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RINGS WHOSE MODULES ARE DIRECT SUMS
OF EXTENDING MODULES

NOYAN ER

(Communicated by Birge Huisgen-Zimmermann)

Abstract. We prove that for a ring R, the following are equivalent: (i) Every
right R-module is a direct sum of extending modules, and (ii) R has finite type
and right colocal type (i.e., every indecomposable right R-module has simple
socle). Thus, in this case, R is two-sided Artinian and right serial, and every
right R-module is a direct sum of finitely generated uniform modules. This
property of a ring is not left-right symmetric. A consequence is the following:
R is Artinian serial if and only if every R-module is a direct sum of extending
modules if and only if R is left serial with every right R-module a direct sum
of extending modules.

1. Introduction

R will denote an associative ring with identity and modules will be unital. A
module M is called extending if every submodule of M is essential in a direct
summand of M . Extending modules generalize (quasi-)injective, semisimple, and
uniform modules and have been extensively studied over the last few decades (see [3]
for a detailed account of such modules). We will consider the following properties
for R:

(∗)r (resp. (∗)l): Every right (resp. left) R-module is a direct sum of extending
modules.

(∗): Both (∗)r and (∗)l hold.
An Artinian ring R is said to have right colocal type if every finitely generated

indecomposable right R-module has simple socle. Such rings and algebras have been
investigated by several authors including Makino [8], Sumioka [14]-[15], Tachikawa
[16]-[17], and a special case by Fuller [6]. Artinian serial rings clearly have finite
type as well as right and left colocal type.

On the other hand, characterizations of rings have been given in terms of modules
which are extending (see, for example, [2], [3], [4], [5]). In particular Dung and
Smith proved that R is Artinian serial with J(R)2 = 0 if and only if every right
R-module is extending [2, Theorem 11]. Since the extending property does not
carry over to (finite) direct sums, as can be seen by the example Z

pZ
⊕ Z

p3Z
(p a

prime), the problem of determining rings with (∗)r becomes difficult. In this paper,
we will prove that such rings are precisely the rings of finite type and right colocal
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type, so that they are Artinian, right (but not necessarily left) serial. Consequently,
Artinian serial rings are precisely those rings with (∗)r and (∗)l.

The following concepts will be used in our proofs: Let M be a module and A, B,
Ci (i ∈ I) be submodules of M . A is called a closed submodule of M if it has no
proper essential extension in M . A is said to be a complement in M of B if it is a
maximal element in {X ⊆ M |X ∩B = 0}. Complements in M are precisely closed
submodules of M . {Ci|i ∈ I} is called a local summand of M if

∑
i∈I Ci =

⊕
i∈I Ci

and every finite subsum is a direct summand of M . M is called a colocal module
if it is uniform with simple socle. M is called q.f.d. (quotient finite dimensional) if
every factor of M has finite uniform (Goldie) dimension. R is called right q.f.d. if
RR is q.f.d. R is called right QF -3 if there exists a faithful right R-module that is
a direct summand of every faithful right R-module. For all other basic definitions
and results the reader may refer to [7].

2. Results

We need the following lemmas to prove our main result. Lemma 1 is well known,
but we give a proof for completeness.

Lemma 1. Let M be a module and N be an essential submodule of M . Then, for
any closed submodule K of M , K ∩ N is a closed submodule of N .

Proof. Since K is closed in M , K must be a complement of a submodule T of M .
Now it suffices to see that K ∩ N is a complement of T ∩ N in N . Let B be a
submodule of N properly containing K ∩ N . Then (K + B) ∩ T �= 0. So there
exists some 0 �= t = k + b ∈ (K + B) ∩ T , with k ∈ K and b ∈ B. Since N is
essential in M , there exists some r ∈ R such that 0 �= tr = kr + br ∈ T ∩ N . Then
kr ∈ K ∩ N ⊆ B, so that tr is a nonzero element of T ∩ N ∩ B. This proves our
claim, whence the conclusion follows.

Lemma 2. A right q.f.d. ring R with property (∗)r is right Noetherian.

