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INTEGRAL REPRESENTATION FOR NEUMANN SERIES
OF BESSEL FUNCTIONS

TIBOR K. POGÁNY AND ENDRE SÜLI

(Communicated by Peter A. Clarkson)

Abstract. A closed integral expression is derived for Neumann series of Bessel
functions — a series of Bessel functions of increasing order — over the set of
real numbers.

1. Introduction and motivation

The series

(1) Nν(z) :=
∞∑

n=1

αnJν+n(z), z ∈ C,

where ν, αn are constants and Jµ signifies the Bessel function of the first kind
of order µ, is called a Neumann series [21, Chapter XVI]. Such series owe their
name to the fact that they were first systematically considered (for integer µ) by
Carl Gottfried Neumann in his important book [15] in 1867; subsequently, in 1877,
Leopold Bernhard Gegenbauer extended such series to µ ∈ R (see [21, p. 522]).

Neumann series of Bessel functions arise in a number of application areas. For
example, in connection with random noise, Rice [18, Eqs. (3.10–3.17)] applied
Bennett’s result,
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Luke [8, pp. 271–288] proved that
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cf. also [16, Eq. (2a)]. In both of these applications N0 plays a key role. The
function N0 also appears as a relevant technical tool in the solution of the infinite
dielectric wedge problem by Kontorovich–Lebedev transforms [20, §§4, 5]. It also
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arises in the description of internal gravity waves in a Boussinesq fluid [14], as well
as in the study of the propagation properties of diffracted light beams; see, for
example, [12, Eqs. (6a,b), (7b), (10a,b)].

Expanding a given function f , say, into a Neumann series of the form

N
w
ν (x) =

∞∑
n=0

anνJν+2n+1(x), ν ≥ −1/2,

where

anν = 2(ν + 2n + 1)
∫ ∞

0

t−1f(t)Jν+2n+1(t)dt,

Wilkins discussed the question of existence of an integral representation for Nw
ν (x),

as well as the conditions under which the Neumann series Nw
ν (x) converges uni-

formly in x to the ‘input’ function f [22, §§11–13].
By modifying a result of Watson [21, p. 23, footnote], Maximon represented

a simple Neumann series Nν appearing in the literature in connection with phys-
ical problems [11, Eq. (4)] as an indefinite integral expression containing Bessel
functions. Meligy expanded into a Neumann series NL+1/2 of arbitrary argument,
containing Bessel functions of order L + 1/2 + n/2, where L is the orbital angu-
lar momentum quantum number, the wave functions that describe the states of
motion of charged particles in a Coulomb field [13, Eqs. (8), (9)]. The inversion
probability of a large spin is found via modified Neumann series of Bessel functions
J(2N+1)(2n−1)±1 for integer N ≥ 2; see, [5, Theorem].

The evaluation of the capacitance matrix of a system of finite-length conductors
[2] uses Np, with p integer; in [10], free vibrations of a wooden pole were modelled
by a coupled system of ordinary differential equations and solved by Neumann
series; we note in passing that the analysis of an isotropic medium containing a
cylindrical borehole by Love’s auxiliary function and the analytical and numerical
study of Neumann series of Bessel functions [18] are two further areas in which the
unknown coefficients of Nν are derived and computed from boundary and initial
conditions of the problem under consideration.

2. Statement of the main result

In this short note our main goal is to establish a closed integral representation
formula for the series Nν(z). This will be achieved by using the Laplace integral
representation of the associated Dirichlet series. Thus, we replace z ∈ C with
x ∈ R+ and assume in what follows that the behaviour of (αn)n∈N ensures the
convergence of the series (1) over R+.

Throughout the paper, [a] and {a} = a−[a] will denote the integer and fractional
part of a real number a, respectively, while χS will signify the characteristic function
of the set S ⊂ R.

Consider the real-valued function x �→ ax = a(x) and suppose that a ∈ C1[k, m],
k, m ∈ Z, k < m. The classical Euler–Maclaurin summation formula states that

m∑
j=k

aj =
∫ m

k

a(x)dx +
1
2
(
ak + am

)
+

∫ m

k

(
x − [x] − 1

2

)
a′(x)dx.

On introducing the operator

dx := 1 + {x} d
dx

,



NEUMANN SERIES OF BESSEL FUNCTIONS 2365

obvious transformations yield the following condensed form of the Euler–Maclaurin
formula:

(3)
m∑

j=k+1

aj =
∫ m

k

(
a(x) + {x}a′(x)

)
dx =

∫ m

k

dxa(x) dx.

Theorem. Let α ∈ C1(R+) and let α
∣∣
N

= (αn)n∈N. Then, for all x, ν such that

0 < x < 2 min

(
1,

(
e lim

n→∞

n
√
|αn|
n

)−1 )
, ν > −1/2,

we have that

Nν(x) = −
∫ ∞

1

∂

∂ω

(
Γ(ν + ω + 1/2) Jν+ω(x)

)∫ [ω]

0

dη

( α(η)
Γ(ν + η + 1/2)

)
dη dω.

(4)

Proof. Consider the integral representation formula [3, 8.411, Eq.(10)]

(5) Jν(z) =

(
z/2

)ν

√
π Γ(ν + 1/2)

∫ 1

−1

cos(zt)(1 − t2)ν−1/2dt, z ∈ C, �{ν} > −1/2.

