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ON THE NUMBER OF SOLUTIONS
OF THE LINEAR EQUATION IN FINITE CARLITZ MODULES

CHIH-NUNG HSU AND TING-TING NAN

(Communicated by Ken Ono)

Abstract. We deduce an accurate formula for the number of solutions of
the linear equation in generators of finite Carlitz modules, and the equation
always has solutions except for some cases. Therefore, we have a criterion
for the existence of the solutions of the linear equation. Moreover, we have a

similar result in normal bases when we apply our main theorem to a special
case.

1. Introduction

In the 1950s, Carlitz [1],[2] proved that in a finite field Fp with p elements where
p is a prime number, for any fixed integer n, the linear equation

a1x1 + a2x2 + · · · + anxn = a (a ∈ Fp, ai ∈ F∗
p = Fp − {0})

such that x1, · · · , xn are primitive roots in Fp has solutions for a sufficiently large
prime p. The basic technique for estimating the number of solutions, which are
all primitive roots in terms of Gauss sums over Fp, yields the estimation that
depends on the number of positive divisors of p− 1. However, if the solutions play
another important role in finite Carlitz modules, generators for example, then we
may receive not only an estimation but a beautiful formula.

In this paper, let Fq denote the finite field with q elements where q is a prime
power and let A = Fq[T ] be the polynomial ring with coefficients in Fq. The degree
of the polynomial a in A is denoted by deg a, and the valuation of a is denoted by
|a| = qdeg a.

Let k = Fq(T ) be the quotient field of A and let τ i be the qith-power Frobenius
mapping, i.e., τ i(x) = xqi

for all x in k. Let A{τ} be the ring of Fq-linear polyno-
mials in one indeterminant x with coefficients in A under composition, that is, for
p(x) in A{τ}, p(x + y) = p(x) + p(y) and p(cx) = cp(x) for all x, y in k, c in Fq.
The Carlitz A-module defined over A is the Fq-algebra homomorphism ψ from A
to A{τ} defined by

ψ(1) = τ0, ψ(T ) = Tτ0 + τ1.
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The structure of the Carlitz A-module A is given by

A × A → A
(a , b) �→ ba

where ba is defined by ψ(a)(b).
Throughout this paper, we fix a monic prime f in A of degree d. Then E1 =

A/(f) is a finite field with qd elements. Let Em be the finite extension of E1 of
degree m. We have a canonical projection ι from A to E1 = A/(f), i.e., ι(a) = a for
all a ∈ A. Applying ι to the coefficients of ψ(a) for all a in A, we obtain elements
in E1{τ} where L{τ} is the ring of Fq-linear polynomials in one indeterminant x
with coefficients in L under composition for any field L containing Fq. Thus, a

finite Carlitz A-module is the Fq-algebra homomorphism Ψ : A
ψ→ A{τ} → E1{τ}

defined by
Ψ(1) = τ0, Ψ(T ) = Tτ0 + τ1,

and the structure of the finite Carlitz A-module Em, denoted by C(Em), is

A × Em → Em

(a , α) �→ αa

where αa is defined by αa = Ψ(a)(α) for all a in A, α in C(Em).
It is known that the finite Carlitz A-module C(Em) is isomorphic to A/(fm−1)

as an A-module; i.e., C(Em) is a cyclic A-module. More details can be found in
D. Goss [3].

For any α in C(Em), we define the order of α, denoted by ord(α), to be the monic
polynomial g in A of the least degree such that αg = 0. Since C(Em) is isomorphic
to A/(fm−1), ord(α) divides fm−1. Particularly, any generator of C(Em) is of
order fm−1.

The main theorem of this paper is

Theorem 3.1. Let n be a fixed integer, α be an element in C(Em) of order H,
G = fm−1

H , d = deg f , and N be the number of solutions in En
m of the linear equation

c1x1 + c2x2 + · · · + cnxn = α

with ci ∈ F∗
q such that x1, · · · , xn are generators of the finite Carlitz A-module

C(Em). Then N is

q(n−1)md

⎛⎝ ∏
P |H,P �G

[(
1 − 1

|P |

)n

− (−1)n

|P |n

]⎞⎠⎛⎝∏
P |G

[(
1 − 1

|P |

)n

+
(−1)nφ(P )

|P |n

]⎞⎠,

where P runs over all monic primes in A and φ is the Euler φ-function for polyno-
mials.

