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A PAYNE-WEINBERGER EIGENVALUE ESTIMATE
FOR WEDGE DOMAINS ON SPHERES

JESSE RATZKIN AND ANDREJS TREIBERGS

(Communicated by Chuu-Lian Terng)

Abstract. A Faber-Krahn type argument gives a sharp lower estimate for
the first Dirichlet eigenvalue for subdomains of wedge domains in spheres,
generalizing the inequality for the plane, found by Payne and Weinberger.
An application is an alternative proof to the finiteness of a Brownian motion
capture-time estimate.

Many lower estimates for the first Dirichlet eigenvalue of a domain stem from
an inequality between a line integral and an area integral [Ch, pp. 85–133], [LT,
pp. 37–40], [P, pp. 462–467]. These inequalities are often sharp, in that equality
of the eigenvalues implies a geometric equality. For example, the Faber-Krahn
inequality [F], [K], proved by comparing level sets of the eigenfunction using the
classical isoperimetric inequality, reduces to equality for round disks. Cheeger’s
inequality [C] bounds the eigenvalue from below in terms of the minimal ratio of
area to length of subdomains.

Our main result, Theorem 1, is a lower bound for the first Dirichlet eigenvalue for
a domain contained in a wedge in a two-sphere, generalizing an eigenvalue estimate
of Payne and Weinberger [PW], [P, p. 462] for planar domains contained in a
wedge. As an application, we give an alternative proof of our Brownian capture-
time estimate [RT]. Curiously, our proof does not seem to carry over to domains
contained in a wedge in the hyperbolic plane.

If (ρ, θ) are polar coordinates on S
2, recall that the round metric is given by

ds2 = dρ2 + sin2ρ dθ2.

Let W = {(ρ, θ) : 0 ≤ θ ≤ π/α, 0 ≤ ρ < π} be the sector in S
2 of angle π/α,

for α > 1, and let G be a domain such that G ⊂ W is compact. Also define the
truncated sector S(r) := {(ρ, θ) : 0 ≤ θ ≤ π/α, 0 ≤ ρ ≤ r}. Observe that

(1) w = tanα
(ρ

2

)
sin αθ

is a positive harmonic function in W , with zero boundary values.

Theorem 1. For every subdomain G with compact G ⊂ W, we have the estimate

(2) λ1(G) ≥ λ1(S(r∗)),
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where r∗ is chosen such that

I(G) =
∫

G

w2 da =
∫
S(r∗)

w2 da.

Equality holds if and only if G is the sector S(r∗) almost everywhere.

Our argument is similar to the proof of the planar version in [PW]. Our main
tool is an isoperimetric-type inequality, Lemma 3, which we prove in Section 1. We
use this inequality to estimate the Rayleigh quotient of a test function, proving
Theorem 1, in Section 2. Finally, in Section 3, we apply our eigenvalue estimate to
a problem in Brownian pursuit.

1. Isoperimetric inequality

In this section we prove an isoperimetric inequality for moments of inertia of a
domain G ⊂ W . Later we will use this inequality to estimate the Raleigh quotient
of admissible functions in G.

We begin by stating a version of Szegő’s Lemma [Sz]:

Lemma 2. Let ψ, φ : [0, ω) → [0,∞) be locally integrable functions with ψ nonneg-
ative and φ nondecreasing. Let Φ(y) =

∫ y

0
φ(t) dt and Ψ(x) =

∫ y

0
ψ(s) ds be their

primitives. Let E ⊂ [0, ω) be a bounded measurable set. Then

(3) Φ
(∫

E

ψ(x) dx

)
≤

∫
E

φ(Ψ(x)) ψ(x) dx.

For φ increasing, equality holds if and only if the measure of E ∩ [0, R] is R.

Proof. Let µ be the Lesbesgue measure with line element dx and define the measure
ν by dν = ψ dx. Then ν is absolutely continuous with respect to µ and, using the
Radon–Nikodym Theorem, when we change variables y = Ψ(x) we have dy =
ψ(x)dx. Let E′ be the image of E under the map Ψ, with characteristic function
χE′ , so that Φ(

∫
E′ dy) = Φ(

∫
E

ψ(x)dx). Next, because φ is nondecreasing, for
y ≥ 0,

φ

(∫ y

0

χE′dy

)
≤ φ(y).

