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THE NUMBER OF MINIMAL RIGHT IDEALS OF βG

YEVHEN ZELENYUK

(Communicated by Alexander N. Dranishnikov)

Abstract. Let G be an infinite Abelian group of cardinality κ and let βG
denote the Stone-Čech compactification of G as a discrete semigroup. We

show that βG contains 22κ
many minimal right ideals.

Given a discrete semigroup S, the operation can be naturally extended to the
Stone-Čech compactification βS of S making βS a compact right topological semi-
group with S contained in its topological center. That is, for each p ∈ βS, the right
translation

βS � x �→ xp ∈ βS

is continuous, and for each a ∈ S, the left translation

βS � x �→ ax ∈ βS

is continuous.
We take the points of βS to be the ultrafilters on S, the principal ultrafilters

being identified with the points of S, and S∗ = βS \ S. The topology of βS is
generated by taking as a base the subsets of the form

A = {p ∈ βS : A ∈ p},
where A ⊆ S. For p, q ∈ βS, the ultrafilter pq has a base consisting of subsets of
the form ⋃

{xBx : x ∈ A}
where A ∈ p and Bx ∈ q.

The semigroup βS is interesting both for its own sake and for its applications
to combinatorial number theory and to topological dynamics. An elementary in-
troduction to βS can be found in [5].

As any compact Hausdorff right topological semigroup does, βS has a smallest
two-sided ideal K(βS) which is a disjoint union of minimal right ideals and a disjoint
union of minimal left ideals. The intersection of a minimal right ideal and a minimal
left ideal is a group, and all these groups are isomorphic. The idempotents of a
minimal right (left) ideal form a right (left) zero semigroup, that is, one satisfying
the identity xy = y (respectively, xy = x). See [5, Sections 1.7 and 2.2] for detailed
information about this.
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In [2] and [1], respectively, it was shown that the semigroup βN contains 22ω

minimal left ideals and 22ω

minimal right ideals. The first result has been fully
extended to an arbitrary infinite discrete cancellative semigroup S by proving that
βS contains 22|S|

minimal left ideals [5, Theorem 6.42]. However, the problem of
counting the minimal right ideals of βS turned out to be more difficult. It was only
established that for every infinite discrete cancellative semigroup S, βS contains at
least 22ω

minimal right ideals [5, Corollary 6.41].
The aim of this note is to prove the following result.

Theorem 1. For every infinite discrete Abelian group G of cardinality κ, βG con-
tains 22κ

many minimal right ideals.

The proof of Theorem 1 involves some additional concepts.
Recall that the Bohr compactification of a topological group G is a compact

topological group bG together with a continuous homomorphism e : G → bG such
that e(G) is dense in bG and the following universal property holds: For every
continuous homomorphism h : G → K from G into a compact topological group K
there is a continuous homomorphism hb : bG → K such that h = hb ◦ e. In the case
where G is a discrete Abelian group, the Bohr compactification can be naturally
defined in terms of the Pontrjagin duality as follows. Let Ĝ be the dual group of
G and let Ĝd be the group Ĝ reendowed with the discrete topology. Then bG is
the dual group of Ĝd. The mapping e : G → bG is given by e(x)(χ) = χ(x), where
x ∈ G and χ ∈ Ĝd. It is injective. (See [4, 26.11 and 26.12].)

We say that filters F and G on a set X are incompatible if there are A ∈ F and
B ∈ G such that A∩B = ∅. A filter F on a topological space X is open if F has a
base of open subsets of X.

In order to prove Theorem 1, we show the following.

Theorem 2. For every infinite discrete Abelian group G of cardinality κ, there are
22κ

many pairwise incompatible open filters on bG converging to zero.

Before proving Theorem 2, let us show how it implies Theorem 1.

Proof of Theorem 1. Let T denote the Bohr topology on G, that is, the one induced
by the mapping e : G → bG, and let F be the neighborhood filter of zero of (G, T ).
By Theorem 2, there are 22κ

pairwise incompatible open filters on bG converging
to zero. Considering the restriction of the filters to e(G), we conclude that there
are pairwise incompatible open filters Fα (α < 22κ

) on (G, T ) converging to zero,
that is to say, containing F . Define a closed subset S of G∗ and for each α < 22κ

,
a closed subset Jα of S by

S =
⋂

U∈F
U \ {0} and Jα =

⋂
U∈Fα

U \ {0}.

