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ON A PRODUCT
IN THE CLASSICAL ADAMS SPECTRAL SEQUENCE

XIUGUI LIU AND HAO ZHAO

(Communicated by Paul Goerss)

Abstract. In this paper, we prove the nontriviality of the product h0b0δ̃s ∈
Ext

s+3,t(s)
A (Zp, Zp) in the classical Adams spectral sequence, where p ≥ 11,

4 ≤ s < p, t(s) = 2(p− 1)[sp3 + (s− 1)p2 + (s− 1)p + (s− 2)] + (s− 4) and δ̃s

was obtained by X. Wang and Q. Zheng.

1. Introduction and statement of results

To determine the stable homotopy groups of spheres is one of the most important
problems in algebraic topology. So far, several methods have been found to deter-
mine the stable homotopy groups of spheres. For example, we have the classical
Adams spectral sequence (ASS) (cf. [1]) based on the Eilenberg-MacLane spectrum
KZp, whose E2-term is Exts,t

A (Zp, Zp), and the Adams differential is given by

d̃r : Es,t
r → Es+r,t+r−1

r ,

where A denotes the mod p Steenrod algebra. There are three problems in using
the ASS: calculation of the E2-term Ext∗,∗

A (Zp, Zp), computation of the differentials
and determination of the nontrivial extensions from E∞ to the stable homotopy
groups of spheres. So, for computing the stable homotopy groups of spheres with
the classical ASS, we must compute the E2-term of the ASS, Ext∗,∗

A (Zp, Zp).
Throughout this paper, p denotes an odd prime and q = 2(p − 1).
The known results on Ext∗,∗

A (Zp, Zp) are as follows. Ext0,∗
A (Zp, Zp) = Zp by its

definition. From [6], Ext1,∗
A (Zp, Zp) has Zp-basis consisting of a0 ∈ Ext1,1

A (Zp, Zp),
hi ∈ Ext1,piq

A (Zp, Zp) for all i ≥ 0 and Ext2,∗
A (Zp, Zp) has Zp-basis consisting of α2,

a2
0, a0hi (i > 0), gi (i ≥ 0), ki (i ≥ 0), bi (i ≥ 0), and hihj (j ≥ i + 2, i ≥ 0) whose

internal degrees are 2q+1, 2, piq+1, pi+1q+2piq, 2pi+1q+piq, pi+1q and piq+pjq
respectively. In 1980, Aikawa [2] determined Ext3,∗

A (Zp, Zp) by λ-algebra.
In 1998, X. Wang and Q. Zheng [8] proved the following theorem.
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Theorem 1.1 (Wang and Zheng). For p ≥ 11 and 4 ≤ s < p, there exists the
fourth Greek letter family element δ̃s �= 0 ∈ Exts,t1(s)

A (Zp, Zp), where t1(s) =
2(p − 1)[sp3 + (s − 1)p2 + (s − 2)p + (s − 3)] + (s − 4).

Note that we write δ̃s for α̃
(4)
s , which is described in [8].

In this note, our main result can be stated as follows.

Theorem 1.2. For p ≥ 11 and 4 ≤ s < p, the product h0b0δ̃s �= 0 in the classical
Adams spectral sequence.

The method of proof is by explicit combinatorial analysis of the May spectral
sequence (MSS). The method was first given in [4] by the first author, who obtained
many other results using it. See [4], [5].

The paper is arranged as follows: after recalling some knowledge on the MSS in
Section 2, we give the proof of Theorem 1.2 in Section 3.

2. The May spectral sequence

As we know, the most successful method to compute Ext∗,∗
A (Zp, Zp) is the MSS.

From [7], there is a May spectral sequence (MSS) {Es,t,∗
r , dr} which converges to

Exts,t
A (Zp, Zp) with E1-term

(2.1) E∗,∗,∗
1 = E(hm,i|m > 0, i ≥ 0) ⊗ P (bm,i|m > 0, i ≥ 0) ⊗ P (an|n ≥ 0),

where E( ) is the exterior algebra, P ( ) is the polynomial algebra, and

hm,i ∈ E
1,2(pm−1)pi,2m−1
1 , bm,i ∈ E

2,2(pm−1)pi+1,p(2m−1)
1 , an ∈ E1,2pn−1,2n+1

1 .