Applying (5) to (1) taking x > 0, we get

(6) Nν(x) =

√
2x

π

∫ 1

0

cos(xt)
(x(1 − t2)

2

)ν−1/2

Dα(t) dt

with the Dirichlet series

Dα(t) :=
∞∑

n=1

αn

(
x(1 − t2)/2

)n

Γ(n + ν + 1/2)
=

∞∑
n=1

αn exp
{
− n ln 2

x(1−t2)

}
Γ(n + ν + 1/2)

.

Recalling that Γ(s) =
√

2π ss−1/2e−s
(
1+O(s−1)

)
, |s| → ∞, we see that the Dirich-

let series Dα(t) is absolutely convergent for all x ∈ R+ and t ∈ (−1, 1) such that

|x|(1 − t2) ≤ |x| <
2
e

(
lim

n→∞

n
√
|αn|
n

)−1

.

Furthermore, Dα(t) has a Laplace integral representation when ln 2/(x(1−t2)) > 0.
In this case we can take x ∈ (0, 2) and t ∈ (−1, 1), since the required positivity
condition is satisfied when

2
x(1 − t2)

≥ 2
x

> 1.

Hence, the x–domain becomes

(7) 0 < x < 2 min

(
1,

(
e lim

n→∞

n
√
|αn|
n

)−1)
.

Thus, for all such x we deduce that

(8) Dα(t) = ln
2

x(1 − t2)

∫ ∞

0

(x(1 − t2)
2

)ω
(

[ω]∑
j=1

αj

Γ(j + ν + 1/2)

)
dω;
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see, for example, [4, V] or [17, §§4, 6]. Now, it remains to sum the so-called counting
function

Aα(ω) :=
[w]∑
j=1

αj

Γ(j + ν + 1/2)
.

The Euler–Maclaurin summation formula gives us

(9) Aα(ω) =
∫ [ω]

0

dη

( α(η)
Γ(ν + η + 1/2)

)
dη;

cf. [17, Lemma 1]. Substituting Aα(ω) and Dα(t) from (9) and (8) into (6), we get

Nν(x) = −
√

x

2π

∫ ∞

0

∫ [ω]

0

dη

( α(η)
Γ(ν + η + 1/2)

)

×
(

2
∫ 1

0

cos(xt)
(x(1 − t2)

2

)ν+ω−1/2

ln
(x(1 − t2)

2

)
dt

)
dω dη.(10)

However, the innermost (t–integral) in (10),

Ix(κ) := 2
∫ 1

0

cos(xt)
(x(1 − t2)

2

)κ

ln
(x(1 − t2)

2

)
dt, κ := ν + ω − 1/2,

can be expressed in terms of the Gamma function and the Bessel function of the
first kind by legitimate indefinite integration with respect to κ, as follows. To begin,
we define the Fourier cosine transform of a certain function f by

Fc(f ; x) := 2
∫ ∞

0

cos(xt) f(t) dt.

Now, we have that∫
Ix(κ) dκ = 2

(x

2

)κ
∫ 1

0

cos(xt)(1 − t2)κdt

=
(x

2

)κ

Fc

(
(1 − t2)κχ[0,1)(t); x

)
=

√
2π

x
· Γ(κ + 1) Jκ+1/2(x),

where we applied the Fourier cosine transform table [3, 17.34, Eq. (10)]. On ob-
serving that dκ = dω, we deduce that

(11) Ix(ν + ω − 1/2) =

√
2π

x
· ∂

∂ω

(
Γ(ν + ω + 1/2) Jν+ω(x)

)
.

Substituting (11) into (10) we arrive at the asserted integral expression (4), remark-
ing that the integration domain R+ changes into [1,∞) because [ω] equals zero for
all ω ∈ [0, 1). �

3. Concluding remarks

To conclude, we mention some related integral representation formulæ for Neu-
mann-type series, corresponding to special α’s. Bivariate Lommel functions of order
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ν are defined by Neumann-type series [21, 16.5, Eqs. (5), (6)] as follows:

Uν(y, x) :=
∞∑

m=0

(−1)m
(y

x

)ν+2m

Jν+2m(x),

Vν(y, x) := cos
(y

2
+

x2

2y
+

νπ

2

)
+ U−ν+2(y, x), x, y ∈ R.

These series converge for unrestricted values of ν.
Now, assuming that �{ν} > 0, by the formulæ [21, 16.53, Eqs. (1), (2)] we easily

deduce that

Uν,c(x) := Uν(cx, x) = cνx

∫ 1

0

tν Jν−1(xt) cos
(

c
2 x(1 − t2)

)
dt,

Uν+1,c(x) = cνx

∫ 1

0

tν Jν−1(xt) sin
(

c
2 x(1 − t2)

)
dt.

Similarly, by [21, 16.53, Eqs. (11), (12)]1 we also have that

Vν,c(x) := Vν(cx, x) = −c2−νx

∫ ∞

1

t2−ν J1−ν(xt) cos
(

c
2 x(1 − t2)

)
dt,

Vν−1,c(x) = −c2−νx

∫ ∞

1

t2−ν J1−ν(xt) sin
(

c
2 x(1 − t2)

)
dt,

provided x, c > 0, �{ν} > 1/2.
The integral expressions developed above can be easily adapted to Neumann-type

series of the form
∞∑

m=0

γm Jν+2m(x), x > 0, γ < 0.

An interesting open problem, worthy of further study, is the construction of
examples with specific coefficients αn, with known explicit forms of Neumann-type
series, that can be derived directly from the representation formula (4).
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