm relative to the metric go.
The theorem we will prove is the following.

Theorem 1.1. Let (M™, go) be a non-degenerate asymptotically hyperbolic Einstein
manifold of dimension n > 2. Let s € (0,n — 1), k € N\{0} and « € (0,1). For
all sufficiently small T € C*2, there exists (&, h) close to zero in CE+Le x Ck+2.a
such that g = go + h and & solves (L2) and ([L3) (then g solves (LI))). The map

C: Ck,a _ Ck+1,ax0k+2,oz
T - (&h)

is smooth near zero.

Here we say that the metric g is non-degenerate if the L?-kernel of Az, +2(n—1)
acting on a trace-free symmetric two-tensor field is trivial, A; being the Lichnero-
wicz Laplacian of g (see section 2]). This condition is satisfied for instance on the
hyperbolic space but also on a large class of A.H. manifolds (see [9] and Theorem 2.2
of [I]).

With the construction we use, the metric g we obtain also satisfies the harmonic
gauge; that is, the identity map from (M, g) to (M, go) is harmonic. The construc-
tion also proves that the solution g of ([2)) and ([I3) is locally unique (near gg) in
the harmonic gauge. Finally we mention that initial data in the spatial harmonic
gauge, as the ones constructed here, are of interest to some stability results [3].

LOf course, we can also take T = Ric(g), but our choice here is more natural in the A.H.
context.

2As the reference [9] will be used several times in the paper, it is important to remark that
the dimension n + 1 there corresponds to n here.



EXTENDED CONSTRAINT EQUATIONS ON AH MANIFOLDS 2295

2. DEFINITIONS, NOTATION AND CONVENTIONS

Let (M, g) be a smooth, compact n-dimensional manifold with boundary 9., M.
Let M := M\Os M, which is a non-compact manifold. We call 9, M the boundary
at infinity of M. Let g be a Riemannian metric on M. We say that (M,g) is
conformally compact if there exists a smooth defining function p on M (that is,
p€C®(M), p>00on M, p=0on d,M and dp is nowhere vanishing on d, M)
such that g = p?g is a smooth Riemannian metric on M. If |dplg = 1 on 9., M, it is
well known that g has asymptotically sectional curvature —1 (see [I0] for example)
near its boundary at infinity. In this case we say that (M,g) is asymptotically
hyperbolic.

If we assume moreover that g has constant scalar curvature, then asymptotic
hyperbolicity enforces the normalisation

R(g) = —n(n—1),

where R(g) is the scalar curvature of g. Also, if ¢ is Einstein, then the Ricci
curvature of g is

Ric(g) = —(n —1)g.
We denote by V the Levi-Civita connection of g and by Riem(g) the Riemannian
sectional curvature of g.

We denote by 7, the set of rank p covariant tensors. When p = 2, we denote
by Sz the subspace of symmetric tensors which splits as So = G @ SDQ, where G is
the set of scalar multiples of g and S, is the set of trace-free tensors (relative to g).
We observe the summation convention (the corresponding indices run from 1 to n),
and we use g;; and its inverse g*/ to lower or raise indices. For instance, we have

Ric(g)i; = g™ Riem(g)kir;-
The Laplacian is defined as
Ny =—Tr,V? =V*V,

where V* is the L? formal adjoint of V. The Lichnerowicz Laplacian acting on a
symmetric covariant two-tensor field is

Ap = Ay + 2(Ric — Riem),

where
(Ric u);; = %[Ric(g)ikuf + Ric(g) jxuf]

and

(Riem u);; = Riem(g)x;iu"".
For u a covariant two-tensor field on M we define the divergence of u by

(divyu); = —V7uj;.
For a one-form w on M, we define the divergence of w:
d*w = —Viw;,

the symmetric part of its covariant derivative:

1
5 (Viw; + Vjwi)

(Lg‘.d)ij = 2
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(note that £ = div,), and the trace-free part of that last tensor:

o 1 1, .
(L’gw)ij = E(Viwj + iji> + g(d w)gij.