One has

(2.2) dr : Es,t,u
r → Es+1,t,u−r

r

and if x ∈ Es,t,∗
r and y ∈ Es′,t′,∗

r , then

(2.3) dr(x · y) = dr(x) · y + (−1)sx · dr(y).

In particular, the first May differential d1 is given by

(2.4) d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j , d1(ai) =
∑

0≤k<i

hi−k,kak, d1(bi,j) = 0.

There also exists a graded commutativity in the MSS: x · y = (−1)ss′+tt′y · x for
x, y = hm,i, bm,i or an.

For each element x ∈ Es,t,u
1 , we define dim x = s, deg x = t, M(x)=u. Then we

have that

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dim hi,j = dim ai = 1,
dim bi,j = 2, deg a0 = 1,
deg hi,j = q(pi+j−1 + · · · + pj),
deg bi,j = q(pi+j + · · · + pj+1),
deg ai = q(pi−1 + · · · + 1) + 1,
M(hi,j) = M(ai−1) = 2i − 1,
M(bi,j) = (2i − 1)p,

where i ≥ 1, j ≥ 0.
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Note that by the knowledge on the p-adic expression in number theory, for each
integer t ≥ 0, it can be expressed uniquely as

t = q(cnpn + cn−1p
n−1 + · · · + c1p + c0) + e,

where 0 ≤ ci < p (0 ≤ i < n), p > cn > 0, 0 ≤ e < q.

3. Proof of Theorem 1.2

Before showing Theorem 1.2, we first prove some important lemmas which will
be used in the proof of Theorem 1.2.

Lemma 3.1. Let p ≥ 11, 4 ≤ s < p. Then the fourth Greek letter family element
δ̃s ∈ Exts,t1(s)

A (Zp, Zp) is represented by

as−4
4 h4,0h3,1h2,2h1,3 ∈ E

s,t1(s),∗
1

in the MSS, where t1(s) = q[sp3 + (s − 1)p2 + (s − 2)p + (s − 3)] + (s − 4).

Proof. By Theorem 1.1, it suffices to prove that the May E1-term

E
s,t1(s),∗
1 = Zp{as−4

4 h4,0h3,1h2,2h1,3}.

This can be shown by an argument similar to that used in Lemma 3.2 below. The
proof is left to the reader. �

Lemma 3.2. Let p ≥ 11, 4 ≤ s < p. Then the May E1-term

E
s+2,t(s),∗
1 = Zp{G1,G2, · · · ,G6},

where t(s) = q[sp3 + (s − 1)p2 + (s − 1)p + (s − 2)] + (s − 4), and

G1 = as−4
4 h4,0h3,1h2,2h1,3h1,1h1,0, G2 = as−4

4 b3,0h4,0h3,1h1,3h1,0,
G3 = as−4

4 b3,0h4,0h2,2h1,3h2,0, G4 = as−4
4 b1,2h4,0h3,1h2,2h2,0,

G5 = as−4
4 b1,2h4,0h3,1h1,3h3,0, G6 = as−4

4 b2,1h4,0h3,1h1,3h2,0.

Proof. Consider h = x1x2 · · ·xm ∈ E
s+2,t(s),∗
1 in the MSS, where xi is one of ak,

hr,j or bu,z, 0 ≤ k ≤ 4, 0 ≤ r + j ≤ 4, 0 ≤ u + z ≤ 3, r > 0, j ≥ 0, u > 0, z ≥ 0.
By (2.5) we can assume that deg xi = q(ci,3p

3 + ci,2p
2 + ci,1p + ci,0) + ei, where

ci,j = 0 or 1, ei = 1 if xi = aki
, or ei = 0. It follows that

dim h =
m∑

i=1

dim xi = s + 2

and

deg h =
m∑

i=1

deg xi

= q[(
m∑

i=1

ci,3)p3 + (
m∑

i=1

ci,2)p2 + (
m∑

i=1

ci,1)p + (
m∑

i=1

ci,0)] + (
m∑

i=1

ei)

= q[sp3 + (s − 1)p2 + (s − 1)p + (s − 2)] + (s − 4).

Note that dim hi,j = dim ai = 1, dim bi,j = 2 and 4 ≤ s < p. From dim h =
m∑

i=1

dim xi = s+2 we must have m ≤ s+2 ≤ p+1. Using 0 ≤ s, s−1, s−2, s−4 < p
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and the knowledge on the p-adic expression in number theory, we have that

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

ei = s − 4;
m∑

i=1

ci,0 = s − 2;
m∑

i=1

ci,1 = s − 1;
m∑

i=1

ci,2 = s − 1;
m∑

i=1

ci,3 = s.

