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EXTREMAL PROBLEMS OF CHEBYSHEV TYPE

FRANZ PEHERSTORFER

(Communicated by Peter A. Clarkson)

Abstract. Let a ∈ C \ [−1, 1] be given. We consider the problem of finding
sup |p(a)| among all polynomials p with complex coefficients of degree less than
or equal to n with max−1≤x≤1 |p(x)| ≤ 1. We derive an asymptotic expression
for the extremal polynomial and for the extremal value in terms of elementary
functions. The solution is based on the description of Zolotarev polynomials
with respect to square root polynomial weights.

1. Introduction

We study the following classical problem: Let a ∈ C \ [−1, 1] be given. Among
all polynomials p from Pc

n (Pc
n and Pn denote the set of polynomials of degree less

than or equal to n with complex and real coefficients, respectively) with ||p||[−1,1] :=
max−1≤x≤1 |p(x)| ≤ 1, find a polynomial Pn(x) for which |Pn(a)| is maximal; that
is, determine

(1.1) sup
p∈P

c
n, ||p||[−1,1]≤1

|p(a)|.

It is known that the polynomial Pn is unique up to a constant of modulus one.
For a ∈ R \ [−1, 1] already Chebyshev has shown (see [3, 4]) that Tn(x) =

cos n arccosx solves the problem. For purely imaginary a, i.e., a = − i
2 (t − 1

t ), t ∈
(−1, 1), Freund and Ruscheweyh [2] discovered that Pn(x) = (Tn(x)+2itTn−1(x)−
t2Tn−2(x))/(1 + t2) is a solution of problem (1.1). The general case a ∈ C \ [−1, 1]
was solved by P. Yuditskii [7, Section 6]. He gave the solution in terms of elliptic
functions, where some parameters (more precisely, the point a and harmonic mea-
sures of intervals depending on n) are given implicitly only. Therefore there is still
a demand for a description in terms of elementary functions. To find such a rep-
resentation is in general not obvious, as the simpler case of Zolotarev polynomials
shows. For them an elliptic representation was found in 1868 by Zolotarev, but
only recently [6] has an asymptotic representation in terms of elementary functions
been proved.

To obtain an asymptotic representation of a solution of (1.1) in elementary
functions, first a description of Zolotarev polynomials (that is, minimal polynomials
with two fixed leading coefficients) with respect to a square root weight function
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is needed, a problem which is of interest for itself and which we call a Markov-
Zolotarev type problem. The case of one fixed leading coefficient is due to Markov
1884; see [1, 5]. For the history of the above discussed problems, see [4].

Based on a description of the extremal function by a Chebyshev type differential
equation (see (2.11)), the Markov-Zolotarev type problem is solved in Section 2.
With the help of the solution of this problem and the characterization of the ex-
tremal polynomial of (1.1) given in [2], we derive in Section 3 the asymptotic
representation in terms of elementary functions.

2. Markov-Zolotarev functions and polynomials

Let ρ(x) = ±
∏m

j=1(x − bj) be a polynomial which is positive on [−1, 1]. Recall
that by Fejér-Riesz, ρ(cosϕ) can be represented uniquely in the form z = eiϕ,
ϕ ∈ [0, π],

(2.1) ρ(cos ϕ) =
m∏

j=1

|z − zj |2/
m∏

j=1

|2zj |, zj = bj −
√

b2
j − 1,

where we choose that branch of
√

such that |zj | < 1, for j = 1, ..., m.
In 1884 Markov [1, 5] studied and solved the following problem: Among all monic

polynomials of degree n find that unique monic polynomial M̂n(x; 1/
√

ρ) := M̂n(x)
:= xn + ... such that

(2.2) min
ai∈R

max
x∈[−1,1]

∣∣∣∣∣x
n + an−1x

n−1 + ... + a1x + a0√
ρ(x)

∣∣∣∣∣ = max
x∈[−1,1]

∣∣∣∣∣M̂n(x)√
ρ(x)

∣∣∣∣∣ .