(Here, U \ {0} = {p ∈ βG : U \ {0} ∈ p}.) Equivalently, S and Jα consist of all
nonprincipal ultrafilters on G containing F and Fα, respectively. We claim that S
is a subsemigroup of G∗ and for each α < 22κ

, Jα is a right ideal of S.
To see that S is a subsemigroup, let p, q ∈ S. We have to show that for every

U ∈ F , one has U \ {0} ∈ p + q. Without loss of generality one may assume that
U is open. For every x ∈ U \ {0}, choose Vx ∈ F such that x + Vx ⊆ U \ {0}.
Then U \ {0} =

⋃
x∈U\{0}(x + Vx). Since U \ {0} ∈ p and Vx ∈ q, we obtain that



THE NUMBER OF MINIMAL RIGHT IDEALS OF βG 2485

U \ {0} ∈ p + q. The same argument shows that for every p ∈ Rα, q ∈ S and
U ∈ Fα, one has U \ {0} ∈ p + q, which witnesses that Jα is a right ideal.

Since the filters Fα are pairwise incompatible, the right ideals Jα are pairwise
disjoint. Taking a minimal right ideal in each Jα, we obtain that there are 22κ

minimal right ideals of S. Furthermore, since (G, T ) is a subgroup of a compact
topological group, S contains all the idempotents of G∗ [6, Lemma 3], in particular,
the idempotents of K(βG). (Note that K(βG) ⊆ G∗, because G∗ is an ideal of βG.)
Consequently, S ∩ K(βG) 	= ∅. But then, by [5, Theorem 1.65],

K(S) = K(βG) ∩ S.

It follows from this that every minimal right ideal R of S is contained in a minimal
right ideal R′ of βG, and the correspondence R �→ R′ is injective.

Indeed, K(βG) is a union of minimal right ideals, so there is a minimal right
ideal R′ of βG such that R∩R′ 	= ∅. Then R∩R′ is a right ideal of S contained in
R. Consequently, R∩R′ = R, as R is minimal, and so R ⊆ R′. Since minimal right
ideals are disjoint, such an R′ is unique. To see that the correspondence R �→ R′

is injective, let R1 and R2 be minimal right ideals of S and assume that R′
1 = R′

2.
Pick any minimal left ideal L of S and let p1 and p2 be the identities of the groups
R1 ∩ L and R2 ∩ L, respectively. Being idempotents of L, p1 and p2 belong to the
same left zero semigroup, so p1 + p2 = p1, and being idempotents of R′

1 = R′
2, they

belong to the same right zero semigroup, so p1 + p2 = p2. Hence, p1 = p2, and
consequently, R1 = R2. (In fact, this correspondence is bijective, since S contains
all the idempotents of K(βG).)

It follows that the number of minimal right ideals of βG is greater than or equal
to that of S, and consequently, it is 22κ

. �
To prove Theorem 2, we need three lemmas. The first of them is an elementary

fact on infinite Abelian groups.

Lemma 1. Let G be an infinite Abelian group of cardinality κ. Then G admits a
homomorphism onto one of the following groups:

(1) Z,
⊕

ω Z(p), Z(p∞) and
⊕

p∈Q Z(p) if κ = ω,
(2)

⊕
κ Z(p) and

⊕
κ Z(p∞) if κ > ω and cf(κ) > ω,

(3)
⊕

κ Z(p),
⊕

κ Z(p∞),
⊕

p∈Q

⊕
κp

Z(p) and
⊕

p∈Q

⊕
κp

Z(p∞) if κ > ω and
cf(κ) = ω.

Here, p is a prime number and Q is an infinite subset of the primes. The symbols
Z, Z(p) and Z(p∞) denote the infinite cyclic group, the cyclic group of order p, and
the quasi-cyclic group, respectively. The symbol cf(κ) denotes the cofinality of κ.
If κ > ω and cf(κ) = ω, (κp)p∈Q is an infinite increasing sequence of uncountable
cardinals cofinal in κ, that is, supp∈Q κp = κ.

Proof. If G is finitely generated, then κ = ω and G admits a homomorphism onto
Z. Therefore, one may assume that G is not finitely generated. We first prove that
G admits a homomorphism onto a periodic group of cardinality κ.

Let {ai : i ∈ I} be a maximal independent subset of G and let A = 〈ai : i ∈ I〉
be the subgroup generated by {ai : i ∈ I}. Then A =

⊕
i∈I〈ai〉, and for every

nonzero g ∈ G, one has 〈g〉 ∩ A 	= {0}, so G/A is periodic. If |G/A| = κ, we are
done. Suppose that |G/A| < κ. Then |A| = κ and |I| = κ, because G is not finitely
generated. We show that there is a subgroup H of G and a subset I1 ⊆ I with
|I1| = κ such that G = H ⊕

⊕
i∈I1

〈ai〉.
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To this end, choose a complete set S for representatives of the cosets of A in G,
and let H0 = 〈S〉 ∩ A. Define I0 ⊂ I by