Further, we can deduce that N is always positive if q is greater than 2.
A normal basis of Em over E1 is a basis of the form {β, βqd

, · · · , βq(m−1)d}, and
the element β is called a normal element of Em over E1. For any α in Em, we
also establish some similar results for the number of solutions in En

m of the linear
equation

c1x1 + c2x2 + · · · + cnxn = α

with ci ∈ F∗
q such that x1, · · · , xn are normal elements of Em over E1.

Unless otherwise stated, D, g, h, fi, gi, g
′
i, hi will denote the monic polynomials

in A and P will denote the monic prime in A.
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2. Auxiliary lemmas

In this section, we present some lemmas that will be used in section 3.

Lemma 2.1. Let α be an element in C(Em) and c in F∗
q . Then α and cα have the

same order in C(Em). Moreover, α and cα are generators of C(Em) simultaneously
if one of them is.

Proof. Since c is in F∗
q , we have cq = c and (cα)a = cαa for any a in A. Thus, α

and cα have the same order in C(Em). �

Lemma 2.2. Let N be the number of solutions in En
m of the linear equation

(2.1) c1x1 + · · · + cnxn = α

with ci ∈ F∗
q such that x1, · · · , xn are generators of C(Em).

Let N ′ be the number of solutions in En
m of the linear equation

(2.2) x1 + · · · + xn = α

such that x1, · · · , xn are generators of C(Em). Then we have N = N ′.

Proof. If (α1, · · · , αn) is a solution of the equation (2.1), then by Lemma 2.1,
(c1α1, · · · , cnαn) is a solution of the equation (2.2). Hence, N ≤ N ′.

Conversely, we can get N ≥ N ′, and this concludes the proof. �

Let Êm be the group of additive characters of Em and let λ0 be the trivial
character in Êm. For any a in A and λ in Êm, λa is an additive character of Em

defined by λa(α) = λ(αa) for all α in C(Em). Then Êm has the A-module structure
defined by

A × Êm → Êm

(a , λ) �→ λa.

We define the order of λ in Êm, denoted by Ord(λ), to be the monic polynomial g
in A of the least degree such that λg = λ0. Since λfm−1(α) = λ(αfm−1) = λ(0) = 1
for all λ in Êm, α in Em, λfm−1 = λ0, and hence Ord(λ) divides fm−1.

For any monic polynomial g in A dividing fm−1, let

Êm[g] = {λ ∈ Êm : λg = λ0}
and let

Em

[
fm−1

g

]
= {α ∈ C(Em) : α

fm−1
g = 0}.

We know that Êm[g] is an A-submodule of Êm and Em[ fm−1
g ] is an A-submodule of

C(Em). Moreover, viewed as an A-module, Êm[g] is isomorphic to ̂Em/Em[ fm−1
g ]

and Em[ fm−1
g ] is isomorphic to A/( fm−1

g ). Therefore, #(Êm[g]) = |g|, where #(S)
denotes the cardinality of a set S (cf. D. Goss [3]). Combining the above discussion
with the formula

∑
h|g φ(h) = |g|, we have

#{λ ∈ Êm : Ord(λ) = g} = φ(g),

where φ is the Euler φ-function for polynomials. Hence, Êm is a cyclic A-module
and is isomorphic to A/(fm−1).
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Letting µ be the Möbius µ-function for polynomials, we define the characteristic
function Ω : Em → C by

(2.3) Ω(α) =
∑

g|fm−1

µ(g)
|g|

∑
λ∈Êm,λg=λ0

λ(α).

Lemma 2.3. For any α in the finite Carlitz A-module C(Em), we have

Ω(α) =
{

1 if α is a generator of C(Em),
0 otherwise.

Proof. Let H be the order of α in C(Em). Since {λ ∈ Êm : λg = λ0} is isomorphic

to ̂Em/Em[ fm−1
g ], we have

∑
λ∈Êm,λg=λ0

λ(α) =
{

|g| if α ∈ Em[ fm−1
g ],

0 otherwise.

Thus

(2.4)
∑

λ∈Êm,λg=λ0

λ(α) =
{

|g| if H | fm−1
g ,

0 otherwise.

Applying (2.3) and (2.4), we have

Ω(α) =
∑

g|fm−1

µ(g)
|g|

∑
λ∈Êm,λg=λ0

λ(α)

=
∑

g|fm−1,H| fm−1
g

µ(g)
|g| |g|

=
∑

g| fm−1
H

µ(g)

=
{

1 if H = fm−1,
0 if H �= fm−1,

=
{

1 if α is a generator of C(Em),
0 otherwise.