We call the normalized function Mn(x)/
√

ρ(x) :=(M̂n(x)/
√

ρ(x))/||M̂n(x)/
√

ρ(x)||
the Markov function (M-function) and Mn(x) the M-polynomial on [−1, 1] with
respect to the weight function 1/

√
ρ(x). Surprisingly they can be given explicitly

[1, p. 276]. Indeed, for n ∈ N, n > m/2, x = 1
2 (z + 1

z ),

(2.3)
2Mn(x)√

ρ(x)
= zn−m

2

m∏
j=1

√
z − zj

1 − zjz
+ z−(n−m

2 )
m∏

j=1

√
1 − zjz

z − zj

has n + 1 alternation points (a-points) xi, −1 ≤ x1 < ... < xn ≤ 1, on [−1, 1],
that is, Mn(xi)/

√
ρ(xi) = (−1)n+1−i, i = 1, ..., n + 1, and thus, by the Alternation

Theorem, is the M-function.
To solve problem (1.1) we need a description of functions of the form vn/

√
ρ,

vn ∈ Pn\Pn−1 and ρ > 0 on R, which have exactly n a-points on [−1, 1] and are
not linearly transformed Markov functions, that is, have the points ±1 as a-points
but not as critical points. Writing v̂n(x) = xn − µxn−1 + qn−2(x), qn−2 ∈ Pn−2,
we get by the alternation property that qn−2 is a best approximation from Pn−2 to
xn −µxn−1 on [−1, 1] with respect to the weight function 1/

√
ρ. Or in other words,

v̂n is a so-called Zolotarev polynomial on [−1, 1] with respect to the weight 1/
√

ρ.

Notation 2.1. Let vn ∈ Pn \ Pn−1 and let the polynomial ρ be positive on R. We
call vn/

√
ρ, normalized by ||vn/

√
ρ||[−1,1] = 1, a Markov-Zolotarev function (MZ-

function) with respect to 1/
√

ρ if it has exactly n a-points on [−1, 1], where the
points ±1 are a-points but not critical points of vn/

√
ρ.
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Lemma 2.2. An MZ-function vn/
√

ρ on [−1, 1] is strictly monotone between two
consecutive a-points from [−1, 1] and the inverse image of [−1, 1] is given by

(2.4) (vn/
√

ρ)−1([−1, 1]) = [−1, 1] ∪ [Bn, Cn],

1 < Bn < Cn or Bn < Cn < −1, where vn/
√

ρ is strictly monotone on [Bn, Cn].

Proof. Suppose that the MZ-function vn/
√

ρ is not monotone between two consec-
utive a-points xj , xj+1 ∈ [−1, 1]. Then vn/

√
ρ has a local extremum or a turning

point in (xj , xj+1) and it follows, taking a look at the graph, that in the neighbor-
hood of the critical value there exists a constant c ∈ (−1, 1) such that the value c is
taken on at least n+2 times by vn/

√
ρ on [−1, +1]. But this contradicts the fact that

{1/
√

ρ(x), ..., xn/
√

ρ(x)} is a Chebyshev system on R. Quite similarly the other
statements follow, using the fact that vn must have another zero in R \ [−1, 1]. �
Proposition 2.3. Let ρ(x) be a polynomial of degree 2m which is positive on R.
Suppose that vn/

√
ρ is an MZ-function with (vn/

√
ρ)(1) = 1 and the critical point

in (1,∞). Then vn(x) has a representation of the form

(2.5) v2
n(x) − H(x)w2

n−2(x) = ρ(x),

where the polynomial wn−2 is such that it vanishes exactly at the n − 2 a-points of
vn/

√
ρ from (−1, 1) and where

(2.6) H(x) = (x2 − 1)(x − Bn)(x − Cn), 1 < Bn < Cn,

and at each zero bj of ρ,

(2.7) vn(bj) = wn−2(bj)
√

H(bj),

where that branch of the square root function is chosen, such that
√

H(x) > 0 for
x > Cn. Finally,

(2.8)
vn(x)√

ρ(x)
= cosh(

∫ x

1

u(t)
ρ(t)

dt√
H(t)

),

and (taking the sign of the leading coefficient of wn−2 as that one of vn)

(2.9)
√

H(x)
wn−2(x)√

ρ(x)
= sinh(

∫ x

1

u(t)
ρ(t)

dt√
H(t)

),

where u is a polynomial of degree 2m+1 with leading coefficient n−m which satisfies

(2.10)
∫ Cn

Bn

u(x)
ρ(x)

dx√
|H(x)|

= π and
∫ Bn

1

u(x)
ρ(x)

dx√
H(x)

= 0.