I0 = {i ∈ I : x(i) 	= 0 for some x ∈ H0},
where x(i) is the i-th coordinate of x, and put I1 = I \ I0. If G/A is finite, I0

is finite as well. If G/A is infinite, |I0| ≤ |G/A|, because |〈S〉| = |G/A| and then
|H0| ≤ |G/A|. In any case, |I0| < κ, and consequently |I1| = κ. Let

A0 = 〈ai : i ∈ I0〉, A1 = 〈ai : i ∈ I1〉 and H = 〈S ∪ A0〉.
We claim that G = H ⊕A1. Indeed, since G = 〈S ∪A0 ∪A1〉, one has H +A1 = G.
To see that H ∩A1 = {0}, let g ∈ H ∩A1. Then g = d + c0 = c1 for some d ∈ 〈S〉,
c0 ∈ A0 and c1 ∈ A1. Consequently, d = −c0 + c1 ∈ A. But then d ∈ H0 ⊆ A0.
Hence, c1 = 0, and g = 0.

Having established that G = H ⊕
⊕

i∈I1
〈ai〉, we obtain that G admits a homo-

morphism onto
⊕

i∈I1
〈ai〉, and so onto a periodic group of cardinality κ.

Now let G be a p-group. Then there is a so-called basic subgroup B of G
(see [3, Theorem 32.3]). We have that B is a direct sum of cyclic groups, say
B =

⊕
j∈J 〈bj〉, and G/B is divisible, that is, isomorphic to

⊕
λ Z(p∞), where

0 ≤ λ ≤ κ. Suppose that |G/B| = κ. Then λ > 0, and λ = κ if κ > ω. It follows
that G admits a homomorphism onto Z(p∞) if κ = ω, and onto

⊕
κ Z(p∞) if κ > ω.

Now suppose that |G/B| < κ. Then |B| = κ, and consequently |J | = κ. It follows
that G = C ⊕

⊕
j∈J1

〈bj〉 for some subgroup C of G and a subset J1 ⊂ J with
|J1| = κ (see the first part of the proof). Hence, G admits a homomorphism onto⊕

j∈J1
〈bj〉, and so onto

⊕
κ Z(p).

Finally, let G be periodic. Then G =
⊕

p∈M Gp, where M is the set of all
primes p such that the p-primary component Gp of G is nontrivial. If |Gp| = κ
for some p ∈ M , we are done, because then G admits a homomorphism onto
Gp, a p-group of cardinality κ. Suppose that |Gp| < κ for each p ∈ M . Then
M is infinite and cf(κ) = ω. If κ = ω, all Gp are finite, and so G admits a
homomorphism onto

⊕
p∈M Z(p). Suppose that κ > ω. For each p ∈ M , put

κp = |Gp|. Clearly supp∈M κp = κ. Choose an infinite subset N ⊆ M such that
(κp)p∈N is an increasing sequence of uncountable cardinals cofinal in κ. By the
previous paragraph, for each p ∈ N , Gp admits a homomorphism onto a group Kp

of cardinality κp which is isomorphic to
⊕

κp
Z(p) or

⊕
κp

Z(p∞). It follows that
there is an infinite subset Q ⊆ N such that either Kp is isomorphic to

⊕
κp

Z(p)
for all p ∈ Q or Kp is isomorphic to

⊕
κp

Z(p∞) for all p ∈ Q. Then the group
K =

⊕
p∈Q Kp is isomorphic to

⊕
p∈Q

⊕
κp

Z(p) or
⊕

p∈Q

⊕
κp

Z(p∞), |K| = κ,
and G admits a homomorphism onto K. �

Now, using Lemma 1 and the Pontrjagin duality, we prove the following state-
ment on bG.

Lemma 2. For every infinite discrete Abelian group G of cardinality κ, bG admits
a continuous homomorphism onto

∏
2κ T or

∏
2κ Z(p).

Here, T is the circle group, and both products
∏

2κ T and
∏

2κ Z(p) are endowed
with the product topology.

Proof. The dual groups of continuous homomorphic images of bG are the subgroups
of Ĝd, and the dual groups of homomorphic images of G are the closed subgroups
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of Ĝ (see [4, Theorems 23.25 and 24.8]). The dual groups of
∏

2κ T and
∏

2κ Z(p)
are

⊕
2κ Z and

⊕
2κ Z(p), respectively. Consequently, in order to prove the lemma,

it suffices to show that G admits a homomorphism onto a group whose dual group
contains an isomorphic copy of

⊕
2κ Z or

⊕
2κ Z(p). We distinguish between two

cases.

Case 1. κ = ω. Then G admits a homomorphism onto one of the following groups:
Z,

⊕
ω Z(p), Z(p∞) and

⊕
p∈Q Z(p). Their dual groups are T,

∏
ω Z(p), Zp and∏

p∈Q Z(p), respectively. (Here, Zp is the group of p-adic integers.) The second
group is algebraically isomorphic to

⊕
2ω Z(p). The others contain torsion-free

subgroups of cardinality 2ω and so contain an isomorphic copy of
⊕

2ω Z.

