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COMBINATORIAL PROOFS
OF THE LAMBDA ALGEBRA BASIS AND EHP SEQUENCE

WILLIAM RICHTER

(Communicated by Ronald A. Fintushel)

Abstract. Combinatorial proofs are given of the Λ basis and EHP sequence.

1. Introduction

This is the first in a series of papers on geometric applications of Mahowald’s
[Mah67, Mah82] work on the unstable Adams spectral sequence (uAss). The
lambda algebra Λ (see §2) was defined by Bousfield et al. [BCK+66], who proved
an admissible monomial basis for Λ, similar to that of the Steenrod algebra A, and
constructed a subcomplex Λ(n) of Λ, as the E1 term of the uAss for Sn. Cur-
tis [Cur69] claimed a Λ EHP sequence (similar to the EHP sequence for spheres
[Jam57]). These Λ results are claimed to have easy combinatorial proofs [Cur69,
CM89, Koc96, Lin81, HM82, MT94, Rav86]. We find this to be a serious peda-
gogical gap and give combinatorial proofs here. Our proof of the Λ basis seems
to be the first combinatorial proof, and Bousfield explained it using an action of
A∗ on Λ. Our proof of the Λ EHP sequence uses Λ unstable composition prod-
ucts which are “Adams filtration better” than unstable geometric compositions.
The preprint version of [Sin75] gave a fine combinatorial treatment of the Λ EHP
sequence: Singer stated and proved Prop. 1.1, Prop. 5.1, and Thm. 1.2, which he
deduced from Prop. 1.1, as we do, but these combinatorial proofs were deleted from
the published paper [Sin75].

Our unstable Λ composition result [Sin75, Prop. 5.1] implies the Λ EHP sequence:

Proposition 1.1 (Singer). Composition in Λ restricts to an unstable composition
pairing:

Λs,t(n) ⊗ Λ(n + t) → Λ(n),
α ⊗ β � �� α � β.

Theorem 1.2. There is an exact sequence of complexes and a chain map P ,

Λ(n)
E� Λ(n + 1)

H� Λ(2n + 1), Λ(2n + 1) P−→ Λ(n),

where H and P are defined by H(λnα) = α and P (α) = d(λn) �α, for α ∈
Λ(2n + 1), and H(Λ(n)) = 0. P induces the cohomology boundary.
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Proposition 1.1 follows by induction from the s = 1 special case [Mah75, Lem. 3.5]
or its “dual” [Wan67, Lem. 1.8.1]. Bousfield’s explanation of our proof is that the
“Curtis-excess” [Wan67, Prop. 1.8.2] cannot rise after performing Adem relations.
Proposition 1.1 implies the Λ EHP sequence, which is not anywhere in the literature
both stated and proved (there seems to be no proof following [BCK+66]). Wang
proved [Wan67, Thm. 1.8.4] that Λ(n) is a subcomplex of Λ, and nearly proves
Theorem 1.2, but he does not mention H at all.

Bousfield and Kan [BK73, 18.1(iv)] construct unstable cohomology compositions
(in the E2 term of the uAss) compatible with the geometric unstable compositions:1

Hs,tΛ(n) ⊗ H∗Λ(n + t − s) → H∗Λ(n),(1.1)

πn+t−sS
n ⊗ π∗S

n+t−s → π∗S
n.

Since the differential d of Λ preserves the t-degree, Proposition 1.1 immediately
implies an “Adams-filtration better” improvement of (1.1):

Corollary 1.3 (Singer). Unstable Λ composition induces the cohomology composi-
tion

Hs,tΛ(n) ⊗ H∗Λ(n + t) → H∗Λ(n).

I discovered Prop. 1.1 by comparing the Λ EHPss calculations [Rav86, Fig. 3.3.10]
with Toda’s geometric calculations [Tod62]. The E2 term of the uAss Hs,tΛ(n) =⇒
πn+t−s(Sn) is isomorphic [BC70, Thm. 3.3] to Exts

MA(H̃∗(Sn+t), H̃∗(Sn)), which
we write as Exts(Sn+t, Sn). Under this isomorphism, the Cor. 1.3 composition
becomes the Yoneda product in the category MA of unstable A-modules [Sin75,
Prop. 6.6]

Y : Exts(Sn+t, Sn) ⊗ Extr(Sz, Sn+t) → Exts+r(Sz, Sn).

Singer explained that he conjectured Prop. 1.1 by expecting a Λ product which
induces Y . Bousfield and Kan’s actual E2 composition product (1.1) is Y ◦(1⊗Es),
using the s-fold suspension map Es : Extr(Sz−s, Sn+t−s) → Extr(Sz, Sn+t) defined
in [Sin75, §3].