�

Lemma 2.4. Let n be a positive integer and let M be a monic polynomial in A.
Then we have ∑

h1,··· ,hn|M
(h1,··· ,hn)=1

n∏
i=1

µ(hi)
|hi|

=
∏
P |M

[(
1 − 1

|P |

)n

− (−1)n

|P |n

]
,

where (h1, · · · , hn) denotes the greatest common divisor of h1, · · · , hn in A.
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Proof. Let F1(M) =
∑

h1,··· ,hn|M
(h1,··· ,hn)=1

n∏
i=1

µ(hi)
|hi|

. For any monic prime P in A and posi-

tive integer k, we have

F1(P k) =
∑

h1,··· ,hn|P k

(h1,··· ,hn)=1

n∏
i=1

µ(hi)
|hi|

= 1 +
(

n

1

)
(−1)
|P | +

(
n

2

)
(−1)2

|P |2 + · · · +
(

n

n − 1

)
(−1)n−1

|P |n−1

=
(

1 − 1
|P |

)n

− (−1)n

|P |n .

Since F1 is a multiplicative function of A into R, we obtain

∑
h1,··· ,hn|M

(h1,··· ,hn)=1

n∏
i=1

µ(hi)
|hi|

=
∏
P |M

[(
1 − 1

|P |

)n

− (−1)n

|P |n

]
.

�

Lemma 2.5. Let n be a positive integer and G a monic polynomial in A. We have

∑
D|G

µ(D)n

|D|n−1

∑
f1,··· ,fn| G

D
(fi,D)=1,(f1··· ,fn)=1

n∏
i=1

µ(fi)
|fi|

=
∏
P |G

[(
1 − 1

|P |

)n

+
(−1)nφ(P )

|P |n

]
.

Proof. Let F2(G) =
∑
D|G

µ(D)n

|D|n−1

∑
f1,··· ,fn| G

D
(fi,D)=1,(f1··· ,fn)=1

n∏
i=1

µ(fi)
|fi|

. For any monic prime

P in A and positive integer k, we have

F2(P k) =
∑

D|P k

µ(D)n

|D|n−1

∑
f1,··· ,fn|P k

D
(fi,D)=1,(f1··· ,fn)=1

n∏
i=1

µ(fi)
|fi|

= 1 ×
∑

f1,··· ,fn|P k

(f1··· ,fn)=1

n∏
i=1

µ(fi)
|fi|

+
(−1)n

|P |n−1
·

∑
f1,··· ,fn|P k−1

(fi,P )=1,(f1··· ,fn)=1

n∏
i=1

µ(fi)
|fi|

=
∑

f1,··· ,fn|P k

(f1··· ,fn)=1

n∏
i=1

µ(fi)
|fi|

+
(−1)n

|P |n−1
.

Applying Lemma 2.4, we get

F2(P k) =
(

1 − 1
|P |

)n

+
(−1)nφ(P )

|P |n .
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Since F2 is a multiplicative function of A into R, we obtain

∑
D|G

µ(D)n

|D|n−1

∑
f1,··· ,fn| G

D
(fi,D)=1,(f1··· ,fn)=1

n∏
i=1

µ(fi)
|fi|

=
∏
P |G

[(
1 − 1

|P |

)n

+
(−1)nφ(P )

|P |n

]
.

�

3. The main theorem

Let f be a monic irreducible polynomial in A of degree d. Then E1 = A/(f) is
a finite field with qd elements. Let Em be the finite extension of E1 of degree m.
The finite Carlitz A-module C(Em) is a cyclic A-module and C(Em) is isomorphic
to A/(fm−1). Our main theorem in this paper is

Theorem 3.1. Let n be a fixed integer, α be an element in C(Em) of order H,
G = fm−1

H , d = deg f , and N be the number of solutions in En
m of the linear

equation

c1x1 + c2x2 + · · · + cnxn = α

with ci ∈ F∗
q such that x1, · · · , xn are generators of the finite Carlitz A-module

C(Em). Then N is

q(n−1)md

⎛⎝ ∏
P |H,P �G

[(
1 − 1

|P |

)n

− (−1)n

|P |n

]⎞⎠⎛⎝∏
P |G

[(
1 − 1

|P |

)n

+
(−1)nφ(P )

|P |n

]⎞⎠ .

