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Abstract. A fundamental result of Nigel Kalton is used to establish a result
for operator valued measures which has improved versions of the Vitali-Hahn-
Saks Theorem, Phillips’s Lemma, the Orlicz-Pettis Theorem and other classical
results as straightforward corollaries.

Each of E, F, X, Y, and Z will denote a real (R) Banach space. The space
of all bounded linear functions (= operators) from X to Y will be denoted by
L(X, Y ). Note that X ∼= L(R, X). A generic σ-algebra of sets will be denoted by
Σ. If (Ai)∞i=1 is a sequence from Σ, then σ((Ai)∞i=1) will denote the σ-algebra of
subsets of

⋃∞
i=1 Ai generated by (Ai)∞i=1. If this sequence is pairwise disjoint, then

σ((Ai)) is easily identifiable with P, the power class of N. If (Ti) is a sequence in
L(X, Y ), recall that (Ti) converges to T in the strong operator topology (sot) if
and only if (Ti(x)) → T (x) in Y for all x ∈ X. The reader should consult [3] and
[2] for undefined terminology as well as the classical statements of the theorems
and corollaries mentioned in this paper. The reader should note that there are
non-separable subspaces of �∞ which do not contain �∞.

Theorem 1. Suppose that Σ is a σ-algebra of subsets of Ω, E is separable, and F is
a Banach space which does not contain �∞ but does embed isomorphically into �∞.
If µ : Σ → L(E, F ) is bounded and finitely additive and (Ai) is a pairwise disjoint
sequence from Σ, then there is a subsequence (Bi) of (Ai) so that µ : σ((Bi)) →
(L(E, F ), sot) is countably additive.

Proof. Suppose that E, F, Σ, (Ai), and µ are as in the statement of the theorem.
As before, let P be the power class of the positive integers, and identify P with
σ((Ai)∞i=1). If b = (bi) ∈ �∞, let T (b) =

∫
b dµ. Then T : �∞ → L(E, F ) is a

bounded linear operator. For x ∈ E, define Tx : �∞ → F by Tx(b) = T (b)(x).
Since �∞ does not embed in F , Tx is weakly compact and therefore unconditionally
converging; e.g., see [7], [6, p. 270].

Now let Tn = T (en), where (en) denotes the canonical unit vector basis of c0 ⊆
�∞. Therefore

∑
Tn converges unconditionally in the strong operator topology. In
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fact, the map ∆ : �∞ → L(E, F ) defined by

∆(γ)x =
∞∑

i=1

γiTi(x) =
∞∑

i=1

γiT (ei)x

is bounded and linear. Let L : F → �∞ be an isomorphism, and define operators
U : �∞ → L(E, �∞) and V : �∞ → L(E, �∞) by

U(b)(x) = L(T (b)(x))

and
V (b)(x) =

∑
biLTi(x) = L(

∑
biTi(x)).

Note that U(ej)(x) = L(Tj(x)) = V (ej)(x) for each j. Proposition 5 of Kalton [6]
applies and yields an infinite set M ⊆ N so that U(t) = V (t) for all t = (ti) ∈
�∞(M). Therefore T (s)(x) =

∑
siTi(x) for s = (si) ∈ �∞(M). The unconditional

convergence of the series
∑

siTi(x) and the preceding equality imply that

µ : σ((Ai)i∈M ) → (L(E, F ), sot)

is countably additive. �
In Corollary 5 below, we show that Theorem 1 leads to an improvement of

Phillips’s Lemma. Among the many consequences of Phillips’s Lemma is a quick
proof that c0 is not complemented in �∞. The next result shows that this comple-
mentation result follows immediately from Theorem 1.

Corollary 2. c0 is not complemented in �∞.