Singer’s formula [Sin75, Prop. 5.3] for the Hopf invariant of an unstable Λ com-
position is proved in §5. Mahowald proved a special case [Mah75, Prop. 3.1], calcu-
lating the suspended Hopf invariant of P (the Λ analogue of his conjecture proved
in [Ric95]). In §6, we reprove Wang’s result on the equivalence of the admissible
and symmetric Adem relations.

2. The Λ admissible monomial basis

Let V be the Z/2 vector space with basis {λp : p ≥ −1}. Define e : V → V by
e(λp) = λp+1, and define the self-map D = e ⊗ 1 + 1 ⊗ e of V ⊗2. We’ll use the
original [BCK+66] symmetric Adem relations for p ≥ −1, n ≥ 0:

(2.1) R(p, 2p + 1 + n) := Dn(λp ⊗ λ2p+1) =
∑

i+j=n

(
n

i

)
λp+i ⊗ λ2p+1+j ∈ V ⊗2.

1Actually somewhat less, but Bousfield believes this result can be obtained using [Bou89].
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We have a relation R(p, q) ∈ V ⊗2 for q > 2p and p ≥ −1. Let W ⊂ V be the
subspace Z/2{λp : p ≥ 0}, and let I be the 2-sided ideal of the tensor algebra
T (W ) generated by the relations {R(p, 2p + 1 + n) : p, n ≥ 0}. Let Λ = T (W )/I
be the resulting quotient algebra. Λ is spanned by the monomials λ(a1, ..., as) =
λa1 · · ·λas

, for ai ≥ 0. Because the relations (and the d formula) are homogeneous,
Λ is bigraded by s and t, where λ(a1, ..., as) has bidegree s and t = a1 + · · ·+as +s.
We’ll write Λs,t, and we have Λ =

⊕
s,t≥0 Λs,t. We will speak later of Λs,t(n).

A monomial λ(a1, . . . , as) is admissible iff ai ≤ 2ai−1 for 1 < i ≤ s. We’ll often
use the right-lexicographical order on monomials and call it the right-lex order. As
usual, “performing an Adem relation” means replacing the term λ(p, 2p+1+n) by
the other terms that appear in the Adem relation R(p, 2p+1+n). Performing Adem
relations obviously reduces the right-lex order, and each bidegree (s, t) contains only
finitely many monomials. Hence, by induction, performing Adem relations, in any
order, leads to a sum of admissible monomials. Hence the admissible monomials
span Λ.

We’ll often use the “inner part” of the Adem relations. For p ≥ −1, n > 0, let

R̂(p, 2p + 1 + n) :=λ(p, 2p + 1 + n) + λ(p + n, 2p + 1) + R(p, 2p + 1 + n)

=
∑

i+j=n, ij>0

(
n

i

)
λp+i ⊗ λ2p+1+j ∈ W⊗2(2.2)

since only the outer term with ij = 0 can involve λ−1. Define the symmetric d

formula [BCK+66] d(λn) = R̂(−1, n) ∈ W⊗2, for n ≥ 0. Then

(2.3) d(λn) = R(−1, n) + λ−1 ⊗ λn + λn ⊗ λ−1 =
n∑

i=1

(
n + 1

i

)
λi−1 ⊗ λn−i,

and d extends to a self-map of T (W ) satisfying a Leibniz rule d(αβ) = d(α)β +
αd(β). As we show in §6, Λ can be defined by the admissible Adem relations for
p, n ≥ 0:

(2.4) R̃(p, 2p+1+n) := λp⊗λ2p+1+n +
∑
k≥0

(
n − k − 1

k

)
λp+n−k⊗λ2p+1+k ∈ V ⊗2.

In §6, we also reprove Wang’s other result, that the d formula can be defined
admissibly as

(2.5) d(λn) =
∑
k>0

(
n − k

k

)
λn−kλk−1 ∈ Λ2,n+1(n).

We will not use formulas (2.4) and (2.5) in our combinatorial proofs.
We now construct the relations between Adem relations. Define the self-map

C = e ⊗ e2 of V ⊗2 to go with D = e ⊗ 1 + 1 ⊗ e defined above. C and D preserve
the Adem relations:

C(R(p, q)) = R(p + 1, q + 2), D(R(p, q)) = R(p, q + 1).