Proof. Put y := vn/
√

ρ. Then by Lemma 2.2 and the assumption,

(2.11) y2 − 1 =
(x2 − 1)(x − Bn)(x − Cn)w2

n−2(x)
ρ(x)

,

which proves (2.5). By (2.5), recall that H(x) < 0 on (−1, 1), y has local extrema
at the zeros of wn−2, so it follows that

(2.12) y′ρ3/2 = uwn−2 = v′nρ − vnρ′

2
;

hence u is a polynomial of degree 2m + 1 with leading coefficient n − m. Thus by
(2.11),

u2(y2 − 1) = (y′)2ρ2H.
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Solving the differential equation, representation (2.8) follows. Writing (2.11) in the
form

(2.13) (vn/
√

ρ)2 − (
√

Hwn−2/
√

ρ)2 = 1,

(2.9) follows.
Next let us demonstrate relation (2.7). By (2.5) we know that

(2.14) vn(bj) = ±
√

H(bj)wn−2(bj).

Denote by An the critical point of vn from (1, Bn). Then (x−An)wn−2 and vn have
strictly interlacing zeros and, by partial fraction expansion,

(z − An)wn−2(z)
vn(z)

=
n∑

j=0

λj

z − yj
, where λj ∈ R

+,

in particular,

(2.15) sgn Im{(z − An)wn−2(z)/vn(z)} < 0 for Im z > 0.

On the other hand, observing that by the chosen branch the boundary values of
1/
√

H from the upper and lower half-plane satisfy

(2.16)
1

±
√

H(x)
:= lim

z→x±
x∈E

1√
H(z)

=

{
±1/i

√
|H(x)| on [Bn, Cn],

∓1/i
√
|H(x)| on [−1, 1],

where E = [−1, 1] ∪ [Bn, Cn], we obtain by the Sokhotsky-Plemelj formula

(2.17)
z − An√

H(z)
=

1
π

∫
E

|x − An|
z − x

dx√
|H(x)|

;

hence
sgn Im{(z − An)/

√
H(z)} < 0 for Im z > 0.

Thus, by (2.14) and (2.15), relation (2.7) is proved.
The second relation from (2.10) follows by (2.8) and y(1) = y(Bn) = 1. The

first one now follows by y(Bn) = 1 and y(Cn) = −1 and the monotonicity of y on
[Bn, Cn], noting that, by (2.16), the cosh from (2.8) becomes a cosine there. �

Lemma 2.4. For every n ∈ N, let ρn(x) be a polynomial of fixed degree 2m with
0 < c1 ≤ ρn(x) ≤ c2 on [−1, 1] for all n ∈ N. Then the k-th largest zero xk,n, k
fixed, of the M-function Mn(x; 1/

√
ρn) satisfies 1 − xk,n = O( 1

n2 ).

Proof. Since ρn(x) = const
∏2m

j=1(x− bj,n) > 0 on [−1, 1], there is a λ ∈ (0, 1) such
that for n ≥ n0, ρn is not zero on the ellipse Eλ = {z ∈ C : z = 1

2 (λ + 1
λ ) cosϕ +

i
2 (λ − 1

λ ) sin ϕ, ϕ ∈ [0, 2π]}. Note that Eλ contains [−1, 1] and shrinks to [−1, 1] as
λ → 1. Thus the zj,n’s defined in (2.1), i.e., by

(2.18) zj,n = bj,n −
√

b2
j,n − 1, j = 1, ..., 2m, satisfy |zj,n| < λ < 1.