Moreover, for φ increasing, equality holds if and only if µ(E′ ∩ [0, y]) = y. We
multiply this inequality by χE′ and integrate:∫ ω

0

φ

(∫ y

0

χE′dt

)
χE′dy ≤

∫ ω

0

φ(y)χE′dy =
∫

E′
φ(y)dy =

∫
E

φ(Ψ(x))ψ(x)dx.

On the other hand,∫ ω

0

φ

(∫ y

0

χE′dt

)
χE′dy = Φ

(∫
E′

dy

)
= Φ

(∫
E

ψ(x)dx

)
.

Putting these two inequalities together yields the inequality (3). �
Lemma 3. Let G ⊂ W be a domain with compact closure. Then there is a function
Υα = F ◦ Z−1 so that

(4)
∫

∂G

w2 ds ≥ π

2α
Υα

(
2α

π

∫
G

w2 da

)
.

Here F(ρ) = tan2α(ρ/2) sin ρ and Z is given by (11). Equality holds if and only if
G is a sector S(r) almost everywhere.
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Proof. Map the domain G into a domain G̃ in the upper half-plane using the trans-
formation

x = f(ρ) cos αθ, y = f(ρ) sin αθ,

where we will choose f to satisfy formula (8). The Euclidean line element is

dx2 + dy2 = ḟ2 dρ2 + α2f2 dθ2.

We claim that the map satisfies

(5) α2 tan4α
(ρ

2

)
sin4 αθ (dρ2 + sin2ρ dθ2) ≥ y4(dx2 + dy2).

For this to be true pointwise, we need the following inequalities to hold:

α tan2α
(ρ

2

)
≥ f2 ḟ =

(
f3

3

)′
,(6)

sin ρ tan2α
(ρ

2

)
≥ f3.(7)

Expand sin ρ = 2 sin(ρ/2) cos(ρ/2) and use equality in inequality (7) to define f :

(8) f = 2
1
3 sin

1+2α
3

(ρ

2

)
cos

1−2α
3

(ρ

2

)
.

Differentiating, we see that

f2 ḟ = tan2α
(ρ

2

)[
2α + cos ρ

3

]
,

which implies that the inequality (6) holds as well.
Equation (1) and inequality (5) imply that

α

∫
∂G

w2 ds = α

∫
∂G

w2

√
dρ2 + sin2ρ dθ2 ≥

∫
∂G̃

y2
√

dx2 + dy2 := M(∂G̃).

The right side is the moment of inertia of a uniform mass distribution of the curve
∂G̃ relative to the y-axis. Among all domains with given fixed surface moment∫

G̃

y2 dx dy,

the semicircular arcs centered on the y-axis minimize M(∂G̃) [PW, Section 2].
Compute M(∂G̃) and M(G̃) in the case where ∂G̃ is a semicircle of radius R:

M(∂G̃) =
∫ π

0

R3 sin2 tdt =
πR3

2
, M(G̃) =

∫ π

0

∫ R

0

r3 sin2 θdr dθ =
πR4

8
.

Solving for R in the formula for M(G̃) above and using the fact that semicircles
are minimizers, we see that for a general domain G̃ in the upper half-plane,

M(∂G̃) ≥ 2
5
4 π

1
4

{∫
G̃

y2dx dy

} 3
4

.
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Returning to the original variables, dx dy = αfḟ dρ dθ, so∫
∂G

w2ds ≥ 1
α

2
5
4 π

1
4

{∫
G

f2 sin2(αθ) αfḟ dρ dθ

} 3
4

=
( π

2α

) 1
4

{∫
G

4
3

[
tan2α

(ρ

2

)
sin ρ

] 1
3

[2α + cos ρ] tan2α
(ρ

2

)
sin2αθ dρ dθ

} 3
4

.

(9)

Choose β so that
2α + 2
2α + 1

≤ β <
4
3
,

which is possible because α > 1. Regroup the integral inside the braces:

I =
4
3β

∫
G

[
tan2α

(ρ

2

)
sin ρ

] 4
3−β

× [2α + cos ρ] β
[
tan2α

(ρ

2

)
sin ρ

]β−1

tan2α
(ρ

2

)
dρ sin2αθ dθ.

Use Lemma 2, with

Ψ =
[
tan2α

(ρ

2

)
sin ρ

]β

⇒ ψ = β
(
tan2α

(ρ

2

)
sin ρ

)β−1

[2α + cos ρ] tan2α
(ρ

2

)
and

φ(z) =
4
3β

z
4
3β −1 ⇒ Φ(z) = z

4
3β .