Proof. Suppose that P : �∞ → c0 is a projection, and let µ : P → c0
∼= L(R, c0)

be the bounded and finitely additive measure so generated. By Theorem 1, there
is a subsequence (ni) of the positive integers so that µ : σ((ni)) → L(R, c0) is
countably additive in the strong operator topology (= the norm topology in this
case). Clearly this is false since ||µ(ni)|| = 1 for all i. �

Now suppose that Σ is a σ-algebra of subsets of Ω, and λ : Σ → R+ is an extended
R-valued and countably additive set function. Let X be a Banach space and
µn : Σ → X be countably additive so that µn � λ for all n. Suppose that (µn(A))
is norm convergent in X for all A ∈ Σ, ε > 0, λ(An) → 0, and ||µn(An)|| > 2ε for all
n. By a standard Cantor diagonalization argument, one may choose a subsequence
(Ani

) of (An) so that
||µni

(Ani
\

⋃

j>i

Anj
)|| > ε

for each i.
Let νi = µni

, Bi = Ani
\

⋃
j>i Anj

, U = {νi(Bj) : i ≥ 1, j ≥ 1} , and Y = [U ] =
span(U). Then Y is separable. Thus the space c(Y ) = {(yn) : n ∈ N} ⊆ Y N of
all convergent sequences in Y is separable when endowed with the usual pointwise
operations and the sup norm. Define τ : σ((Bi)) → c(Y ) by

τ (A) = (νi(A)), A ∈ σ((Bi)).

Note that c(Y ) ∼= (L(R, Y ), sot). By Theorem 1, we know that there is a subse-
quence (Bij

) so that τ : σ((Bij
)) → (L(R, c(Y )), sot) is countably additive. How-

ever, this is impossible since ||νi(Bi)|| > ε for each i. Therefore Theorem 1 produces
the following improved versions of the Vitali-Hahn-Saks Theorem [4, p. 24], and
[5, p. 158].



VECTOR MEASURES AND THE STRONG OPERATOR TOPOLOGY 2347

Corollary 3. (i) If ε > 0, λ : Σ → R+ is extended R-valued and countably
additive, (µn) is a sequence in ca(σ, X) with µn � λ for each n, and (An) is a
pairwise disjoint sequence from Σ so that (λ(An)) → 0 and ||µn(An)|| > ε for all n,
then no infinite subsequence of (µn) can converge setwise on all elements of (An).

(ii) If (µn) is a sequence in ca(Σ), ε > 0, and (An) is a pairwise disjoint sequence
in Σ so that |µn(An)| > ε for each n, then no infinite subsequence of (µn) can
converge setwise on all elements of the sequence (An).

Recall that a finitely additive set function µ defined on an algebra A is said to
be strongly additive provided that µ(Ai) → 0 whenever (Ai) is a pairwise disjoint
sequence from A. It is easy to see that a family of countably additive set functions
defined on a σ-algebra Σ is uniformly countably additive if and only if it is uniformly
strongly additive. We say that µ : A → X is weakly strongly additive provided
that x∗ ◦ µ : A → R is strongly additive for all x∗ ∈ X∗. Certainly every strongly
additive set function is weakly strongly additive. If c0 ↪→ X ↪→ L(X∗,R) ∼= X∗∗,
then the following proposition makes it clear that there are weakly strongly additive
set functions which are not strongly additive.

Proposition 4. Every weakly strongly additive set function µ : A → X is strongly
additive iff c0 �↪→ X.

Proof. Suppose that c0 ↪→ X and let A be the finite–cofinite algebra of subsets of
N. Define µ : A → X by

µ(A) =
∑

n∈A

en, A finite

and
µ(A) =

∑

n∈Ac

en, A cofinite.

Suppose that (Bi) is a pairwise disjoint sequence from A. Note that there is an
N so that if n > N , then Bn is finite. Let x∗ ∈ X∗, and choose λ = (λi) ∈ �1 so
that x∗µ(A) = 〈λ, µ(A)〉 for each A. Since

∑
i>n |λi| → 0 as n → ∞ and at most

one member of the sequence (Bi) is cofinite, it follows that (x∗µ(Bn)) n→ 0. Thus
µ is weakly strongly additive and not strongly additive.

Now suppose that A is an algebra of sets and µ : A → X is weakly strongly
additive and not strongly additive. Let (Ai) be a pairwise disjoint sequence in A
and ε be a positive number so that ||µ(Ai)|| > ε for each i. If x∗ ∈ X∗, then the
weak strong additivity guarantees that

∑
|x∗µ(Ai)| < ∞. Thus

∑
µ(Ai) is weakly

unconditionally convergent and not unconditionally convergent. Classical results of
Bessaga and Pelczynski [1] ensure that c0 ↪→ X. �

Let c0(Y ) be the subspace of c(Y ) consisting of null sequences.