Proof. Let R be a ring with (∗)r. Assume that R is not right Noetherian. Then,
by [1, Theorem 1.3], there exists a family {Sn : n ∈ N} of simple modules such
that no infinite subsum of V =

⊕
n∈N

E(Sn) is injective (�). Then pick an element
y ∈ E(V )−V and, by Zorn’s lemma, let T be a maximal element among submodules
of E(V ) containing V but not containing y. Then E(V )

T is colocal. Now assume
T = X ⊕ Y , and let E(X) and E(Y ) be injective hulls in E(V ) of X and Y

respectively. Then E(V )
T

∼= E(X)
X ⊕ E(Y )

Y . This means that one of the latter two
modules, say E(X)

X , is zero; whence X = E(X) is injective.
Now we claim that we can write T = A ⊕ B, for some noninjective extending

module A and some injective module B: By assumption T =
⊕

γ∈Γ Aγ , for some
nonzero extending modules Aγ . If Γ is finite, then our claim follows easily by the
argument preceding the claim. So assume that |Γ| = ∞. Applying Krull-Remak-
Schmidt on the socles we can pick a simple submodule Vγ ⊆ Aγ for each γ ∈ Γ, and
a one-to-one map γ → nγ from Γ into N, with Vγ

∼= Snγ
. Since each Vβ (β ∈ Γ) is

contained in a finite subsum of
⊕

n∈N
E(Sn), the latter then contains an injective

hull of Vβ, which is embedded in Aβ via the obvious projection
⊕

γ∈Γ Aγ → Aβ.
So let E(Vγ) be an injective hull of Vγ in Aγ (γ ∈ Γ). By assumption, we can write
Γ = Γ1 ∪ Γ2 for two disjoint infinite subsets Γi of Γ. By the above argument, we
can take, say,

⊕
γ∈Γ1

Aγ to be injective. But then
⊕

γ∈Γ1
E(Snγ

) ∼=
⊕

γ∈Γ1
E(Vγ)



DIRECT SUMS OF EXTENDING MODULES 2267

is also injective (since the latter is a direct summand of
⊕

γ∈Γ1
Aγ), contradicting

(�) above. So we can write T = A ⊕ B, where A is extending and noninjective and
B is injective.

Now, by Zorn’s lemma, choose a maximal subset I of N such that (
⊕

n∈I E(Sn))∩
B = 0. Then (

⊕
n∈I E(Sn)) ⊕ B is essential in T . Thus,

⊕
n∈I E(Sn) embeds

essentially in A via the obvious projection from A⊕B onto A. So we may assume,
without loss of generality, that

⊕
n∈I E(Sn) ⊆ A. If I were finite, then we would

have A =
⊕

n∈I E(Sn), whence A would be injective, contradicting the choice of
A. So A has infinite socle. Now let E(A) be an injective hull of A in E(V ). Then
E(A) ⊕ B = E(V ), so that E(A)

A is colocal. Pick any element x ∈ E(A) − A and
an injective hull K of xR in E(A). Then K ∩ A is a closed submodule of A by
Lemma 1. Since A is extending, then (K ∩ A)⊕ A′ = A for some submodule A′ of
A. In the same way as argued above, K ∩A contains a direct sum of injective hulls
of simple modules essentially, and, again as above, since K ∩ A is not injective, it
must have infinite socle. Since xR is essential in K, this means xR has infinite
socle. Thus R is not right q.f.d. This completes the proof. �

The proof of Lemma 2 owes to a very useful observation of Beidar and Ke (see
[1]). In the proof of the next result, we use a technique from a somewhat stronger
version of the well-known Osofsky-Smith Theorem (see [11]), namely [3, 7.12]. Its
adaptation here, however, is not straightforward.

Theorem 1. The following conditions are equivalent for a ring R:
(i) R satisfies the property (∗)r,
(ii) R has finite type and right colocal type.

In this case R is Artinian and right serial, and every right R-module is a direct
sum of uniform modules.

Proof. (ii) ⇒ (i). Since by finite type assumption, every right R-module is a direct
sum of finitely generated indecomposable modules, each of which is now colocal
(hence uniform), (i) follows immediately.

(i) ⇒ (ii). Let R be a ring with property (∗)r. First we prove that R is right
q.f.d.

Assume the contrary. Then there exists a cyclic right R-module H with infinite
Goldie dimension. By assumption (∗)r, we may take H to be extending. This
implies that H does not have a decomposition into indecomposable modules. Then
we can easily obtain two sequences of modules (Xn)n∈N and (Yn)n∈N such that for
each n ∈ N,

Xn �= 0,
∞⊕

i=n+1

Xi ⊆ Yn, and H = X1 ⊕ ... ⊕ Xn ⊕ Yn.