So that φ is increasing, we require β < 4
3 . If Hθ = {ρ ∈ [0, π) : (ρ, θ) ∈ G} is the

slice of G in the ρ-direction, then Szegő’s inequality (3) implies

(10) I ≥
∫ π/α

0

(
β

∫
Hθ

tan2αβ
(ρ

2

)
sinβ−1ρ [2α + cos ρ] dρ

) 4
3β

sin2αθ dθ.

Equality holds if and only if Hθ = [0, r(θ)] is an interval a.e. Next we let p = 4
3β > 1,

q = 4
4−3β , and define the measure dν = sin2 αθ dθ. Hölder’s inequality implies

[∫ π/α

0

(
β

∫
Hθ

tan2αβ
(ρ

2

)
sinβ−1(ρ) [2α + cos ρ] dρ

)p

dν

] 1
p

[∫ π/α

0

dν

] 1
q

≥
∫ π/α

0

β

∫
Hθ

tan2αβ
(ρ

2

)
sinβ−1(ρ) [2α + cos ρ] dρ dν.

Raising both sides of this inequality to the power p, rearranging, and using the fact
that ∫ π/α

0

dν =
∫ π/α

0

sin2 αθ dθ =
π

2α
,

(10) becomes

I ≥
(

2α

π

) 4
3β −1

(
β

∫ π/α

0

∫
Hθ

tan2αβ
(ρ

2

)
sinβ−1ρ [2α + cos ρ] dρ sin2αθ dθ

) 4
3β

.



PAYNE-WEINBERGER EIGENVALUE ESTIMATE FOR WEDGE DOMAINS 2303

We regroup the inside integral again:

J =
∫ π/α

0

∫
Hθ

tan2α(β−1)
(ρ

2

)
sinβ−2ρ [2α + cos ρ] tan2α

(ρ

2

)
sin ρ dρ sin2αθ dθ.

Let us denote

(11) Z(r) =
∫ r

0

tan2α
(ρ

2

)
sin ρ dρ

and define r̄(r, θ) by

Z(r̄) =
∫ r

0

tan2α
(ρ

2

)
χHθ

(ρ) sin ρ dρ,

where χH denotes the characteristic function of H. The integrand tan2α(ρ/2) sin ρ is
positive and increasing for the range of ρ we are considering, and so r̄(r, θ) ≤ r with
equality if and only if Hθ ∩ [0, r] = [0, r] a.e. If we require that (2α + 1)β ≥ 2α + 2,
then the factor

gβ(ρ) = tan2α(β−1)
(ρ

2

)
sinβ−2ρ [2α + cos ρ]

is increasing in ρ. Thus we can define Φβ by

(12) φβ(y) = βgβ ◦ Z−1(y), Φβ(y) =
∫ y

0

φβ(s) ds.

Observe that Z and gβ are increasing, so φβ is increasing and Φβ is convex. Using
gβ(r̄(ρ, θ)) ≤ gβ(ρ), we have

J ≥
∫ π/α

0

∫
Hθ

gβ(r̄(ρ, θ)) tan2α
(ρ

2

)
sin ρ dρ sin2αθ dθ

=
1
β

∫ π/α

0

∫
Hθ

φβ

(∫ ρ

0

tan2α

(
ρ′

2

)
χHθ

(ρ′) sin ρ′ dρ′
)

tan2α
(ρ

2

)
sin ρ dρ sin2αθ dθ.

Now, using Lemma 2 with ψ(ρ) = tan2α(ρ/2) sin(ρ) χHθ
and φβ given by equa-

tion (12), we have

J ≥ 1
β

∫ π/α

0

Φβ

(∫
Hθ

tan2α
(ρ

2

)
sin ρ dρ

)
sin2αθ dθ

with equality if and only if Hθ = [0, r(θ)] is an interval a.e. Next, by Jensen’s
inequality (with the measure given by dν = sin2 αθ dθ),

J ≥ π

2αβ
Φβ

(
2α

π

∫ π/α

0

∫
Hθ

tan2α
(ρ

2

)
sin2αθ sin ρ dρ dθ

)

with equality if and only if r̄(θ) is a.e. constant. Substituting back, we get

I ≥
(

2α

π

) 4
3β −1

(βJ)
4
3β

≥ π

2α

{
Φβ

(
2α

π

∫ π/α

0

∫
Hθ

tan2α
(ρ

2

)
sin2αθ sin ρ dρ dθ

)} 4
3β

.