Corollary 5 (Phillips’s Lemma). If E and F are separable, µn : P → L(E, F ) is
strongly additive in the sot for each n, and (µn(A)) → 0 in the sot for each A, then

∑

k∈A

µn(k) n→ 0

in the sot uniformly for A ∈ P.

Proof. Suppose not, and select ε > 0, (Ai) from P, x ∈ E, and a subsequence (λi) of
(µn) so that ||

∑
k∈Ai

λi(k)x|| > 2ε for each i. Using the unconditional convergence



2348 PAUL LEWIS, KIMBERLY MULLER, AND ANDY YINGST

of
∑

λi(k)x (strong additivity in the sot) and the fact that (µn(A)x) → 0 for all
A, obtain a strictly increasing sequence (Ni) of positive integers so that

(∗) ||
∑

k∈Ani
∪[Ni−1,Ni)

λNi
(k)x|| > ε

for each i. Let Bi = ANi
∩ [Ni−1, Ni), let Σ = σ((Bi)), and set ν(A)(u) =

(λi(A)(u))i ∈ c0(F ) for A ∈ Σ and u ∈ E. Inequality (∗) and an application
of Theorem 1 to the set functions ν just defined are incompatible. �

In the next corollary, bfa(P, X) is the set of all bounded and finitely addi-
tive set functions µ : P → X. Equip bfa(P, X) with the sup norm; i.e., ||µ|| =
sup{||µ(A)|| : A ∈ P}.

Corollary 6. If X∗ is separable and (µn) → 0 weakly in bfa(P, X), then
∞∑

k=1

|x∗(µn(k))| n→ 0

for all x∗ ∈ X∗.

Proof. Since x∗µn is bounded and finitely additive for all x∗ ∈ X∗, x∗µn is strongly
additive. Further, (x∗µn(A)) n→ 0 for all x∗ ∈ X∗ and A ∈ P. Therefore
(µn(A)) → 0 in the (sot) when X is canonically embedded in X∗∗ = L(X∗,R).
By the preceding corollary,

∑
k∈A x∗µn(k) n→ 0 uniformly for A ∈ P. Thus∑∞

n=1 |x∗(µn(k)| n→ 0. �

Since the sup norm on ca(P) is equivalent to the total variation norm when �1
is interpreted in this space, Corollary 6 shows that �1 has the Schur property.

Corollary 7 (Vitali-Hahn-Saks-Nikodym Theorem). If X and Y are separable,
µn : Σ → L(X, Y ) is a bounded and finitely additive set function which is strongly
additive in the sot for each n, and (µn(A)) → 0 in the sot for each A, then
supn||µn(Ai)x||

i→ 0 for each x ∈ X whenever (Ai) is pairwise disjoint in Σ.

Proof. Suppose not. Let ε > 0, (Ai) be a pairwise disjoint sequence in Σ, and
x ∈ X so that supn||µn(Ai)x|| > ε for each i. Let Σ1 = σ((Ai)), and define ν : Σ1 →
L(X, c0(Y )) by ν(A)(u) = (µn(A)u)∞n=1. The preceding inequality and Theorem 1
applied to the vector measure ν provide the contradiction which completes the
proof. �

The proof of the Vitali-Hahn-Saks-Nikodym Theorem in Chapter 1 of [4] shows
that there is no loss of generality in insisting that Y be separable in the preceding
corollary.

Corollary 8. Suppose that µ : P → X is bounded and finitely additive, Γ is a
subset of X∗ which separates the points of X, and µ is countably additive in the
weak topology on X defined by Γ. The set function µ is countably additive in the
norm topology if and only if U = co{µ(A) : A ∈ P, A finite} is Γ-closed.

Proof. Since Γ separates the points of X and µ is Γ-countably additive, µ is count-
ably additive in the norm topology if µ is strongly additive with respect to the
norm on X. Suppose then that U is Γ-closed, and let W = [U ]. The Γ-countable
additivity of µ ensures that µ(P) ⊆ W = L(R, W ). By Theorem 1, there does not
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exist ε > 0 and a disjoint sequence (Ai) in P so that ||µ(Ai)|| > ε for all i; i.e., µ is
strongly additive.