By ci,3 = 0 or 1, one has m ≥ s from
∑m

i=1 ci,3 = s. Note that m ≤ s + 2.
Thus m may equal s, s + 1 or s + 2. Since

∑m
i=1 ei = s − 4, deg hi,j ≡ 0(mod q)

(i > 0, j ≥ 0), deg ai ≡ 1(mod q) (i ≥ 0) and deg bi,j ≡ 0(mod q) (i > 0, j ≥ 0),
then by the graded commutativity of E∗,∗,∗

1 and degree reasons, we can assume
that h = ax

0ay
1a

z
2a

k
3al

4h
′ with h′ = xs−3xs−2 · · ·xm, where 0 ≤ x, y, z, k, l ≤ s − 4,

x + y + z + k + l = s− 4. Consequently, we have h′ = xs−3xs−2 · · ·xm ∈ E
6,t2(s),∗
1 ,

where t2(s) = q[(s−l)p3+(s−1−l−k)p2+(s−1−l−k−z)p+(s−2−l−k−z−y)].
From (3.1) we have

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=s−3

ei = 0;
m∑

i=s−3

ci,0 = s − 2 − y − z − k − l;
m∑

i=s−3

ci,1 = s − 1 − z − k − l;
m∑

i=s−3

ci,2 = s − 1 − k − l;
m∑

i=s−3

ci,3 = s − l.

Case 1 (m = s). From
∑s

i=s−3 ci,3 = s − l in (3.1), we have that l = s −∑s
i=s−3 ci,3 ≥ s − 4. Note that 0 ≤ l ≤ s − 4. Thus l = s − 4, and x =

y = z = k = 0. By (3.2), h′ = xs−3xs−2xs−1xs ∈ E
6,q(4p3+3p2+3p+2),∗
1 . How-

ever, E
6,q(4p3+3p2+3p+2),∗
1 is the Zp-module generated by the following six elements:

h4,0h3,1h2,2h1,3h1,1h1,0; b3,0h4,0h3,1h1,3h1,0; b3,0h4,0h2,2h1,3h2,0; b1,2h4,0h3,1h2,2h2,0;
b1,2h4,0h3,1h1,3h3,0; and b2,1h4,0h3,1h1,3h2,0, denoted by g1, g2, · · · , g6 respec-
tively. Consequently, in this case it is impossible for h′ to exist. Then h doesn’t
exist either.

Case 2 (m = s+1). From
∑s+1

i=s−3 ci,3 = s−l in (3.2), one has l = s−
∑s+1

i=s−3 ci,3 ≥
s − 5. Thus there are five possibilities satisfying 0 ≤ x, y, z, k, l ≤ s − 4 and
x + y + z + k + l = s − 4. We list all the possibilities in Table 1, consequently, in
this case up to sign h = as−4

4 g2, as−4
4 g3, · · · , as−4

4 g6, denoted by G2, G3, · · · , G6
respectively.

Case 3 (m = s + 2). As in Case 2, one has l ≥ s − 6 from
∑s+2

i=s−3 ci,3 = s − l in
(3.2). Note that x + y + z + k + l = s − 4. We list all the possibilities in Table 2,
thus in this case up to sign h = as−4

4 g1, denoted by G1.