Next, we observe that it follows by (2.3) that xj,n = cos ϕj,n is a zero of
Mn(x, 1/

√
ρn(x)) if and only if at z = eiϕj,n ,

(2.19) arg z2n−2m + arg
2m∏
j=1

z − zj,n

1 − zj,nz
= (2ν − 1)π, ν ∈ Z.
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Put Bj,n(z) = z−zj,n

1−zj,nz . With the help of (2.18) it follows that for all n ∈ N, z = eiϕ,

∂

∂ϕ
argBj,n(z) = Re

{
zB′

j,n(z)
Bj,n(z)

}
=

1 − |zj,n|2
|eiϕ − zj,n|2

≥ 1 − λ > 0,

and thus the second summand in (2.19) is increasing. Recalling that the zeros of the
Chebyshev polynomial Tn−m(x) are given by cos (2ν−1)π

2(n−m) , i.e., when arg z2n−2m =
(2ν − 1)π, we obtain by (2.19) that the k-th largest zero of Mn(x) is greater than
or equal to cos (2k−1)π

2(n−m) = 1 + O( 1
n2 ). �

Notation 2.5. We say that an MZ-function vn/
√

ρ on [−1, 1] is associated with
[−1, 1] ∪ [Bn, Cn] if (vn/

√
ρ)−1([−1, 1]) = [−1, 1] ∪ [Bn, Cn].

Lemma 2.6. Let ρ(x) be positive on R. Let (vnν
/
√

ρ) be a sequence of MZ-
functions on [−1, 1] associated with [−1, 1]∪ [Bnν

, Cnν
]. Then (Cnν

−1)/2 ≤ Bnν
≤

Cnν
and if (Cnν

) is bounded, then Cnν
= Bnν

+ O( 1
n2

ν
).

Proof. Put nν := n and ρ̃n(x) := ρ(((Cn + 1)x + (Cn − 1))/2) and let us consider
the M-polynomial on [−1, 1] with respect to

√
ρ̃n transformed to [−1, Cn], i.e.,

Mn(y(x);
√

ρ̃n(y(x))) = Mn(y(x);
√

ρ(x)) =: M tr
n (x), where y(x) = (2x − (Cn −

1))/(Cn + 1), x ∈ [−1, Cn]. That is, M tr
n (x) is the M-polynomial on [−1, Cn] with

respect to the weight 1/
√

ρ(x). Let y3,n be the third largest zero of M tr
n (x), i.e.

y3,n = Cn−1
2 + Cn+1

2 x3,n, where x3,n is the third largest zero of Mn(.;
√

ρ̃n) on
[−1, 1]. We claim that Bn ≥ y3,n. Suppose that Bn < y3,n. Considering (M tr

n (x) −
vn(x))/

√
ρ(x) on [−1, 1] at the a-points of vn/

√
ρ and on [Bn, Cn] at the a-points

of M tr
n /

√
ρ, it follows that M tr

n (x) − vn(x) has at least n + 1 zeros on [−1, Cn];
hence M tr

n ≡ vn, which is a contradiction, since vn/
√

ρ > 1 on (1, Bn). The second
statement follows by Lemma 2.4. �

Theorem 2.7. Let ρ be a polynomial of degree 2m which is positive on R.
a) Let (vn/

√
ρ)n∈N be a sequence of MZ-functions on [−1, 1] associated with

[−1, 1] ∪ [Bn, Cn] and suppose that limn→∞ Cn = c and thus limn→∞ Bn = c with
|c| > 1. Put τ = c −

√
c2 − 1 and H(x) = (x2 − 1)(x − Bn)(x − Cn). Then on any

compact subset of C \ {c},

(2.20)
vn(x)√

ρ(x)
=

1
2

(
ψn(z) +

1
ψn(z)

) (
1 + O(

1
n

)
)

and the polynomial wn−2 which vanishes at the n−2 a-points from (−1, 1) of vn/
√

ρ
is given by

(2.21)
√

H(x)
wn−2(x)√

ρ(x)
=

1
2

(
ψn(z) − 1

ψn(z)

) (
1 + O(

1
n

)
)

,

where

ψn(z) = zn−m

(
1 − τz

z − τ

) 2m∏
j=1

√
z − zj

1 − zjz

and the zj’s are given by (2.1).
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b) For given µ ∈ R with µ 
= 1
2

∑2m
j=1 zj, put

√
c2 − 1 = µ − 1

2

∑2m
j=1 zj with

sgn c = sgn (µ − 1
2

∑2m
j=1 zj) and set τ = c −

√
c2 − 1. Then

(2.22) min
ai∈R

||x
n − µxn−1 + an−2x

n−2 + ... + a0√
ρ(x)

|| =

√∏2m
j=1 |2zj |

2n−1|τ | (1 + O(
1
n

))

and the normalized extremal function is given by the RHS of (2.20).