For each n ∈ N, pick a maximal submodule Zn of Xn and put Z =
⊕

n∈N
Zn,

M = H
Z , and Sn = Xn+Z

Z . Then {Sn : n ∈ N} is a local summand of M . By
assumption, M = A1 ⊕ ... ⊕ At, where each Ai is an extending module. Since
simple modules have the exchange property, we have a decomposition

M = S1 ⊕ A(1,1) ⊕ ... ⊕ A(t,1),

where each A(i,1) is a direct summand of Ai. Put L1 = A(1,1)⊕...⊕A(t,1) (of course,
only one of A(i,1) is a proper submodule of Ai). Since S1 is simple, there is an
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index i1 ∈ {1, ..., t} and a direct summand B1 of Ai1 such that B1⊕L1 = M . Then
B1

∼= S1, so that B1 is simple. Let π : S1⊕L1 → L1 be the obvious projection. Then
{π(Sn) : n = 2, 3, ...} is a local summand of L1. Thus, without loss of generality,
we can assume that

⊕∞
n=2 Sn ⊆ L1. Similar to the above argument, we have a

decomposition
L1 = S2 ⊕ A(1,2) ⊕ ... ⊕ A(t,2),

where each A(i,2) is a direct summand of A(i,1). Also, there exists some index
i2 ∈ {1, ..., t} and some direct summand B2 of A(i2,1) with B2 ⊕ L2 = L1, where
L2 = A(1,2) ⊕ ... ⊕ A(t,2). Thus B2

∼= S2 so that B2 is simple. Continuing in
this manner we obtain a sequence (in)n∈N of indices belonging to the set {1, ..., t},
sequences of modules (Ln)n∈N and (Bn)n∈N, and descending chains of summands
(A(1,n))n∈N , ..., (A(t,n))n∈N, such that for each n ∈ N, Bn+1 is a direct summand
of A(in+1,n), and

Ln = A(1,n) ⊕ ... ⊕ A(t,n) = Sn+1 ⊕ Ln+1 = Bn+1 ⊕ Ln+1.

Now there exists some t0 ∈ {1, ..., t} such that the set Γ = {k ∈ N : ik = t0} is
infinite. Since {Bn : n ∈ N} is a local summand of M , {Bn : n ∈ Γ} is a local
summand of At0 . Taking an essential closure of

⊕
n∈Γ Bn in At0 , we obtain a cyclic

extending module N such that soc(N) is infinitely generated and essential in N
and every finitely generated semisimple submodule of N is a direct summand of N .

Now put S = soc(N). Then by the assumption (∗)r, N
S has a nonzero extending

summand, say N ′

S . Also N ′ =
⊕

i∈I Ki for some extending modules Ki. There
exists some i0 ∈ I such that Ki0 is not semisimple. Let K = Ki0 . Also, since all
finitely generated semisimple submodules of K are direct summands of N , whence
of K, K has infinite socle. Since K

soc(K) is isomorphic to a direct summand of
N ′

S , whence of N
S , K

soc(K) is cyclic as well as extending. Then, K = G ⊕ C for
some semisimple submodule G and cyclic submodule C. Note that soc(C) cannot
be finitely generated. So C is a cyclic extending module with infinite essential
socle, and all finitely generated semisimple submodules of C are direct summands
of C, and C

soc(C) is also extending. We can write soc(C) =
⊕

n∈N
Vn, where Vn

are some infinitely generated semisimple submodules of C. Since C is extending,
each Vn is contained in a direct summand Dn of C essentially as well as properly
(�). Now let D′

n = Dn+soc(C)
soc(C) . It is easy to see that

∑
n∈N

D′
n =

⊕
n∈N

D′
n. Since

C
soc(C) is extending, there exists a direct summand E′ of C

soc(C) containing
⊕

n∈N
D′

n

essentially. Then there is a cyclic submodule E of C such that E′ = E+soc(C)
soc(C) .

We now claim that E ∩ Dn �= 0, for each n ∈ N: Assume to the contrary that
E ∩Dn = 0. We can write E + soc(C) = E ⊕P for some semisimple submodule P .
Since Dn ⊆ E+soc(C), this means that Dn can be embedded in P , a contradiction,
since Dn is not semisimple by (�) above. Thus E ∩ Dn �= 0. This implies that
E ∩ soc(Dn) = E ∩ Vn �= 0 (��).

By assumption (∗)r, E = E1 ⊕ ... ⊕ Es for some cyclic extending modules Ei.
For each i ∈ N, let πi :

⊕
n∈N

Vn → Vi be the natural projection. Note first that
supp(soc(E)) = {n ∈ N : πn(soc(E)) �= 0} is infinite by (��) above. Hence, there
exists some k ∈ {1, ..., s} such that supp(soc(Ek)) is infinite (�). Now, if U is a set
of generators of soc(Ek), we have supp(soc(Ek)) =

⋃
x∈U supp(x). So, if U were

finite, supp(soc(Ek)), too, would be finite. Therefore soc(Ek) is infinitely generated.
Then let soc(Ek) =

⊕
α∈Λ Lα, where |Λ| = ∞ and Lα are simple modules. By (�),
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and since each supp(Lα) is finite, we can inductively select indices αn (n ∈ N) such
that, for each n ∈ N,

max(supp(Lαn+1)) > max(supp(Lαn
)).