2304 JESSE RATZKIN AND ANDREJS TREIBERGS

Reinserting this back into (9) yields

∫
∂G

w2 ds ≥
( π

2α

) 1
4

I
3
4 ≥ π

2α
Φ

1
β

β

(
2α

π

∫ π/α

0

∫
Hθ

tan2α
(ρ

2

)
sin2αθ sin ρ dρ dθ

)

=
π

2α
Φ

1
β

β

(
2α

π

∫
G

w2da

)
,

(13)

where equality holds if and only if also ρ(θ) is constant a.e. Notice that the right-
hand side of this inequality is always bounded by

∫
∂G

w2ds, and so we can use the
Dominated Convergence Theorem to take a limit as β → 4

3 from below. In other
words, (13) also holds for β = 4

3 .

Let us compute Φ
1
β

β (Y ). Since it depends only on (12), it would be the same for
any function v∗ whose level sets G∗

η = {x : v∗(x) ≥ η} give the same value for the
integral of w2 (see (16) below). In this case, we choose a spherical rearrangement
whose levels are the sectors G∗

η = S(r(η)). Expressing things in terms of r(η), we
have

(14)
2α

π
y =

2α

π
ζ(η) =

2α

π

∫
S
(
r(η)

) w2 da = Z
(
r(η)

)
,

so, changing variables s = Z(r) yields

Φβ (Y ) =
∫ Y

0

φβ(s) ds

= β

∫ Z−1(Y )

0

gβ(r) tan2α
(r

2

)
sin r dr

= β

∫ Z−1(Y )

0

[
tan2α

(r

2

)
sin r

]β−1

[2α + cos r] tan2α
(r

2

)
dr

=
[
tan2α

(
Z−1(Y )

2

)
sin(Z−1(Y ))

]β

.(15)

Observe that we get the same equation (13) for all β. Thus we set Υα = Φ
1
β

β in (13),
giving (4). �

It is precisely at inequality (6) where the analogous proof in the hyperbolic
case fails. In the hyperbolic case, the harmonic weight function is w(ρ, θ) =
tanh2α(ρ/2) sin(αθ), and versions of equations (5), (8) hold with cos replaced by
cosh and sin replaced by sinh. This choice of f gives us

f2 ḟ = tanh2α
(ρ

2

)[
2α + cosh ρ

3

]
,

much like the formula above, but this does not yield f2 ḟ ≤ α tanh2α(ρ/2), because
cosh ρ grows exponentially with ρ. To remedy this problem, one can try to vary
the power of sinh(ρ/2) or cosh(ρ/2); however this will only yield a worse inequality
for f2 ḟ .
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2. Estimate of Rayleigh quotient

Theorem 1 now follows as in [PW]. Let G ⊂ S
2 be a domain that lies in the wedge

W = {(ρ, θ) : 0 ≤ ρ, 0 ≤ θ ≤ π/α}. It suffices to estimate the Rayleigh quotient
for admissible functions u ∈ C2

0 (G) that are twice continuously differentiable and
compactly supported in G. Any admissible function may be written u = vw using
the harmonic function (1) and v ∈ C2

0 (G). The divergence theorem shows that∫
G

|du|2 da =
∫

G

w2 |dv|2 da.

Let Gt denote the points of G satisfying v ≥ t. Putting

ζ(t) =
∫

Gt

w2 da,(16)

we see that ζ(0) = ζ̂ ≥ ζ(t) ≥ 0 = ζ(v̂), where v̂ = maxG v,

∂ζ

∂t
= −

∫
∂Gt

w2

|dv| ds

and ∫
G

w2 v2 da =
∫ v̂

0

2t ζ(t) dt =
∫ ζ̂

0

t2dζ.

Then, using the coarea formula, Schwarz’s inequality, Lemma 3, and changing
variables to y = ζ(t), we find that inequality (4) implies

∫
G

w2 |dv|2 da ≥
∫ v̂

0

{∫
∂Gt

w2 |dv| ds

}
dt(17)

≥
∫ v̂

0

{∫
∂Gt

w2 ds
}2

∫
∂Gt

w2

|dv| ds

dt

≥ π2

4α2

∫ v̂

0

Υ2
α

(
2α

π
ζ(t)

)

−∂ζ

∂t

dt.