Call I = 1 ⊗ 1 the identity self-map of V ⊗2. To get relations between Adem
relations, we’ll define self-maps of V ⊗3 and apply them, for a ≥ −1, to

(2.6) λa ⊗ λ2a+1 ⊗ λ4a+3 = R(a, 2a + 1) ⊗ λ4a+3 = λa ⊗ R(2a + 1, 4a + 3).
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We’ll “extend” C and D to V ⊗3 by defining the self-maps D3 = e⊗I+1⊗e⊗1+I⊗e
and C3 = e ⊗ e2 ⊗ 1 + e ⊗ 1 ⊗ e2 + 1 ⊗ e ⊗ e2 of V ⊗3. Then we can write C3 and
D3 as

C3 = C ⊗ 1 + D ⊗ e2 D3 = D ⊗ 1 + I ⊗ e(2.7)

C3 = e ⊗ D2 + 1 ⊗ C D3 = e ⊗ I + 1 ⊗ D.(2.8)

Equations (2.7) express both C3 and D3 as a sum of two commuting operators on
V ⊗2 ⊗ V . The binomial theorem gives Cn

3 Dm
3 =

∑
i+j=n
s+t=m

(
n
i

)(
m
s

)
CiDj+s ⊗ e2j+t

and

Cn
3 Dm

3 R(a, 2a+1)⊗λ4a+3 =
∑

i+j=n
s+t=m

(
n

i

)(
m

s

)
R(a+i, 2a+1+n+i+s)⊗λ4a+3+2j+t.

Similarly (2.8) gives Cn
3 Dm

3 =
∑

i+j=n
s+t=m

(
n
i

)(
m
s

)
ei+s ⊗ D2i+tCj on V ⊗ V ⊗2, and

Cn
3 Dm

3 λa⊗R(2a+1, 4a+3) =
∑

i+j=n
s+t=m

(
n

i

)(
m

s

)
λa+i+s⊗R(2a+1+j, 4a+3+2n+t).

By Equation (2.6), the two displayed right-hand sides are equal, so subtract them
to get 0. But first make the substitutions b = 2a + 1 + n and c = 2b + 1 + m, for
n, m ≥ 0. Then

(2.9)
∑

i+j=n; s+t=m

(
n

i

)(
m

s

) (
R(a + i, b + i + s) ⊗ λc−2i−s

+λa+i+s ⊗ R(b − i, c − s)

)
= 0 ∈ V ⊗3.

These are our relations between Adem relations. Relations (2.9) immediately imply

Lemma 2.1. Given two inadmissible pairs (a, b) and (b, c), with a ≥ −1, b > 2a,
and c > 2b, we can rewrite λa ⊗ R(b, c) + R(a, b) ⊗ λc as a sum∑

i

λxi
⊗ R(yi, zi) +

∑
j

R(ej , fj) ⊗ λgj
∈ V ⊗3,

where the triples (xi, yi, zi) and (ej , fj , gj) have lower right-lex order than (a, b, c).

We now give our combinatorial proof of the MIT school’s result [BCK+66, Pri70].

Theorem 2.2. Λ has a basis of the admissible monomials, and d is a well-defined
self-map of Λ satisfying d2 = 0.

Proof. We’ll show more, that d2λc = 0 ∈ W⊗3, for c ≥ 0. Take relation (2.9) with
n = 0, a = −1 and m > 0, so b = −1 and c = m−1. Note d(λc) =

∑m−1
s=1

(
m
s

)
λs−1⊗

λc−s. Applying the obvious projection V ⊗3 → W⊗3 to relation (2.9), we have

d2λc =
m−1∑
s=1

(
m

s

)
(dλs−1 ⊗ λc−s + λs−1 ⊗ dλc−s) = 0 ∈ W⊗3.

To show d is well defined, we’ll show that d(I) ⊂ W ⊗ I + I ⊗ W ⊂ T (W ). In
relation (2.9), let a = −1, and choose n > 0. Then b = n − 1 and c = 2n − 1 + m.
We will show that dR(b, c) ∈ W ⊗ I + I ⊗ W . All the terms in (2.9) belong to
W ⊗ I + I ⊗ W except the terms with i = 0, or i = n and s = m, in the first
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summand, and in the second summand, i = n or i = s = 0. Considering the
remaining terms, the sum

λ−1⊗R(b, c)+R(b, c)⊗λ−1+
m∑

s=0

(
m

s

)
(R(−1, b + s) ⊗ λc−s + λb+s ⊗ R(−1, c − s))

in V ⊗3 belongs to W ⊗ I + I ⊗W . Note that R(b, c) =
∑m

s=0

(
m
s

)
λb+s ⊗ λc−s. The

terms containing λ−1 cancel out, and the resulting equation shows d is well defined:

dR(b, c) =
∑

s+t=m

(
m

s

)
(d(λb+s) ⊗ λc−s + λb+s ⊗ d(λc−s)) ⊂ W ⊗ I + I ⊗ W.