This implies, in particular, that for each n ∈ N,

(†) max(supp(Lαn+1)) > n.

Now since Ek is an extending module, we can find some direct summand L of Ek

containing
⊕

n∈N
Lαn

essentially. This containment is proper since L is cyclic. Let
L′ = L+soc(C)

soc(C) . So, L′ �= 0 obviously, whence

(‡) L′ ∩ (
⊕

n∈N

D′
n) �= 0.

Now let n ∈ N.
Claim: L ∩ (

⊕n
i=1 Vi) ⊆

⊕n+1
i=1 Lαi

.
Proof of claim: Assume the contrary and let x ∈ L ∩ (

⊕n
i=1 Vi) be with x =

lα1 + ... + lαm
, where lαi

∈ Lαi
, lαm

�= 0 and m > n + 1.
Since Lαm

is simple and lαm
�= 0, lαm

generates Lαm
. Put w′ = max(supp(Lαm

))
and w = max(supp(Lαm−1)). Note that w′ = max(supp(lαm

)) too. Then, by choice
of αn and (†), we have

w′ > w = max(supp(Q)),

where Q = (
⊕n

i=1 Vi) + (
⊕m−1

j=1 Lαj
). But since lαm

∈ Q, we have a contradiction.
This proves our claim.

Consequently, soc(L∩(
⊕n

i=1 Di)) = L∩(
⊕n

i=1 Vi) is finitely generated, whence a
direct summand of L, and thus of L∩(

⊕n
i=1 Di). However, since soc(L∩(

⊕n
i=1 Di))

is essential in L ∩ (
⊕n

i=1 Di), this means that

L ∩ (
n⊕

i=1

Di) ⊆ soc(C).

Hence, L ∩ (
⊕∞

i=1 Di) ⊆ soc(C). This contradicts (‡) above. Therefore R must be
right q.f.d.

By Lemma 2 and the above argument, we now have that R is a right Noetherian
ring. Since every extending module over a right Noetherian ring has a decompo-
sition into indecomposable extending (i.e., uniform) modules by [9], every right
R-module now has such a decomposition by the assumption (∗)r. Thus R is right
pure-semisimple, so that every right R-module is a direct sum of finitely generated
uniform modules by [19]; whence R is right Artinian and indecomposable right
R-modules are colocal. Then, up to isomorphism, there are finitely many simple
right R-modules, and thus, finitely many indecomposable injective right R-modules.
Since each uniform right R-module can be embedded in one of those indecompos-
able injective modules, R then has (right) bounded type and then, by [18] (also see
[12]), finite type. This completes the proof of (i) ⇒ (ii).

Now, whenever R satisfies one of the above equivalent conditions, we have
RR =

⊕n
i=1 eiR for some local idempotents ei. Every factor of each eiR is then

indecomposable, whence uniform. This implies that eiR are uniserial as right R-
modules. Therefore R is right serial. The proof is now complete. �
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In [6], Fuller investigates rings of finite type and with all left indecomposable
modules quasi-injective, namely rings of left invariant module type. Artinian serial
rings, rings of right invariant module type, and finite dimensional algebras (over a
field) of left local type (i.e., every indecomposable left module is local) are among
examples of rings with (∗)r (see [14], [15], [16], and [17]).

Corollary 1. A ring R is of right invariant module type if and only if every right
R-module is a direct sum of quasi-injective modules.

The property (∗)r does not imply (∗)l, as the following example due to Singh
shows:

Example 1 ([13, Example 1]). Let F ⊆ K be an extension of finite dimensional
division rings, with [K : F ] = 2. Let R = ( F K

0 K ). Then R is an Artinian right
serial ring satisfying (∗)r by [13, Theorem 3.6]. Thus, R does not satisfy (∗)l by
Theorem 1.

The above example also shows that rings with (∗)r are not necessarily left serial.
Now we are ready to give our next result:

Corollary 2. The following conditions are equivalent for a ring R:
(i) R is Artinian serial,
(ii) R has property (∗),
(iii) R is left (resp. right) serial with property (∗)r (resp. (∗)l),
(iv) R has (∗)r and every 2-generated uniform right R-module is uniserial,
(v) R is right or left QF -3 with property (∗)r.

Proof. The equivalence of (i), (ii), and (iii) follows from Theorem 1.
Now assume (iv). Then R is Artinian by assumption and Theorem 1, and ev-

ery finitely generated uniform right R-module is uniserial. Then finitely generated
right R-modules are serial by the (∗)r assumption. Now (i) follows by [7, Theo-
rem 25.4.2.(1bis)].

Finally, the equivalence of (i) and (v) follows from Theorem 1 and [10, Theo-
rem 4.4].
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