Changing variables to y = ζ(t) we have

(18)
∫ ζ̂

0

Υ2
α

(
2α

π
y

) (
∂t

∂y

)2

dy ≥ µ

∫ ζ̂

0

t(y)2 dy,

where µ is the least eigenvalue of the boundary value problem

∂

∂y

(
Υ2

α

(
2α

π
y

)
∂q

∂y

)
+ µ q = 0,(19)

q(ζ̂) = 0, lim
y→0+

Υ2
α

(
2α

π
y

)
∂q

∂y
= 0.(20)
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Now perform the change of variables in (19) and (20) given by (14) so that the
domain is now [0, r∗], Z(r∗) = 2α

π ζ̂, and µ is now the least eigenvalue of

∂

∂r

(
tan2α

(r

2

)
sin(r)

∂q

∂r

)
+

π2µ

4α2
tan2α

(r

2

)
sin(r)q = 0,(21)

q(r∗) = 0, lim
r→0+

tan2α
(r

2

)
sin(r)

∂q

∂r
= 0.(22)

Note that (21) is the eigenequation for the spherical sector S(r∗). Hence π2µ
4α2 =

λ1(S(r∗)).
Reassembling, using equations (17) and (18), we get the inequality∫

G

|du|2 da ≥ λ1

(
S(r∗)

) ∫
G

u2 da,

which implies the inequality (2).

3. Computation of the lower bound and applications

The eigenvalue λ∗ = λ1(S(r∗)) occurs as the eigenvalue of the problem (21), (22)
on [0, r∗], which may be rewritten as

sin(r) q′′ + [2α + cos(r)] q′ + λ∗ sin(r) q = 0;

lim
r→0−

tan2α
(r

2

)
sin(r)

dq

dr
(r) = 0, q(r∗) = 0.

Making the change of variable x = 1
2 (1 − cos r) transforms the ODE to the hyper-

geometric equation on [0, 1]:

x(1 − x) ÿ + [c − (a + b + 1)x] ẏ − ab y = 0,

lim
x→0−

xα+1 dy

dr
(x) = 0, q(x∗) = 0,

with

a, b =
1 ±

√
1 + 4λ∗

2
, c = α + 1.

The solution to the hypergeometric equation is Gauß’s ordinary hypergeometric
function, given by

2F1(a, b; c; x) = 1 +
ab

c

x

1!
+

a(a + 1)b(b + 1)
c(c + 1)

x2

2!

+
a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)
x3

3!
+ · · · .

We find the eigenvalue by a shooting method. Given r∗, λ∗ is the first positive root
of the function

(23) λ �→ 2F1

(
1 −

√
1 + 4λ

2
,
1 +

√
1 + 4λ

2
; α + 1;

1 − cos r∗

2

)
.

Consider the example of the geodesic triangle T ⊂ S
2 which is a face of the

regular tetrahedral tessellation, whose vertices in the unit sphere could be taken
as

(
1√
3
,±

√
2
3 , 0

)
and

(
− 1√

3
, 0,±

√
2
3

)
. The distance between vertices is ε =

cos−1
(
−1

3

)
. The diameter, which equals the distance from vertex to center of
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Table 1. Domains and eigenvalues. In this table δ =
cos−1(−1/

√
3) and ε = cos−1(−1/3). Values not described are

taken from [RT].

G I(G) r∗ λ1(G) λ1(S(r∗))

W ∞ π (α + 1)α (α + 1)α

S(π
2 ) π

2αZ
(

π
2

)
π
2 (α + 1)(α + 2) (α + 1)(α + 2)

S(r) π
2αZ(r) r λ∗ λ∗

W , α = 3
2 ∞ 3.14159265 3.75 3.75

S (δ), α = 3
2 2.07876577 2.18627604 5.00463538 5.00463538

S(ε), α = 3
2 0.90871989 1.91063324 6.19561775 6.19561775

S(π
2 ), α = 3

2 0.30118555 1.57079633 8.75 8.75

T 1.88896324 2.15399460 5.1590. . . 5.11641465

T̂ 1.90831355 2.15742981 ? 5.10421518

the opposite edge, is δ = cos−1
(
− 1√

3

)
. T fits inside a wedge sharing a vertex of

angle 2π
3 . Writing

T =
{

(ρ, θ) : 0 ≤ θ ≤ 2π

3
, 0 ≤ ρ ≤ r(θ)

}
,

we find

r(θ) =
π

2
+ arctan

(
cos(θ − π

3 )√
2

)
.