The operator L is sometimes called the conformal killing operator. Its formal L2
adjoint acting on trace-free symmetric two-tensors is L3 = divy.

3. GAUGE-BROKEN EQUATION AND PROOF

It is well known that the system ([2))-(T3]) is not elliptic because of the invariance
by diffeomorphism. As usual in this context, we will add a gauge term to the system
in such a way that it becomes elliptic and such that the solutions to the new system
are solutions to the original one.

Let us define an operator from symmetric two-tensors to one-forms :

1 1
Bgy(h) =divg(h — §(Trg h)g) = divy h + §d(Trg h).
The new system we consider is
(3.1) Ric(g) + (n — 1)g — L4(By(g90)) = S,
(3.2) divg § =0,
where S is as in (I4). First let us verify that the solutions to the new system are
solutions to the original one.

Proposition 3.1. Let s € [0,n), k € N\{0}, o € (0,1). Let go be an A.H. metric
with negative Ricci curvature. If h € C**% s sufficiently small, and the metric

g = go + h is a solution of BI)-B2), then it is a solution of (L2A)-(L3).
Proof. We will apply the operator By to the equation (BIJ). We remark that
divgyS = Try S = 0, that By(Ric(g)) = 0 by the Bianchi identity, and that
B,(g) = 0. Then, if we denote by w the one-form By(go), we obtain that

By(Lyw) = 0.
This equation reads in local coordinates:

el 1 .
% |:§(Viw]‘ + iji):| + Ev]'vzwi =0.

Commuting derivatives and multiplying by 2, we obtain that

(3.3) Agw — Ric(g)w = 0.

As Ric(go) is negative, the operator A,, — Ric(go) has no L? kernel on one-forms,
so from [0, Theorem C, Lemmas 7.2 and 7.10, and Corollary 7.4], it is an isomor-
phism from CFtH* to CF~5 for all t € (—1,n) (the reader can see the proof of
proposition A.2 in [I] for more details). Now if h is small in C¥+2:%  then it is small

in C(])HQ’O‘, so the operator A, — Ric(g) is still an isomorphism between the same
spaces. As w € Ck+1% with s € [0,n), we conclude that w = 0. O

Remark. The fact that By(go) vanishes shows that the identity map from (M, g)
to (M, go) is harmonic (see [§], for instance).

Let us now construct solutions to the system B.I)-([B2) by an implicit function
theorem on Banach spaces.
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Proposition 3.2. Let s € (0,n — 1), k € N\{0}, a € (0,1). Let go be a non-
degenerate A.H. Einstein metric. Then for all T € C** sufficiently small, there
exists a unique (&, h) close to zero in CFT1 x OF+2:2 sych that g = go + h and ¢

solve (B10)-B2]).

Proof. Let us consider the map from a neighborhood of zero in C¥+2: x Ck+l.a
Cke to Cko x Ck=1 defined by

__( Ric(g)+(n—1)g — L4(Bg(g0)) — S
F(h,g,T) T ( dngS )
where ¢ = go + h and S is defined by (I4). The map F is well defined and

differentiable in a neighborhood of zero. The metric go being Einstein, we have
F(0,0,0) = 0, and the derivative of F' in the first two variables at the origin is

3AL(GR) + (n = 1)(5h) — L(5¢) )
divoL(d€) ’

where all the operators are relative to the metric gg. The hypothesis that gg is

non-degenerate together with the results of [9, Theorem C and Proposition D] give

us that the operator %AL + (n — 1) is an isomorphism from C*¥*2:% to C*< when

s € (0,n —1). Now the operator £ has no L? kernel ([2], [7]), so the same is

true for the operator div oL because div = L*. Again the result of [9, Theorem C

and Proposition G] shows that the vector Laplacian div of is an isomorphism from
ChtLe to CF~1 when o € (—1,n). We then conclude that D ¢ F(0,0,0) is an
isomorphism, and the proposition follows by the implicit function theorem. O

Do) F(0,0,0)(6h, 66) = (

Propositions and [3.I] together prove the main theorem [l
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