Case 2. κ > ω. Then G admits a homomorphism onto one of the following groups:⊕
κ Z(p),

⊕
κ Z(p∞),

⊕
p∈Q

⊕
κp

Z(p) and
⊕

p∈Q

⊕
κp

Z(p∞) (the two latter groups
appear if cf(κ) = ω). Their dual groups are

∏
κ Z(p),

∏
κ Zp,

∏
p∈Q

∏
κp

Z(p) and∏
p∈Q

∏
κp

Zp, respectively. The first group is algebraically isomorphic to
⊕

2κ Z(p).
The others contain torsion-free subgroups of cardinality 2κ and so contain an iso-
morphic copy of

⊕
2κ Z �

The third lemma deals with products of topological spaces.

Lemma 3. Let κ be an infinite cardinal. For each α < κ, let Xα be a space having
at least two disjoint nonempty open sets, and let X =

∏
α<κ Xα. Then there are

at least 2κ many pairwise incompatible open filters on X converging to the same
point.

The proof of Lemma 3 involves the notion of an extremally disconnected space,
that is, a space in which the closures of disjoint open sets are disjoint. Notice that if
each factor in an infinite product X =

∏
n<ω Xn has at least two disjoint nonempty

open sets, then X is not extremally disconnected. Indeed, for each n < ω, let Un and
Vn be disjoint nonempty open subsets of Xn, let xn ∈ Vn, and let x = (xn)n<ω ∈ X.
For every m < ω, define an open subset Wm =

∏
n<ω Wm,n ⊂ X by

Wm,n =

⎧⎪⎨
⎪⎩

Un if n = m,

Vn if n < m,

Xn if n > m.

It follows that U =
⋃

m<ω W2m and V =
⋃

m<ω W2m+1 are disjoint open subsets
of X with x ∈ c� U ∩ c� V .

Proof of Lemma 3. Let L be the set of limit ordinals < κ including 0. Then

X =
∏
α∈L

∏
n<ω

Xα+n,

|L| = κ, and for each α ∈ L,
∏

n<ω Xα+n is not extremally disconnected. Therefore,
one may suppose that each Xα in the product X =

∏
α<κ Xα is not extremally

disconnected, so there are disjoint open subsets Uα, Vα ⊂ Xα and xα ∈ Xα such
that xα ∈ c� Uα ∩ c� Vα. For every Y = (Yα)α<κ ∈

∏
α<κ{Uα, Vα}, define the filter

F(Y ) on X by declaring as a base the subsets of the form
∏

α<κ Zα, where
(i) for each α < κ, Zα is a nonempty open subset of Xα,
(ii) for all but finitely many α < κ, Zα = Xα, and
(iii) if Zα 	= Xα, then Zα = Yα ∩ W for some neighborhood W of xα ∈ Xα.
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Then F(Y ), where Y ∈
∏

α<κ{Uα, Vα}, are pairwise incompatible open filters on
X converging to x = (xα)α<κ. �

Now we are in a position to prove Theorem 2.

Proof of Theorem 2. By Lemma 2, there is a continuous surjective homomorphism
f : bG → K, where K is

∏
2κ T or

∏
2κ Z(p). By Lemma 3, there are pairwise

incompatible open filters Fα (α < 22κ

) on K converging to zero. For each α < 22κ

,
let Hα be the filter on bG with a base consisting of subsets of the form f−1(A)∩U ,
where A ∈ Fα and U runs over neighborhoods of zero. Then Hα (α < 22κ

) are
pairwise incompatible open filters on bG converging to zero. �
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1998. MR1642231 (99j:54001)

6. Y. Zelenyuk, On the ultrafilter semigroup of a topological group, Semigroup Forum 73 (2006),
301-307. MR2280826 (2007i:22004)

School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050,

South Africa

E-mail address: yevhen.zelenyuk@wits.ac.za

http://www.ams.org/mathscinet-getitem?mr=0460516
http://www.ams.org/mathscinet-getitem?mr=0460516
http://www.ams.org/mathscinet-getitem?mr=0283584
http://www.ams.org/mathscinet-getitem?mr=0283584
http://www.ams.org/mathscinet-getitem?mr=0255673
http://www.ams.org/mathscinet-getitem?mr=0255673
http://www.ams.org/mathscinet-getitem?mr=551496
http://www.ams.org/mathscinet-getitem?mr=551496
http://www.ams.org/mathscinet-getitem?mr=1642231
http://www.ams.org/mathscinet-getitem?mr=1642231
http://www.ams.org/mathscinet-getitem?mr=2280826
http://www.ams.org/mathscinet-getitem?mr=2280826

	Acknowledgement
	References