Conversely, suppose that µ : P → (X, || • ||) is countably additive. Thus µ has
relatively weakly compact range, and U is weakly compact. Then U is Γ-compact
and Γ-closed since Γ separates points. �

Since a norm-closed convex set is weakly closed, the preceding corollary certainly
demonstrates that a weakly countably additive vector measure on a σ-algebra is
countably additive. Thus this corollary contains the measure-theoretic version of
the Orlicz–Pettis Theorem.

Next we note that Theorem 1 also yields a quick proof of the standard statement
of the Orlicz–Pettis Theorem: If

∑
xn is weakly subseries convergent in X, then∑

xn is unconditionally convergent in X.
Note first that

∑∞
k=1 |x∗(xn)| < ∞ for all x∗ ∈ X∗, and let Y = [{xn : n ∈ N}].

Suppose that
∑

xn is not unconditionally convergent. Let ε > 0, σ : N → N
be a permutation, and (pi) and (qi) be intertwining sequences of natural numbers

so that ||wi|| > ε for all i, where wi =
qi∑

n=pi

xσ(n). The hypothesis and the weak

absolute summability of
∑

xn noted above guarantee that ν(S) = weak-lim
∑
i∈S

wi

defines a bounded and finitely additive set function ν : P → Y . Apply Theorem 1
to obtain a contradiction.

Corollary 9. If K is a relatively weakly compact subset of ca(Σ), then the elements
of K are uniformly countably additive.

Proof. As noted above, it suffices to show that K is uniformly strongly additive.
Let (µn) be a sequence from K, and, without loss of generality (Eberlein-Smulian
Theorem), suppose that (µn) converges weakly to a point in ca(Σ). Let

ν(A) = (µn(A))∞n=1

for A ∈ Σ, and let c denote the space of all convergent sequences of real numbers
equipped with the sup norm. Then ν : Σ → L(R, c) satisfies the hypotheses of
Theorem 1, and we conclude that (µn) is uniformly strongly additive. �

At a crucial point in the proof of Theorem 1 above we used the following theorem
of Rosenthal [7]: If �∞ does not embed in F , then every operator T : �∞ → F
is weakly compact. A key ingredient in the proof of Rosenthal’s theorem is the
following lemma.

Rosenthal’s Lemma. If A is an algebra of sets, (µn) is a uniformly bounded
sequence of non-negative and real valued measures on A, (An) is a pairwise disjoint
sequence of sets in A, and ε > 0, then there is a subsequence (nk) of positive integers
so that

∑N
i=1, i �=j µnj

(Ani
) < ε for each N and for each j.

One may check Chapter 1 of [4] for numerous applications of Rosenthal’s Lemma.
We close with a particularly quick inductive proof of this lemma. The argument
below naturally generates a subsequence (νk) of (µn) so that the co-finite and
terminal subsequences of (νk) automatically satisfy the conclusion of Rosenthal’s
Lemma.
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Lemma 10. Suppose that (µn, An) is a sequence of pairs of measures and sets so
that (An) is distinct and pairwise disjoint and (µn) is uniformly bounded. If ε > 0,
then there is an n0 so that {n : µn(An0) < ε} is infinite.

Proof. Suppose that ||µn|| < M for each n, and choose N so that Nε > M . Choose
distinct positive integers i1, i2, ..., iN . If none of these choices satisfy the conclusion,
then Sk = {n : µn(Aik

) ≥ ε} is cofinite for k = i1, ..., iN . Thus
⋂N

k=1 Sk is cofinite.
Consequently, {n : µn(Aik

) ≥ ε, k = 1, ..., N} is cofinite. Therefore, for some n,
µn(

⋃N
k=1 Aik

) ≥ Nε, and we have a contradiction. �
Use the preceding lemma and choose n1 so that S1 = {n > n1 : µn(An1) <

1/2} is infinite. Since S1 is infinite and
∑∞

1=1 µn1(Ai) < ∞, we may assume that∑
i>n1

µn1(Ai) < 1/(22). Now use the lemma again and choose n2 ∈ S1 so that
S2 = {n ∈ S1 : n > n2, µn(An2 < 1/(22)} is infinite. As above, we may assume
that ∑

i>n2

µn2(Ai) < 1/(23).

Continue this process inductively to manufacture a subsequence (νk) = (µnk
). Note

that if ε > 0 and 1/(2k−1) < ε, then (νi)i≥k satisfies the conclusion of Rosenthal’s
Lemma.
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