T (W ) has a basis of the monomials µ(a1, ..., as) := λa1 ⊗ · · · ⊗ λas
, which we

order by the right-lex order. Writing an element α ∈ T (W ) uniquely as a sum
of distinct monomials α =

∑
k τk, we call the leading term of α the term τk with

maximum right-lex order. This defines a partial order on T (W )−{0}: the right-lex
order of the leading terms. The 2-sided ideal I ⊂ T (W ) is spanned by the spanning
elements, for s ≥ 2, i ≥ 1, and ai+1 > 2ai:

S(a1, ..., as; i) = µ(a1, . . . , ai−1) ⊗ R(ai, ai+1) ⊗ µ(ai+2, . . . , as) ∈ T (W ),

S(a1, ..., as; i) has leading right-lex term µ(a1, ..., as). T (W ) has another subspace
A with basis the admissible monomials µ(a1, ..., as) ∈ T (W ) with ai ≤ 2ai+1 for
i < s. Given φ ∈ I ∩ A, write φ as a sum of distinct spanning elements σk,
with σ0 = S(a1, . . . , as; i) having maximum order among the σk. Since φ ∈ A,
µ(a1, . . . , as) is the leading term of some other σk, say σ1. We will show that
σ0 + σ1 is a sum of spanning elements with lower order than σ0. By induction this
will prove that φ = 0. So σ1 = S(a1, . . . , as; f) for some f 
= i, and we can assume
f < i. If f +1 = i, we’re done by Lemma 2.1, in the case s = 3, and this illustrates
the general case. If f + 1 < i, the proof is illustrated by the case s = 4, where for
some u, v, x, y ≥ −1, we have

W⊗4 � σ0 + σ1 = R(u, v) ⊗ λx ⊗ λy + λu ⊗ λv ⊗ R(x, y)

= R(u, v) ⊗ (λx ⊗ λy + R(x, y)) + (λu ⊗ λv + R(u, v)) ⊗ R(x, y),

and we’re done, as performing Adem relations lowers the order. So I∩A = {0}. �

Remark 2.3. Bousfield rephrased this proof in terms of his unpublished “pension
operator” action of A

op
∗ on Λ. It’s implicit in the MIT school’s work [BCK+66,

Pri70] that the Adem relations are given by D = ξ1 and C = ξ2 for s = 2. The
relations between Adem relations (2.9) come from D3 = ξ1 and C3 = ξ2 for s = 3,
and formulas (2.8) and (2.7) can be rephrased as the diagonal of A∗, ∆(ξ2) =
ξ2⊗1+ξ2

1 ⊗ξ1 +1⊗ξ2. By considering action of the higher ξn on Λ, we can give an
explicit description of Priddy’s Koszul free A-module resolution of Z/2, with which
Priddy proved the Λ basis. Kochman [Koc96], whose account I found quite helpful
while learning Λ, gives a short false proof (false proof for span, no proof for linear
independence) of Theorem 2.2. I believe he could have given a rigorous “geometric”
proof, similar to Priddy’s Ext proof, as he describes Λ in a way similar to [Pri70].
I don’t know of a combinatorial proof that d2 = 0 with the admissible (2.5) form
of d, but that’s the only form of d that Ravenel and Kochman give.
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3. Unstable lambda algebra composition products

Define Λ(n) ⊂ Λ to be the subspace with basis the admissible monomials
λ(a1, . . . , as) with a1 < n. To motivate the proof below, note that the s = 1
version of Prop. 1.1 is

(3.1) λaΛ(n + a + 1) ⊂ Λ(n), for a < n (proved in [Mah75, Lem. 3.5]),

which implies that λaλbΛ(n+a+ b+2) ⊂ Λ(n) for a < n and b < n+a+1, and by
induction (and considering the identity element), that λ(a1, . . . , as) ∈ Λ(n) if the
inequalities ai < n + i − 1 +

∑
j<i aj are satisfied, for i = 1, . . . , s. Bousfield noted

that these inequalities can be restated with the Curtis excess κ [Wan67, Prop. 1.8.2],
defined by

(3.2) κ(λ(a1, . . . , as)) = max
1≤i≤s

(
ai − (i − 1) −

∑
j<i

aj

)
.

Thus, κ(λ(a1, . . . , as)) < n iff ai < n + i− 1 +
∑

j<iaj for 1 ≤ i ≤ s. We now prove

Lemma 3.1. If α = λ(a1, . . . , as) is admissible, then κ(α) = a1.

Proof. We’ll show the sequence xi = ai − (i − 1) −
∑

j<iaj is strictly decreasing,
and then we’ll be done, since x1 = a1. xi − xi+1 = 2ai + 1 − ai+1 > 0, by
admissibility. �

Given monomials α ∈ Λs,t and β, κ(αβ) = max{κ(α), κ(β) − t}. This is our
product formula, which implies that κ(αβ) < n iff κ(α) < n and κ(β) < n + t.
Bousfield says the following is Curtis’s original proof of [Wan67, Prop. 1.8.2].

