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A RECIPROCITY THEOREM
FOR CERTAIN HYPERGEOMETRIC SERIES

BRUCE C. BERNDT AND DIMITRIS KOUKOULOPOULOS

(Communicated by Ken Ono)

Abstract. A reciprocity theorem for certain infinite series of gamma func-
tions found in Chapter 14 of Ramanujan’s second notebook is proved and
generalized.

1. Introduction

In Entry 2 of Chapter 14 in his second notebook [4], Ramanujan states a beautiful
reciprocity theorem (with no hypotheses or proof) for certain hypergeometric series.
In his notebooks [4], Ramanujan recorded many “reciprocity theorems” or “modular
relations” for infinite series, but we are unaware of any other reciprocity theorem
for hypergeometric series, either in Ramanujan’s notebooks or elsewhere in the
literature, other than the theorem below.

Theorem 1.1. Let x, y, m, and n be complex numbers such that Re(m + n) > 0
and xy �= 0. Suppose that Γ(1 + xz) and Γ(1 + yz), as functions of z, have no
coincident poles, and also suppose that z = 1 is not a pole of either function. Let

S(m, n; x, y) :=
∞∑

k=1

(−1)k−1Γ(1 − ky/x)
Γ(m − k + 1)Γ(n + 1 − ky/x)Γ(k)(x + k)

.

Then

(1.1) S(m, n; x, y) + S(n, m; y, x) =
Γ(x + 1)Γ(y + 1)

Γ(x + m + 1)Γ(y + n + 1)
.

The proof of Theorem 1.1 given by the first author in [2] and [3, pp. 245–
246] should have provided readers with more details in the application of Stirling’s
formula [1, p. 21]

(1.2) Γ(z) ∼
√

2πzz−1/2e−z,

as |z| → ∞ in {z : |arg z| ≤ π − δ}, where δ > 0 is fixed.
The purpose of this paper is to not only provide a more complete proof of The-

orem 1.1 but also establish a considerable generalization of (1.1). Observe that the
left-hand side of (1.1) may be regarded as a quasi-partial fraction decomposition of
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the right-hand side, where we regard the right-hand side as a function of two com-
plex variables x and y. After proving our generalization in Section 2, we conclude
our paper with a couple corollaries and remarks in Section 3.

2. A generalization of Theorem 1.1

Theorem 2.1. Let x1, . . . , xr and m1, . . . , mr be complex numbers such that
Re(m1 + · · · + mr) > 0 and x1 · · ·xr �= 0, where r is a positive integer at least
equal to 2. Suppose that Γ(1+ x1z), . . . , Γ(1+ xrz), as functions of z, have no co-
incident poles and also suppose that z = 1 is not a pole of any of these r functions.
Let

Gj,k(x1, . . . , xr) :=
r∏

µ=1
µ �=j

Γ(1 − kxµ/xj)
Γ(mµ + 1 − kxµ/xj)

and

Sj(m1, . . . , mr; x1, . . . , xr) :=
∞∑

k=1

(−1)k−1Gj,k(x1, . . . , xr)
Γ(mj − k + 1)Γ(k)(xj + k)

.

Then

(2.1)
r∑

j=1

Sj(m1, . . . , mr; x1, . . . , xr) =
Γ(x1 + 1) · · ·Γ(xr + 1)

Γ(x1 + m1 + 1) · · ·Γ(xr + mr + 1)
.

Proof. Throughout the proof, all implied constants in our upper bound estimates
depend upon xj and mj , 1 ≤ j ≤ r. Define

(2.2) f(z) :=
Γ(1 + x1z) · · ·Γ(1 + xrz)

Γ(m1 + 1 + x1z) · · ·Γ(mr + 1 + xrz)
1

z − 1
.

Let Cn, n > 0, denote a square centered at the origin with vertical sides through
±Nn and horizontal sides through ±iNn. We assume that the sequence {Nn},
tending to ∞ as n → ∞, is chosen so that the squares Cn remain at a bounded
distance away from the poles of f(z). We apply the residue theorem to

(2.3)
1

2πi

∫
Cn

f(z)dz =
1

2πi

∫
γn

(f(z) − f(−z)) dz,

where γn is that portion of Cn lying in the right half-plane. Let Rz0 denote the
residue of f(z) at a pole z0.

First, f(z) has a pole at z = 1, which is simple by hypothesis, and it is easy to
see that

(2.4) R1 =
Γ(1 + x1) · · ·Γ(1 + xr)

Γ(m1 + 1 + x1) · · ·Γ(mr + 1 + xr)
.

Second, since Γ(z) has a simple pole at z = −k with residue (−1)k/k!, for each
nonnegative integer k [1, p. 7], we see that, for 1 ≤ j ≤ r, Γ(1 + xjz) has a simple
pole at z = −k/xj , k ≥ 1, with residue

(2.5)
(−1)k−1

xj(k − 1)!
.