Proof. a) First we show that the “monic” integrand from (2.8) is of the form

(2.23)
û(x)
ρ(x)

= x − dn − 1
2(n − m)

2m∑
j=0

√
H(bj)

x − bj
,

where dn ∈ R andˆdenotes the monic polynomial. Indeed since û is a polynomial
of degree 2m + 1, û can be represented in the form

(2.24) û(x) = (x − dn)ρ(x) + t(x), where t ∈ P2m−1.

By Proposition 2.3, u has the leading coefficient n − m; hence we obtain by (2.7)
and (2.12) that

û(bj) = − ρ
′
(bj)

2(n − m)

√
H(bj), j = 1, 2, ..., 2m.

By (2.24) t(bj) = û(bj), j = 1, ..., 2m, which gives relation (2.23) by applying
Lagrange’s interpolation formula to t.

Furthermore, by the assumption on Cn and Lemma 2.6 on compact subsets of
C \ {c},

1√
H(x)

=
1

(x − c)
1√

x2 − 1
+ O(

1
n2

),

which yields by (2.23) and a partial fraction expansion of 1/(x − c)(x − bj) that

(2.25)

û(x)
ρ(x)

1√
H(x)

=
1√

x2 − 1
− 1

2(n − m)

2m∑
j=1

√
H(bj)

bj − c

1
x − bj

1√
x2 − 1

+

⎛
⎝c − dn +

1
2(n − m)

2m∑
j=1

√
H(bj)

bj − c

⎞
⎠ 1

x − c

1√
x2 − 1

+ O(
1
n2

).

Now we integrate both sides in (2.25) counterclockwise around a circle with
center c and fixed radius ε, ε such that the circle neither contains bj ’s nor the point
+1, respectively −1. Since

√
x2 − 1 is analytic outside C \ [−1, 1],

(2.26)
∮

1
x − c

dx√
x2 − 1

=
2πi√
c2 − 1

and
∮

1
x − bj

dx√
x2 − 1

= 0.

Furthermore to calculate the integral of the LHS in (2.25) we shrink the circle to
the interval [Bn, Cn], recall that the boundary values from the lower and upper
half-plane satisfy −√H = −+

√
H (see (2.16)), and obtain by the first relation

from (2.10) that ∮
û(x)
ρ(x)

dx√
H(x)

= i
2π

n − m
;
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hence
√

c2 − 1 = (n − m)(c − dn) + 1
2

∑2m
j=1

√
H(bj)

bj−c + O( 1
n2 ). Therefore by (2.25)

again and the fact that
√

H(bj) = (bj − c)
√

b2
j − 1 + O( 1

n2 ) we obtain∫ z

1

u(x)
ρ(x)

dx√
H(x)

= (n − m)
∫ z

1

1√
x2 − 1

dx −
√

c2 − 1
∫ z

1

1
c − x

dx√
x2 − 1

+
1
2

2m∑
j=1

√
b2
j − 1

∫ z

1

1
bj − x

dx√
x2 − 1

+ O(
1
n

).