Lemma 3.2. For a monomial α = λ(a1, . . . , as), if κ(α) < n, then α ∈ Λ(n).

Proof. If α is admissible, we’re done by Lemma 3.1. We’ll show that performing
an Adem relation on any inadmissible pair in the monomial α writes α as a sum of
monomials βi with κ(βi) < n. Then we’ll be done, by the proof that the admissibles
span. First take α = λ(p, 2p + 1 + r), so κ(α) = p + r < n. For each term of
R(p, 2p + 1 + r) in (2.1), we have κ(λ(p + i, 2p + 1 + j)) = max{p + i, p + j − i} ≤
p+r < n, and we’re done. This implies the general case α = β⊗λ(p, 2p+1+r)⊗γ
by the product formula. �

Singer’s result follows immediately from Lemmas 3.1 and 3.2 and our product
formula:

Proof of Proposition 1.1. We’ll show that Λs,t(n)·Λ(n+t) ⊂ Λ(n). Take admissible
monomials α ∈ Λs,t(n) and β ∈ Λ(n+t). By Lemma 3.1, κ(α) < n and κ(β) < n+t.
Thus κ(α · β) < n, by the product formula. Hence α · β ∈ Λ(n) by Lemma 3.2. �

The unstable Λ composition satisfies an obvious associativity property. If α ∈
Λs,t(n), β ∈ Λs′,t′(n + t), and γ ∈ Λ(n + t + t′), then

(3.3) α �(β � γ) = (α � β) �γ ∈ Λ(n).

Equality follows from the injection Λ(n) ⊂ Λ, since the Λ composition is associative.
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4. The lambda algebra EHP sequence

Theorem 2.2 immediately implies a split EHP sequence of vector spaces: the
obvious map is an isomorphism Λ(n) ⊕ λnΛ(2n + 1)

∼=−→ Λ(n + 1), and we have a
subcomplex inclusion E : Λ(n) → Λ(n + 1). We now prove that Λ(n) is a subcom-
plex [Wan67].

Corollary 4.1. For n ≥ 0, we have dΛ(n + 1) ⊂ Λ(n + 1).

Proof. We must show that d(λnα) ∈ Λ(n + 1), for any α ∈ Λ(2n + 1). By the
Leibniz rule, d(λnα) = d(λn)α + λnd(α). We can assume that d(α) ∈ Λ(2n + 1),
by induction on s, and hence λnd(α) ∈ Λ(n + 1). So it suffices to show that
d(λn)·Λ(2n+1) ⊂ Λ(n+1). We’ll show one dimension better. By the d formula (2.3)
and Proposition 1.1, d(λn) ∈ Λ(n). Then d(λn)α ∈ Λ(n) by Proposition 1.1, which
says that Λ2,n+1(n) · Λ(2n + 1) ⊂ Λ(n). �

To construct the Λ EHP sequence (cf. [Cur71]), recall that the Hopf invariant

H : Λ(n + 1) → Λ(2n + 1)

is defined so that H · E = 0, and H(λnα) = α, for α ∈ Λ(2n + 1). Since E is a
chain map, we have a quotient complex Λ(n + 1)/Λ(n), but we must show

Corollary 4.2. The linear map H : Λ(n + 1) → Λ(2n + 1) is a chain map.

Proof. It suffices to show that dH = Hd holds for an element λnα ∈ Λ(n + 1), for
any α ∈ Λ(2n+1), since dΛ(n) ⊂ Λ(n). Now replicate the proof of Corollary 4.1. �

The [Mah75] description of P is now immediate, and we’ve proved Theorem 1.2.
�

Remark 4.3. [Koc96, p. 197] incorrectly deduces Cor. 4.2 from the mere fact that
d(λn) ∈ Λ(n). [HM82, pp. 321–322] merely asserts Cor. 4.1, but deduces the easier
result that Λ(n) is a subring, from the Λ version of (1.1), which we will call the Λ
geometric composition

(4.1) Λ(n) ⊗ Λ(n + t − s) → Λ(n),

which Harper and Miller deduce from Mahowald’s (3.1). [BC70, Rem. 5.3] con-
structs a cohomology EHP sequence, but uses Cor. 4.2 without proof. [Sin75, p. 379]
attributes Cor. 4.2 to [BC70, Cur71] (where no proof appears), but [Sin75, §3] uses
unstable Ext to construct H in H∗Λ, and in the preprint version of [Sin75], Singer
constructs a cohomology EHP sequence in unstable Ext, using a nice argument
which he attributes to Bousfield.