ON A PRODUCT IN THE CLASSICAL ADAMS SPECTRAL SEQUENCE 2493

Table 1

The possibility l k z y x E
6,t2(s),∗
1

The existence of
h′ = xs−3 · · ·xs+1

The 1st s − 5 1 0 0 0 E
6,q(5p3+3p2+3p+2),∗
1 = 0 Nonexistence

The 2nd s − 5 0 1 0 0 E
6,q(5p3+4p2+3p+2),∗
1 = 0 Nonexistence

The 3rd s − 5 0 0 1 0 E
6,q(5p3+4p2+4p+2),∗
1 = 0 Nonexistence

The 4th s − 5 0 0 0 1 E
6,q(5p3+4p2+4p+3),∗
1 = 0 Nonexistence

The 5th s − 4 0 0 0 0 E
6,q(4p3+3p2+3p+2),∗
1

= Zp{g1,g2, · · · ,g6}
h′ = g2,g3,g4,g5,
g6 up to sign

Table 2

The possibility l k z y x E
6,t2(s),∗
1

The existence of
h′ = xs−3 · · ·xs+2

The 1st s − 6 2 0 0 0 E
6,q(6p3+3p2+3p+2),∗
1 = 0 Nonexistence

The 2nd s − 6 0 2 0 0 E
6,q(6p3+5p2+3p+2),∗
1 = 0 Nonexistence

The 3rd s − 6 0 0 2 0 E
6,q(6p3+5p2+5p+2),∗
1 = 0 Nonexistence

The 4th s − 6 0 0 0 2 E
6,q(6p3+5p2+5p+4),∗
1 = 0 Nonexistence

The 5th s − 6 1 1 0 0 E
6,q(6p3+4p2+3p+2),∗
1 = 0 Nonexistence

The 6th s − 6 1 0 1 0 E
6,q(6p3+4p2+4p+2),∗
1 = 0 Nonexistence

The 7th s − 6 1 0 0 1 E
6,q(6p3+4p2+4p+3),∗
1 = 0 Nonexistence

The 8th s − 6 0 1 1 0 E
6,q(6p3+5p2+4p+2),∗
1 = 0 Nonexistence

The 9th s − 6 0 1 0 1 E
6,q(6p3+5p2+4p+3),∗
1 = 0 Nonexistence

The 10th s − 6 0 0 1 1 E
6,q(6p3+5p2+5p+3),∗
1 = 0 Nonexistence

The 11th s − 5 1 0 0 0 E
6,q(5p3+3p2+3p+2),∗
1 = 0 Nonexistence

The 12th s − 5 0 1 0 0 E
6,q(5p3+4p2+3p+2),∗
1 = 0 Nonexistence

The 13th s − 5 0 0 1 0 E
6,q(5p3+4p2+4p+2),∗
1 = 0 Nonexistence

The 14th s − 5 0 0 0 1 E
6,q(5p3+4p2+4p+3),∗
1 = 0 Nonexistence

The 15th s − 4 0 0 0 0 E
6,q(4p3+3p2+3p+2),∗
1

= Zp{g1,g2, · · · ,g6}
h′ = g1 up to sign

Combining Cases 1-3, we obtain that E
s+2,t(s),∗
1 = Zp{G1,G2, · · · ,G6}. This

completes the proof of Lemma 3.2. �

Lemma 3.3. (1) The product h0b0δ̃s ∈ Exts+3,t(s)
A (Zp, Zp) is represented by

h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 ∈ E

s+3,t(s),∗
1 in the MSS, where t(s) = q[sp3 +

(s − 1)p2 + (s − 1)p + (s − 2)] + (s − 4).
(2) For the six generators of E

s+2,t(s),∗
1 , we have that M(G1) = 9s − 18,

M(G2) = M(G3) = 5p + 9s − 22, M(G4) = M(G5) = p + 9s − 18,
and M(G6) = 3p + 9s − 20. Moreover, for h1,0b1,0a

s−4
4 h4,0h3,1h2,2h1,3 we

have that M(h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3) = p + 9s − 19.

Proof. (1) Since it is known that h1,i, b1,i and as−4
4 h4,0h3,1h2,2h1,3 ∈ E∗,∗,∗

1 are all
permanent cycles in the MSS and converge nontrivially to hi, bi, δ̃s ∈ Ext∗,∗

A (Zp, Zp)
for 4 ≤ s < p and i ≥ 0 respectively (cf. Lemma 3.1), then we have that
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h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 ∈ E

s+3,t(s),p+9s−19
1 is a permanent cycle in the MSS

and converges to h0b0δ̃s ∈ Exts+3,t(s)
A (Zp, Zp).

(2) From (2.5), the result follows by direct calculation. �

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. From Lemma 3.3 (1), h0b0δ̃s ∈ Exts+3,t(s)
A (Zp, Zp) is repre-

sented by h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 ∈ E

s+3,t(s),p+9s−19
1 in the MSS. Now we will

show that nothing hits the permanent cycle h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 under the

May differential dr for r ≥ 1. From Lemma 3.2, we have

E
s+2,t(s),∗
1 = Zp{G1,G2, · · · ,G6}.