Now the relations (2.20) and (2.21) follow by (2.8), (2.9), the known relation

√
y2 − 1

∫ x

1

1
t − y

dt√
t2 − 1

= ln

(
yx − 1 −

√
(y2 − 1)(x2 − 1)
y − x

)

and the fact that κ = y −
√

y2 − 1 and z = x −
√

x2 − 1,

1 − κz

z − κ
=

yx − 1 +
√

(y2 − 1)(x2 − 1)
y − x

.

b) By the Alternation Theorem the function vn/
√

ρ for which the minimum is
attained is an MZ-function on [−1, 1] or an M-function on [α, β] ⊇ [−1, 1]. First let
us assume that it is an MZ-function. Then, in view of a), it suffices to show that
the boundary points of the associated interval [Bn, Cn] satisfy limBn = limCn = c,
where, up to its sign, c is given by

√
c2 − 1 = µ −

∑
zj/2, and to calculate finally

the norm of v̂n/
√

ρ to prove (2.22).
By (2.12) and (2.13) it follows that

(2.27) (uv2
n)2 − H((2v′nρ − ρ′vn)/2)2 = ρu2.

Recalling that by (2.23) û(x) = x2m+1 − (
∑2m

j=1 bj + dn)x2m + ..., we obtain, by
equating in (2.27) the two leading coefficients of the two polynomials at the LHS
and by observing that the degree of the polynomial at the RHS is much smaller,
that

(2.28) −µ +
1
2

∑
bj = (n − m)(dn − (

Bn + Cn

2
)).

A simple estimation of the first integral from (2.10) gives that

(2.29)
√

B2
n − 1 ≤ n − m

π

∫ Cn

Bn

û(x)
ρ(x)

dx√
(x − Bn)(x − Cn)

≤
√

C2
n − 1,

where we used the fact that û/ρ > 0 on [Bn, Cn], which follows by the first relation
in (2.12). Using (2.23) and (2.28) and taking into consideration that the following
integral is the Stieltjes transform at z = bj and thus can be calculated easily,

(2.30)
1
π

∫ Cn

Bn

1
bj − x

dx√
(x − Bn)(x − Cn)

=
1√

(bj − Bn)(bj − Cn)
,

we even get the explicit value of the integral in (2.29), which is (µ −
∑

bj/2) +√
b2
j − 1/2 = µ −

∑
zj/2. Hence by Lemma 2.6 and (2.29),

(2.31) lim
n

√
B2

n − 1 = lim
n

√
C2

n − 1 = µ −
∑

zj/2 =
√

c2 − 1.
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Relation (2.22) follows since the RHS of (2.21) is of the form (use Tk(x) =
(zk + z−k)/2)

(2.32)
2nτ2(xn+1 − (τ−1 +

∑
zj/2)xn + ...)√∏2m

j=1 |2zj ||2τ |(x − c)
√

ρ(x)
= const.

(xn − µxn−1 + ...)√
ρ(x)

.

Finally, suppose that vn/
√

ρ is an M-function on [−1, βn], βn > 1, denoted by
Mn(x; 1/

√
ρ, [−1, βn])/

√
ρ(x). Since, up to βn, all a-points lie in [−1, 1], it follows

by Lemma 2.4 that βn − 1 = O( 1
n2 ). Now let t(x) = (2x− (βn − 1))/(βn +1) be the

linear map from [−1, βn] into [−1, 1], put ρ̃(t(x)) = ρ(x), denote the zeros of ρ̃(t)

by b̃j and let z̃j = b̃j −
√

b̃j − 1. Then we may write, x ∈ [−1, βn],

Mn(x; 1/
√

ρ, [−1, βn])√
ρ(x)

=
Mn(t(x); 1/

√
ρ̃, [−1, 1])√

ρ̃(t(x))

=
Tn(t(x)) − (

∑
z̃j)Tn−1(t(x)) + ...√
ρ(x)

,

where the last equality follows by representation (2.3). Thus

M̂n(x; 1/
√

ρ, [−1, βn]) = xn −
((

βn − 1
2

)
n +

(βn + 1)
4

∑
z̃j

)
xn−1 + ...

= xn −
(∑

zj/2 + O(
1
n

)
)

xn−1 + ... .