5. The Hopf invariant of an unstable Λ composition

Recall Sq0, the algebra homomorphism of Λ defined by Sq0(λa) = λ2a+1. We’ll
write θ for Sq0 [Wan67]. Since θ(R(p, 2p + 1 + r)) = R(2p + 1, 4p + 3 + 2r), θ is
well defined, and θ(d(λa)) = d(λ2a+1). There’s an unstable restriction θ : Λs,t(n) →
Λs,2t(2n), and

Proposition 5.1 (Singer). If α ∈ Λs,t(n + 1) and β ∈ Λ(n + t + 1), then

(5.1) EH(α � β) = EH(α) �β + θ(α) �EH(β) ∈ Λ(2n + 2).
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That is, the composite Λs,t(n + 1)⊗Λ(n + t + 1) �−→ Λ(n + 1) EH−→ Λ(2n + 2) is the
sum of the two composites in the diagram

Λs,t(n + 1) ⊗ Λ(n + t + 1)
EH⊗1

��

Sq0⊗EH

��

Λs−1,t−n−1(2n + 2) ⊗ Λ(n + t + 1)

�

��

Λs,2t(2n + 2) ⊗ Λ(2n + 2t + 2) �
�� Λ(2n + 2)

Proof. It suffices to prove the result in Λ: if α ∈ Λs,t(n + 1) and β ∈ Λ(n + t + 1),
then

(5.2) H(α � β) = H(α)β + θ(α)H(β) ∈ Λ.

We’ll prove this by induction on s. First we’ll prove the case s = 1. So let α = λa,
with 0 ≤ a ≤ n, and write m = n + a + 1. For β ∈ Λ(m + 1), we need

(5.3) H(λa � β) = δa,nβ + λ2a+1H(β) ∈ Λ.

Assume a < n. Write β = λmx+E(y), for x ∈ Λ(2m+1), and y ∈ Λ(m). Using the
Adem relation R(a, m) and (2.2), we have λaλm = λnλ2a+1 + R̂(a, m) ∈ Λ, where
R̂(a, m) ∈ Λ2,m+a+2(n). Then R̂(a, m) �x ∈ Λ(n), since n + m + a + 2 = 2m + 1,
by Proposition 1.1. By (3.1), λ2a+1 �x ∈ Λ(2n + 1) and λa � y ∈ Λ(n). Then we
have

λa � β = λn(λ2a+1 � x) + E(R̂(a, m) �x + λa � y) ∈ Λ(n + 1),

so H(λa �β) = λ2a+1H(β) ∈ Λ. This finishes the case a < n. For a = n, write
β ∈ Λ(2n + 2) in admissible form as β = λ2n+1H(β) + E(y), for y ∈ Λ(2n + 1).
Since λnλ2n+1 = 0, we have λn � β = λny, and the s = 1 case (5.3) is concluded
by

H(λn � β) = y = β + λ2n+1H(β) ∈ Λ.

The induction step with s > 1 follows from the strict associativity of the RHS.
Take

α ⊗ β ⊗ γ ∈ Λs,t(n + 1) ⊗ Λs′,t′(n + t + 1) ⊗ Λ(n + t + t′ + 1).
Assuming (5.2) for s, s′ ≥ 1, we’ll show it’s true for s + s′. Using (3.3), we have

H((α �β) �γ) = H(α �(β �γ)) = H(α)(β �γ) + θ(α)H(β � γ)

=H(α)βγ + θ(α) (H(β)γ + θ(β)H(γ))

= (H(α)β + θ(α)H(β))γ + θ(α)θ(β)H(γ) = H(α � β)γ + θ(α�β)H(γ) ∈ Λ.

So (5.2) is true with α � β in the first argument. But every α ∈ Λs,t(n + 1) is
a sum of such products: write α admissibly as α =

∑n
i=0 λi � E(xi), for xi ∈

Λs−1,t−i−1(2i + 1). �
There are two important special cases when Proposition 5.1 desuspends. First,

when the second argument β desuspends, we have [Sin75, Prop. 5.2 & Prop. 3.7]

Corollary 5.2 (Singer). For α ∈ Λs,t(n + 1) and β ∈ Λ(n + t), we have

H(α �E(β)) = H(α) �β ∈ Λ(2n + 1).

This follows directly from Prop. 1.1: if we write α = λnx+E(y) admissibly, then
αβ = λn(x �β) + E(y � β) is also written admissibly. We also have a result when
the first argument desuspends [Sin75, Prop. 6.7] (see [Hik04, Cor. 2.9] for a direct
proof):
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Corollary 5.3 (Singer). For α ∈ Λs,t(n) and β ∈ Λ(n + t + 1), we have

H(E(α) �β) = E(θ(α)) �H(β) ∈ Λ(2n + 1).