Proof. According to Lemma 2.2, without loss of generality we may assume that
c1 = · · · = cn = 1. By Lemma 2.3 and the definition of Ω in (2.3), the number N is∑

(α1,··· ,αn)∈En
m

α1+···+αn=α

Ω(α1) · · ·Ω(αn)

=
∑

α1,··· ,αn−1∈Em

Ω(α1) · · ·Ω(αn−1)Ω(α − α1 − · · · − αn−1)

=
∑

α1,··· ,αn−1∈Em

∑
g1,··· ,gn|fm−1

(
n∏

i=1

µ(gi)
|gi|

) ∑
λi∈Êm

λ
gi
i =λ0

λ1(α1)· · ·λn−1(αn−1)λn(α−α1−· · ·−αn−1)

=
∑

g1,··· ,gn|fm−1

(
n∏

i=1

µ(gi)
|gi|

) ∑
λi∈Êm

λ
gi
i =λ0

λn(α)

( ∑
α1∈Em

λ1λ
−1
n (α1)

)
· · ·

⎛⎝ ∑
αn−1∈Em

λn−1λ
−1
n (αn−1)

⎞⎠.

For any λ in Êm, since #(Em) = qmd, the character sum

∑
α∈Em

λ(α) =
{

qmd if λ = λ0,
0 otherwise.
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Combining these, we obtain

N =
∑

g1,··· ,gn|fm−1

(
n∏

i=1

µ(gi)
|gi|

) ∑
λn∈Êm

λ
g1
n =···=λgn

n =λ0

λn(α)
(
qmd

)n−1

= q(n−1)md
∑

g1,··· ,gn|fm−1

(
n∏

i=1

µ(gi)
|gi|

) ∑
λ∈Êm

λ(g1,··· ,gn)=λ0

λ(α).

By (2.4), we get

N = q(n−1)md
∑

g1,··· ,gn|fm−1

H| fm−1
(g1,··· ,gn)

(
n∏

i=1

µ(gi)
|gi|

)
|(g1, · · · , gn)|

= q(n−1)md
∑

g1,··· ,gn|fm−1
(g1,··· ,gn)|G

(
n∏

i=1

µ(gi)
|gi|

)
|(g1, · · · , gn)|.

Putting D = (g1, · · · , gn) and g′i = gi

D for all i, we have

N = q(n−1)md
∑

D|G,g′
1,··· ,g′

n| fm−1
D

(g′
1,··· ,g′

n)=1

(
n∏

i=1

µ(g′iD)
|g′iD|

)
|D|

= q(n−1)md
∑
D|G

µ(D)n

|D|n−1

∑
g′
1,··· ,g′

n| fm−1
D

(g′
i,D)=1,(g′

1,··· ,g′
n)=1

n∏
i=1

µ(g′i)
|g′i|

.

Define H∗ =
∏

P |H,P �G

P . By the definition of µ and H∗, we obtain

N = q(n−1)md
∑
D|G

µ(D)n

|D|n−1

∑
h1,··· ,hn|H∗

(h1,··· ,hn)=1

∑
f1,··· ,fn| G

D
(fi,D)=1,(f1,··· ,fn)=1

n∏
i=1

µ(hi)µ(fi)
|hi||fi|

= q(n−1)md

⎛⎜⎜⎝ ∑
h1,··· ,hn|H∗

(h1,··· ,hn)=1

n∏
i=1

µ(hi)
|hi|

⎞⎟⎟⎠
⎛⎜⎜⎜⎝∑

D|G

µ(D)n

|D|n−1

∑
f1,··· ,fn| G

D
(fi,D)=1,(f1,··· ,fn)=1

n∏
i=1

µ(fi)
|fi|

⎞⎟⎟⎟⎠ .

Applying Lemma 2.4 and Lemma 2.5, we get

N = q(n−1)md

⎛⎝ ∏
P |H,P �G

[(
1 − 1

|P |

)n

− (−1)n

|P |n

]⎞⎠⎛⎝∏
P |G

[(
1 − 1

|P |

)n

+
(−1)nφ(P )

|P |n

]⎞⎠ .

This completes the proof. �

Here, we illustrate two examples.



2198 CHIH-NUNG HSU AND TING-TING NAN

Example 3.2. We know that f = T 3 + T + 1 is an irreducible function of degree
3 in A = F2[T ] and T 2, T 2 + T + 1 are the two generators of the cyclic A-module
C(E1).

By a simple computation, there is no solution in E2
1 of the linear equation x1 +

x2 = T such that x1, x2 are generators of C(E1). In fact, the order of T in C(E1)
is T , and N is indeed zero according to our formula for N in Theorem 3.1 with
m = 1, n = 2, α = T , H = T , and G = T 2 + 1.

If we consider another equation x1 + x2 + x3 = T 2 + 1 such that x1, x2, x3 are
generators of C(E1), then N is zero again. Actually, the order of T 2 + 1 in C(E1)
is T 2 + 1, and N = 0 also satisfies our formula in Theorem 3.1 with m = 1, n = 3,
α = T 2 + 1, H = T 2 + 1, and G = T .