Since v̂n(x) = xn − µxn−1 + ... and µ 
=
∑

zj/2, this gives a contradiction if n is
sufficiently large. The case when vn/

√
ρ is an M-function on [αn, 1], αn < −1, runs

analogously. �

3. Extremal polynomial and extremal value

Theorem 3.1. Let a ∈ C \ (R ∪ iR) be given, put z1 = a −
√

a2 − 1 and τ =
c −

√
c2 − 1, where c = 1+|z1|2

2�z1
and where that branch of

√
is chosen such that√

x2 − 1 > 0 as x > 1. Then the polynomial Pn(x) which solves problem (1.1) and
is normalized by (1 − a)Pn(1) ∈ R has the asymptotic representation

(3.1) Pn(x) =
−τe−i arg z1

2�z1

(
zn

(
z − z1

z − τ

)2

+ z−n

(
1 − z1z

1 − τz

)2
)

(1 + O(
1
n

))

on any compact subset of C \ {c}, where x = 1
2 (z + 1

z ). Moreover,

(3.2) supp∈Pc
n;||p||[−1,1]≤1|p(a)| = | τ

2�z1
|| 1 − z2

1

1 − τz1
|2|z1|−n(1 + O(

1
n

)).

Proof. By Theorem 3.5 of [2] there is an extremal polynomial Pn(x) of problem
(1.1) such that at n + 1 points 1 = x0 > x1 > ... > xn = −1,

(3.3)
(xj − a)
|xj − a| Pn(xj) = (−1)j , j = 0, ..., n.

Thus

(3.4)
∣∣∣∣Re {(x − a)Pn(x)}

|x − a|

∣∣∣∣ ≤ |Pn(x)| ≤ 1 for x ∈ [−1, 1]
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and equality holds at the xj ’s. By (3.3) Im {(x−a)Pn(x)} vanishes at the xj ’s and
thus either

(3.5) Im {(x − a)Pn(x)} ≡ 0

or by (3.4)

(3.6) 1 − |Pn(x)|2 = βn(1 − x2)
(

Im {(x − a)Pn(x)}
1 − x2

)2

,

where βn > 0. If (3.5) holds, then by (3.3) and by (3.4) the real function
(x − a)Pn(x)/|x − a| is an MZ-function, which implies by Lemma 2.2 that a ∈ R,
but a 
∈ R by supposition. Thus (3.6) holds. Multiplying (3.6) by |x− a|2 one gets

(3.7)

|x − a|2 = (Re {(x − a)Pn(x)})2 + (1 − x2)
(
(1 − x2) + βn|x − a|2

)
×

(
Im {(x − a)Pn(x)}

1 − x2

)2

.

Now we distinguish two cases:
Case 1) Re {(x− a)Pn(x)} is of degree ≤ n and thus by (3.3) of degree n. Since

Re {(x − a)Pn(x)}/|x − a| has n + 1 a-points, it follows that Re {(x − a)Pn(x)}/
|x−a| is the Markov function, that is, that (1−x2)+βn|x−a|2 has to be a constant
which is possible only if βn = 1 and Re a = 0, but a 
∈ iR by supposition.

(We mention that Case 1 occurs when a ∈ iR and gives, with the help of (2.3),
the explicit description of the extremal polynomial derived in [2] in a different way.)

Case 2) Re {(x − a)Pn(x)} is of degree n + 1. First let us note that by (3.7)
Re {(x−a)Pn(x)}/ |x−a| cannot have a local extremum at the boundary points ±1
because (1 − x2) + βn|x − a|2 cannot vanish at ±1. Thus by (3.3),
Re{(x − a)Pn(x)}/|x − a| is an MZ-function, which implies by Lemma 2.2 that,
Bn < Cn < −1 or 1 < Bn < Cn,

(3.8)
(1 − x2) + βn|x − a|2

(βn − 1)
= (x − Bn)(x − Cn).

First we observe that the point 1 is not an accumulation point of (βn). Indeed if
βnν

−→
ν→∞

1, then one zero of (1 − x2) + βn|x − a|2 tends to (1 + |a|2)/(2Re a) and

the other zero to ±∞, but this contradicts Lemma 2.6. Thus (Cn) and (Bn) are
bounded sequences. Furthermore, equating coefficients in (3.8) gives that every
accumulation point c of (Cn) and thus of (Bn), by Lemma 2.6, satisfies

(3.9)
1 + c2

2c
=

1 + |a|2
2Re a

.