To motivate Prop. 5.1, recall the two-term formula [BS68, Thm. 3.16] for the
suspended Hopf invariant of a composition (cf. [Ric97, Thm. 2.7]). With the Λ
geometric composition (4.1), Cor. 5.2 shows that H(α � β) = H(α) �β. This
corresponds to one of the [BS68] two terms, and Mahowald says the other term
vanishes in Λ due to the higher Adams filtration. With unstable Λ composition,
we get a different second term, involving θ = Sq0.

There are Λ analogues (cf. [Sin75, p. 382] of the geometric EHP constructions of
Toda, Barratt and others. More calculations will appear in a sequel, but consider
Toda’s calculation [Tod62] of πs

7 = Z/16, generated by σ ∈ π15S
8, involving σ′,

σ′′ and σ′′′, which are born on S7, S6 and S5 and are stably 2σ, 4σ and 8σ, with
Hopf invariants η, η2 and η3 respectively. σ′ and σ′′ are hard to construct, but
the Λ analogue is easy. Starting with the cycle λ7 ∈ Λ(8), with H(λ7) = ∗ ∈
Λ(15), Prop. 1.1 and Cor. 5.3 imply λ0λ7 ∈ Λ(7), λ2

0λ7 ∈ Λ(6), λ3
0λ7 ∈ Λ(5), with

H(λ0λ7) = λ1, H(λ2
0λ7) = λ2

1, H(λ3
0λ7) = λ3

1. Note that λ3
0λ7 is therefore a cycle

with leading term 4111. Compare [Rav86, Ex. 3.3.11], where 4111 is completed to
a cycle by a Curtis algorithm calculation.

Taking α = dλn ∈ Λ2,n+1(n), Prop. 1.1 and (2.3) imply that H(α) = (n − 1)λ0.
Prop. 5.1 and Theorem 1.2 immediately imply [Mah82, Prop. 3.1]: The composition

Λ(2n + 1) P−→ Λ(n) H−→ Λ(2n − 1) E−→ Λ(2n)

sends β to (n − 1)λ0 �β + θ(dλn) �H(β). Then dλ2n+1 = Eθ(dλn), and special-
izing to n even, Mahowald observed that the composition

Λ(4n + 1) P−→ Λ(2n) H−→ Λ(4n − 1) E2

−→ Λ(4n + 1)

sends β to λ0 � β + d(λ4n+1) �H(β). Recall the Hilton-Hopf expansion [BS68]:

(5.4) 2ι · α = α · 2ι + [ιn, ιn] · H(α), for α ∈ π∗(Sn).

It is well-known that d(λn) corresponds to [ιn, ιn] and λ0 corresponds to 2ι. As-
suming this, we find that (1.1) leads us to expect that left/right composition with
λ0 corresponds to left/right geometric composition by 2ι. Mahowald then observed
the following result:

Proposition 5.4 (Mahowald). The composition

Λ(4n + 1) P−→ Λ(2n) H−→ Λ(4n − 1) E2

−→ Λ(4n + 1)

induces a self-map of H∗Λ(4n + 1), which is E2 · H · P (β) = βλ0.

Proof. We only need to prove the Λ analogue of Equation (5.4). We’ll prove this
directly, but it follows from a general result [Sin75, Thm. 4.1], which is the Λ
analogue of the Barratt-Toda commutation formula [Tod62]. For a cycle f ∈
Λ(p + 1), we will show

(5.5) λ0 � f + f � λ0 = d(λp+1) �H(f) ∈ H∗Λ(p + 1).

To prove this, write f admissibly as f = λpA+B, for B ∈ Λ(p) and A ∈ Λ(2p+1).
Since f is a cycle, A must be a cycle, since d is a chain map, by Corollary 4.2.
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By definition, commutation with λ−1 in T (V ) is essentially the boundary map
d, so 0 = df = [f, λ−1] ∈ T (V ). Now we’ll extend our operator D to T (V ), so D
satisfies the Leibniz rule, and D(λp) = λp+1. Writing D(α) = α′, we have