At the vertex we have α = 3
2 so that

Z(r) =
∫ r

0

tan3
(ρ

2

)
sin ρ dρ = 4 tan

(r

2

)
+ sin r − 3r.

λ1(T ) was found numerically in [RT]. Using the computer algebra system Maple,
we numerically integrate

I(T ) =
∫ π/α

0

Z(r(θ)) sin2(αθ) dθ

and solve π
2αZ(r∗) = I(T ) for r∗ and (23) for λ∗ to get the other values in the T

line in Table 1.
To avoid the quadrature, we observe the estimate

Z(r(θ)) ≤ T (θ) := A1 + A2 cos
(
θ − π

3

)
+ A3

(
1 − cos(6θ)

)
,



2308 JESSE RATZKIN AND ANDREJS TREIBERGS

where A1 and A2 are chosen so that the functions agree at θ = 0 and θ = π
3

and the A3 is chosen to make the second derivatives agree at π
3 . The inequality

follows since the second derivative of the difference goes from negative to positive
in 0 < θ < π/3. This corresponds to the larger domain T̂ whose radius function is
r̂(θ) = Z−1(T (θ)). Then

(24)
π

2α
Z(r̂∗) =

∫
T̂

w2 da =
∫ 2π

3

0

T (θ) sin2

(
3
2
θ

)
dθ =

π

3
A1 +

9
√

3
16

A2 +
π

3
A3.

Using these values we obtain the last row of Table 1. By eigenvalue monotonicity,
if T̂ ⊃ T , then λ1(T ) ≥ λ1(T̂ ).

This eigenvalue estimate provides an alternative to our argument [RT] in a Brow-
nian pursuit problem. We finished the missing (n = 4) case in a proof by Li and
Shao [LS] of the conjecture of Bramson and Griffeath [BG].

Corollary 4. Suppose the prey X0(t) is chased by n pursuers X1(t), . . . , Xn(t),
all doing independent standard Brownian motions on the line. Suppose that the
pursuers start to the left of the prey Xj(0) < X0(0) for all j = 1, . . . , n. Then the
expected capture time is finite if and only if n ≥ 4.

In fact, for the capture time for n pursuers,

τn = inf{t > 0 : Xj(t) ≥ X0(t) for some j ≥ 1}
there are finite constants a(n) and C depending on the initial position and the
eigenvalue of the link of the pursuit cone [DB] so that the probability

P(τn > t) ∼ C t−a as t → ∞.

The proof shows a(n) > 1 and thus Eτn < ∞ if and only if n ≥ 4. Our eigenvalue
estimates give the following corresponding bounds on the decay rates since they
are related by a formula to the eigenvalue estimates [RT]. From the estimate on
T̂ , a(3) ≥ .90695886 and so a(4) ≥ 1.00029446; from the estimate of T involving
quadrature, a(3) ≥ .90827616 and a(4) ≥ 1.00151234.

Proof. Details are provided in [RT]. Finiteness of the expectation of τ4 follows if it
can be shown that λ1(T ) > 5.101267527. The lower eigenvalue bound is given by
Theorem 1 applied to T and depends on either the numerical integration of I(T )
or its upper bound by the quadrature free estimate of (24). �
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[K] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann.
94 (1925), 97–100. MR1512244

[LT] P. Li and A. Treibergs, Applications of eigenvalue techniques to geometry. Contemporary
Geometry: J.-Q. Zhong Memorial Volume (H.-H. Wu, ed.). University Series in Mathemat-
ics, Plenum Press, New York, 1991, pp. 22–54. MR1170358 (93i:58159)

[LS] W. Li and Q.-M. Shao, Capture time of Brownian pursuits. Prob. Theory and Rel. Fields
121 (2001), 30–48. MR1857107 (2002h:60173)

[P] L. Payne, Isoperimetric inequalities and their applications. SIAM Review 9 (1967), 453–488.
MR0218975 (36:2058)

[PW] L. Payne and H. Weinberger, A Faber-Krahn inequality for wedge-like membranes. Journal
of Mathematics and Physics 39 (1960), 182–188. MR0128158 (23:B1202)

[RT] J. Ratzkin and A. Treibergs, A capture problem in Brownian motion and eigenvalues of
spherical domains. Trans. Amer. Math. Soc., 361 (2009), 391–405.
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