Since (3.9) has a unique solution in R \ (−1, 1) and since |1 ± a| 
= 0,

lim
n

Cn = lim
n

Bn = c with |c| > 1.

By (3.8) this implies that (βn) is convergent too. Since x = cos ϕ, z = eiϕ,

4|z1|2|x − ā|2 = 2|z1|2(cos 2ϕ − 4�a cos ϕ + 2|a|2 + 1) = |(z − z1)(z − z̄1)|2,

it follows by equating coefficients that

(3.10)
2(|a|2 + 1)

2�a
= (y +

1
y
), where y =

(|z1|2 + 1)
2�z1

;
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hence by (3.9) and |c| > 1,

(3.11) c = (1 + |z1|2)/(2�z1).

By Theorem 2.7a) it follows that

(3.12)
2Re {(x − a)Pn(x)}

|x − a| =
(

Ψ(z) + Ψ(
1
z
)
)

(1 + O(
1
n

))

and

(3.13) 2
√

H(x)
Im {(x − a)Pn(x)}

(x2 − 1)|x − a| = bn

(
Ψ(z) − Ψ(

1
z
)
)

(1 + O(
1
n

)),

where H(x) = (x2 − 1)(x − Bn)(x − Cn), bn =
√
|βn − 1|, and

(3.14) Ψ(z) = zn(
1 − τz

z − τ
)

√
(z − z1)(z − z̄1)

(1 − z1z)(1 − z̄1z)
.

Hence

(3.15) 2(x−a)Pn(x) = (Φ(z)(1+ibn
(x2 − 1)√

H(x)
)+Φ(

1
z
)(1−ibn

(x2 − 1)√
H(x)

))(1+O(
1
n

)),

where, using the fact that

|x − ā|2 =
(z − z1)(z − z̄1)(1 − z1z)(1 − z̄1z)

4|z1|2z2
,(3.16)

Φ(z) = |x − a|Ψ(z)

=
zn−1(z − z1)(z − z̄1)

2|z1|
(
1 − τz

z − τ
).

(3.17)

Now we claim that

1 − ibn
(x2 − 1)√

H(x)
= 1 + ibn

z2 − 1
z2 − 2cz + 1 + O( 1

n2 )

−→
n→∞

(−τ )(1 + ib∞)(z − z̄1)(z − 1
z1

)
(z − τ )(1 − τz)

.

(3.18)

Concerning the first equality in (3.18), recall that by Lemma 2.4 (x−Bn)(x−Cn) =
(x − c)2 + O( 1

n2 ) and that, by the choice of the branch of the square root of
√

H,

(3.19) sgn
√

H(x) = sgn (x − Cn)(x + 1) for x ∈ R \ ([−1, 1] ∪ [Bn, Cn]);

hence

(3.20) lim
n

x2 − 1√
H(x)

=
z2 − 1

z2 − 2cz + 1
,

uniformly on compact sets of C \ {c}. Next let us prove the convergence statement
from (3.18). Since x − ā and Φ(z) is zero at z̄1, and since (recall |z1| < 1 and
τ 
= z̄1 ∈ C \R) |Φ( 1

z̄1
)| → ∞ as n → ∞, it follows by (3.15) that the expression in

(3.18) vanishes at z̄1 as n → ∞; that is, z̄1 is a zero of the numerator polynomial

(3.21) z2 − 2cz + 1 + ib∞(z2 − 1),
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which implies, by the form of the polynomial, that 1/z1 is the other zero and the
claim (3.18) is proved, taking into account that c = 1

2 (τ + 1
τ ). For the following we

note that, since z̄1 and 1/z1 are the zeros of the polynomial in (3.21), we have

(3.22) 1 + ib∞ =
z1

�z1
,

where we used (3.11). Arguing analogously as above we obtain that

(3.23) 1 + ibn
(x2 − 1)√

H(x)
−→

n→∞

(−τ )(1 − ib∞)(z − z1)(z − 1
z̄1

)
(z − τ )(1 − τz)

.

Dividing (3.15) by (x − ā) = (z − z̄1)(z − 1
z̄1

)/(2z) we obtain the assertion finally
by simple straightforward calculation using (3.17)–(3.23). �
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