0 = [f, λ−1]′ = [f ′, λ−1] + [f, λ0] = d(f ′) + [f, λ0] ∈ Λ,

so d(f ′) = [f, λ0] = λ0f + fλ0 ∈ Λ. To make that argument rigorous, note that
d(λn) = R̂(−1, n) ∈ T (W ), and d(λn) = R(−1, n) + [λn, λ−1] ∈ T (V ). Using this,
the Leibniz rule, and induction, we can then show that d(g)′ = d(g′) + [g, λ0] ∈
T (W ), for any g ∈ T (W ). We need to show that d(f ′) is cohomologous to
d(λp+1) �H(f) ∈ Λ(p + 1). First note that Λ(k)′ ⊂ Λ(k + 1), because for a
monomial C = λ(a1, . . . , as) ∈ Λ(k), κ(C ′) ≤ κ(C) + 1. So

f ′ = λp+1A + λpA
′ + B′,

λ0f + fλ0 = d(f ′) = d(λp+1)A + d(λpA
′ + B′) ∈ Λ,(5.6)

since d(A) = 0. But (λpA
′ + B′) ∈ Λ(p + 1) by Λ(k)′ ⊂ Λ(k + 1) and (3.1). Since

H(f) = A, we’ve proved our formula (5.5). �

[Ric95] proved that Ω3S4n+1 Ω(P )−→ ΩS2n H−→ ΩS4n−1 E2

−→ Ω3S4n+1 is homotopic
to the H-space squaring map on Ω3S4n+1, which Mahowald conjectured based on
Proposition 5.4. This result implies the following infinite statement in homotopy
groups [Ric95]:

(5.7) 2πkS4n+1 ⊂ E2
(
πk−2S

4n−1
)
, for k ≥ 3.

The argument of [BCG+95] strongly indicates that (5.7) can’t be deduced from
[Jam57, Sel84], even though (5.7) does not improve on the James-Selick 2-primary
exponent.

6. Symmetric and admissible Adem relations

We reprove Wang’s result [Wan67, Thm. 1.6.1] (cf. [Koc96]) that the admissible
Adem relations (2.4) are equivalent to the symmetric Adem relations (2.1), using
a simple recursion formula due to Tangora [Tan78]. Define Cn,k ∈ Z/2, for n ≥
0, k ∈ Z by

(6.1) C0,k = 0, C1,k = δk,0, and, for n ≥ 2, Cn,k = Cn−1,k + Cn−2,k−1.

Then for p ≥ −1, and n ≥ 0, we define

(6.2) S(p, 2p + 1 + n) := λp ⊗ λ2p+1+n +
∑

k

Cn,k λp+n−k ⊗ λ2p+1+k ∈ V ⊗2.

By induction on n, S(p, 2p + 1 + n) is a sum of admissibles: Cn,k = 0 for k < 0 or
2k + 1 > n, and furthermore, Cn,0 = 1 for n ≥ 0. We now prove

Lemma 6.1. For all p ≥ −1 and n ≥ 0, S(p, 2p + 1 + n) equals R̃(p, 2p + 1 + n)
of (2.4).

Proof. We will show that Cn,k =
(
n−k−1

k

)
, for k ≥ 0 and 2k + 1 ≤ n by induction,

the Tangora recursion formula (6.1), and Pascal’s triangle:

Cn+1,k = Cn,k + Cn−1,k−1 =
(

n − k − 1
k

)
+

(
n − k − 1

k − 1

)
=

(
n − k

k

)
. �

Now we relate the symmetric and admissible Adem relations by the procedure,
which Mahowald stresses, of applying D to formula (6.2):
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Lemma 6.2. For p ≥ −1, S(p, 2p + 1 + n) = R(p, 2p + 1 + n) for n = 0, 1, 2, and

(6.3) S(p, 2p+1+n+1) = DS(p, 2p+1+n)+S(p+1, 2p+1+n) ∈ V ⊗2, for n ≥ 2.

Proof. The first statement is obvious, and (6.3) follows, after examining the coeffi-
cients of λp+n+1−k⊗λ2p+1+k, from the equation Cn+1,k = Cn,k+Cn,k−1+Cn−2,k−2,
and this follows from applying the Tangora recursion formula (6.1) twice. �

By Lemma 6.2 and induction and DR(p, q) = R(p, q + 1), we can write the S
relations as sums of the R relations and also write the R relations as sums of the
S relations. For p = −1, Lemma 6.2 and induction enable us to write S(−1, q)
as R(−1, q) plus “positive” Adem relations, and similar to d(λn) = R̂(−1, n), the
admissible formula (2.5) for d(λn) ∈ W⊗2 equals S(−1, n)+λ−1⊗λn +λn ⊗λ−1 ∈
V ⊗2. Hence

Lemma 6.3. Λ can be defined by either the admissible (2.4) or the symmetric (2.1)
Adem relations, and the admissible (2.5) formula for d holds.

For hand calculations, the formulas (6.1) are very convenient. For the λp “page”,
start with the two rows λpλ2p+1 = 0 and λpλ2p+2 = λp+1λ2p+1. To make the row
with LHS λpλ2p+1+n, push the previous row RHS by the vector (0,−1) and the
RHS two rows back by (1,−2).
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