Example 3.3. We know that f = T 2 + 1 is an irreducible function of degree 2
in A = F3[T ] and 1, 2, T , T + 2, 2T , 2T + 1 are the six generators of the cyclic
A-module C(E1).

By simple computation, (T + 2, 2), (2T , T ), and (1, 2T + 1) are the three solu-
tions in E2

1 of the linear equation x1 + 2x2 = T such that x1, x2 are generators of
C(E1). In fact, the order of T in C(E1) is T 2, and N = 3 by Theorem 3.1 with
m = 1, n = 2, α = T , H = T 2, and G = 1.

Corollary 3.4. Suppose the hypotheses of Theorem 3.1 are satisfied. Then N = 0
if and only if q = 2 and there exists a monic prime P of degree 1 in A satisfying
one of the following conditions:

(1) When n is even, P divides H but P does not divide G.
(2) When n is odd, P divides G.

Proof. When n is even, by Theorem 3.1, we obtain that N = 0 if and only if there
is a monic prime P such that P | H, P � G, and 1 − 1

|P | = 1
|P | , that is, |P | = 2.

This leads to the conclusion that q = 2 and deg P = 1.
When n is odd, by Theorem 3.1 again, we obtain that N = 0 if and only if there

is a monic prime P such that P | G and
(
1 − 1

|P |

)n

= φ(P )
|P |n , that is, |P | = 2. This

implies that q = 2 and deg P = 1. �

According to Corollary 3.4, we have

Corollary 3.5. Suppose the hypotheses of Theorem 3.1 are satisfied. If q > 2, then
N is always positive.

4. Application to normal bases

Now, taking f = T , we have E1 = A/(T ) is Fq; Em is Fqm , the finite field with

qm elements; and the Fq-algebra homomorphism Ψ : A
ψ→ A{τ} → Fq{τ} is given

by
Ψ(1) = τ0, Ψ(T ) = τ1, Ψ(T 2) = τ2, · · · .

In this case, the structure of a finite Carlitz A-module is αT i

= τ i(α) = αqi

for all
α in C(Em).

A normal basis of Em over E1 is a basis of the form

{β, βq, · · · , βqm−1} = {β1, βT , · · · , βT m−1},
and the element β is called a normal element of Em over E1.
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The following is an important relationship between the normal element β of Em

over E1 and the order of β in C(Em), mentioned in Lenstra and Schoof [4].

Lemma 4.1. Let β be an element in C(Em). Then β is a normal element of Em

over E1 if and only if the order of β in C(Em) is Tm−1.

Proof. See Lenstra and Schoof [4], (1.9). �

Applying Theorem 3.1 and Lemma 4.1, we obtain

Theorem 4.2. Let α be an element in C(Em) of order H, let G = T m−1
H , and let

N be the number of solutions in En
m of the linear equation

c1x1 + c2x2 + · · · + cnxn = α

with ci ∈ F∗
q such that x1, · · · , xn are normal elements of Em over E1. Then N is

q(n−1)m

⎛⎝ ∏
P |H,P �G

[(
1 − 1

|P |

)n

− (−1)n

|P |n

]⎞⎠ ⎛⎝∏
P |G

[(
1 − 1

|P |

)n

+
(−1)nφ(P )

|P |n

]⎞⎠ .

Corollary 4.3. Under the conditions in Theorem 4.2, let m be in the form of 2sm′

with nonnegative integer s and odd m′. Let α be an element in C(Em) of order H,
and let G = T m−1

H . Then we have N = 0 if and only if q = 2 and H satisfies one of
the following conditions:

(1) When n is even, (T − 1)2
s

divides H.
(2) When n is odd, (T − 1)2

s

doesn’t divide H.

Proof. Applying Corollary 3.4, we only consider the case for q = 2. Since Tm−1 =
(Tm′ − 1)2

s

and Tm′ − 1 is separable, the only monic prime P of degree 1, dividing
Tm−1, is T − 1 and the multiplicity of 1 in Tm−1 is 2s.

When n is even, N = 0 if and only if T − 1 divides H, but T − 1 doesn’t divide
G. That is, (T − 1)2

s

divides H.
When n is odd, N = 0 if and only if T − 1 divides G; i.e., (T − 1)2

s

doesn’t
divide H. �

According to Corollary 4.3, we have

Corollary 4.4. Suppose the hypotheses of Theorem 4.2 are satisfied. If q > 2, then
N is always positive.
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