By a simple calculation with the use of (2.5), it follows that

(2.6) R−k/xj
=

(−1)kGj,k(x1, . . . , xr)
(k − 1)!Γ(mj + 1 − k)(xj + k)

.
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We next examine f(z) on the contour γn. If Re xj > 0, we apply Stirling’s
formula (1.2) to both Γ(1 + xjz) and Γ(mj + 1 + xjz). However, if Re xj < 0, we
first apply the reflection formula for the gamma function to each of these gamma
functions before applying Stirling’s formula. To that end,

(2.7)
Γ(1 + xjz)

Γ(mj + 1 + xjz)
=

Γ(−mj − xjz)
Γ(−xjz)

sin π(−mj − xjz)
sin π(−xjz)

.

Since
sin π(mj + xjz)

sin π(xjz)
= cos(πmj) + sin(πmj) cot(πxjz),

and since, by the choice of our contour Cn, | cot(πxjz)| �xj
1, we find that∣∣∣∣ sin π(mj + xjz)

sin π(xjz)

∣∣∣∣ � 1.

Hence, from (2.7) and Stirling’s formula (1.2), we can deduce that

(2.8)
Γ(1 + xjz)

Γ(mj + 1 + xjz)
= O

(
|z|−Re mj

)
,

as |z| → ∞ on γn. (In fact, a weaker asymptotic formula than Stirling’s formula
could have been employed in (2.8) and (2.10) [1, p. 29, eqn. (1.4.3)].) If Re xj > 0,
then we also deduce (2.8) by direct applications of Stirling’s formula.

The examination of f(−z) on γn is similar. However, in this case, if Re xj < 0,
we can apply Stirling’s formula directly to each quotient

(2.9)
Γ(1 − xjz)

Γ(mj + 1 − xjz)
,

while if Re xj > 0, we must first use the reflection formula on each of the gamma
functions in (2.9) before applying Stirling’s formula. In either case, we obtain the
upper bound

(2.10)
Γ(1 − xjz)

Γ(mj + 1 − xjz)
= O

(
|z|−Re mj

)
.

Hence, using (2.8) and (2.10), 1 ≤ j ≤ r, as |z| tends to ∞ on γn, we conclude
that

(2.11) f(z) = O
(
|z|−Re(m1+···+mr)−1

)
.

Therefore, since Re(m1 + · · · + mr) > 0, by (2.2) and (2.3),

(2.12)
1

2πi

∫
Cn

f(z)dz = o(1),

as n tends to infinity.
Finally, applying the residue theorem in (2.3), letting n → ∞, and using (2.12),

(2.4), and (2.6), we conclude that

Γ(1 + x1) · · ·Γ(1 + xr)
Γ(m1 + 1 + x1) · · ·Γ(mr + 1 + xr)

+
r∑

j=1

∞∑
k=1

(−1)kGj,k(x1, . . . , xr)
(k − 1)!Γ(mj + 1 − k)(xj + k)

= 0,

from which (2.1) is immediate. �
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3. Corollaries and concluding remarks

Observe that if we let r = 2, x1 = x, x2 = y, m1 = m, and m2 = n in Theo-
rem 2.1, we obtain Ramanujan’s Theorem 1.1. If we further suppose in Theorem
1.1 that m and n are nonnegative integers, then (1.1) reduces to the quasi-partial
fraction decomposition (in two variables)

(3.1)
m∑

k=1

(−1)k−1

(1 − ky/x)n(k − 1)!(m − k)!(x + k)

+
n∑

k=1

(−1)k−1

(1 − kx/y)m(k − 1)!(n − k)!(y + k)
=

1
(x + 1)m(y + 1)n

,

where

(a)0 := 1, (a)n := a(a + 1) · · · (a + n − 1), n ≥ 1.

Of course, a similar result can be derived from Theorem 2.1 when m1, . . . , mr are
all nonnegative integers. If m = 0, then (3.1) reduces to the genuine partial fraction
expansion

n∑
k=1

(−1)k−1

(k − 1)!(n − k)!(y + k)
=

1
(y + 1)n

.

The function 1/(z − 1) in the definition (2.2) of f(z) can be replaced by

R(z) :=
p(z)
q(z)

,

where p(z) and q(z) are polynomials such that Re(m1 + · · · + mr) + deg q(z) −
deg p(z) > 1, to obtain a generalization of Theorem 2.1. In particular, if we set
R(z) ≡ 1 and assume that Re(m + n) > 1, then

1
x

∞∑
k=1

(−1)k−1Γ(1 − ky/x)
Γ(m − k + 1)Γ(n + 1 − ky/x)Γ(k)

= −1
y

∞∑
k=1

(−1)k−1Γ(1 − kx/y)
Γ(n − k + 1)Γ(m + 1 − kx/y)Γ(k)

.

(3.2)

Thus, if we set m = n, z = −x/y, and

F (z) :=
∞∑

k=1

(−1)k−1Γ(1 + kz)
Γ(n − k + 1)Γ(n + 1 + kz)Γ(k)

,

then we can deduce from (3.2) that

(3.3) F

(
1
z

)
= zF (z),

provided that Re n > 1
2 and z /∈ Q ∩ (−∞, 0]. In particular, (3.3) holds when

Re n > 1
2 and Re z > 0.

Since the proof of the more general theorem is similar to that of Theorem 2.1,
we do not give it here.
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