For the generator G1 with May filtration M(G1) = 9s − 18 (see Lemma 3.3),
we easily get that G1 is a permanent cycle in the MSS and converges to δ̃sh1h0,
which equals 0 ∈ Exts+2,t(s)

A (Zp, Zp) by h1h0 = 0. Then

dr(G1) = 0

and
Es+2,t(s),9s−18

r ⊆ Zp{G1}
for r ≥ 1. It follows that h1,0b1,0a

s−4
4 h4,0h3,1h2,2h1,3 /∈ dr(E

s+2,t(s),9s−18
r ) for r ≥ 1.

For the generators G2 and G3 whose May filtrations are M(G2) = M(G3) =
5p + 9s − 22 (see Lemma 3.3), by the reason of May filtration, from (2.2) we see
that h1,0b1,0a

s−4
4 h4,0h3,1h2,2h1,3 ∈ E

s+3,t(s),p+9s−19
1 , which represents that h0b0δ̃s ∈

Exts+3,t(s)
A (Zp, Zp) in the MSS is not in d1(E

s+2,t(s),5p+9s−22
1 ). Now we will show

that
Es+2,t(s),5p+9s−22

r = 0
for r ≥ 2. By an easy calculation, from (2.3) and (2.4) one can have the first May
differentials of G2 and G3 as follows:

d1(G2) = (−1)s+1as−4
4 b3,0h3,1h2,2h1,3h2,0h1,0

+(−1)sas−4
4 b3,0h4,0h2,2h1,3h1,1h1,0 + · · ·

�= 0,
d1(G3) = (−1)s+1as−4

4 b3,0h3,1h2,2h1,3h2,0h1,0

+(−1)s+1as−4
4 b3,0h4,0h2,2h1,3h1,1h1,0 + · · ·

�= 0.

It is easy to see that the first May differentials of G2 and G3 are linearly indepen-
dent. Consequently, the cocycles of E

s+2,t(s),5p+9s−22
1 must be zero. This means

that
Es+2,t(s),5p+9s−22

r = 0
for r ≥ 2, from which we have that

h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 /∈ dr(Es+2,t(s),5p+9s−22

r )

for r ≥ 2. In all, h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 /∈ dr(E

s+2,t(s),5p+9s−22
r ) for r ≥ 1.

For the generators G6 with May filtration M(G6) = 3p + 9s − 20, by an easy
calculation, from (2.3) and (2.4) we have the first May differentials of G6 as follows:

d1(G6) = (−1)s+1as−4
4 b2,1h4,0h3,1h1,3h1,1h1,0 + · · · �= 0.
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Thus

Es+2,t(s),3p+9s−20
r = 0

for r ≥ 2. At the same time, we also have that up to a nonzero scalar

d1(G6) �= h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3.

In summary, h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 /∈ dr(E

s+2,t(s),3p+9s−20
r ) for r ≥ 1.

Finally, we consider the generators G4 and G5 whose May filtrations are both
p + 9s − 18. By (2.3) and (2.4), we have

d1(G4) = (−1)s+1as−4
4 b1,2h4,0h3,1h2,2h1,1h1,0 + · · · �= 0,

d1(G5) = (−1)s+1as−4
4 b1,2h4,0h3,1h1,3h2,1h1,0 + · · · �= 0.

The first May differential of each of the two generators contains at least a term
which is not in the first May differential of the other generator. We can easily
get that d1(G4), d1(G5) and h1,0b1,0a

s−4
4 h4,0h3,1h2,2h1,3 are linearly independent.

Thus we have

h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 /∈ d1(E

s+2,t(s),p+9s−18
1 ).

Meanwhile, by (2.2), we also have that the permanent cycle

h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 /∈ dr(Es+2,t(s),p+9s−18

r )

for r ≥ 2. In a word, h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 /∈ dr(E

s+2,t(s),p+9s−18
r ) for r ≥ 1.

From the above discussion, the permanent cycle h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 can-

not be hit by any differential in the MSS. Thus, h1,0b1,0a
s−4
4 h4,0h3,1h2,2h1,3 ∈

E
s+3,t(s),p+9s−19
1 converges nontrivially to h0b0δ̃s ∈ Exts+3,t(s)

A (Zp, Zp) in the MSS.
Consequently, h0b0δ̃s �= 0. This finishes the proof of Theorem 1.2. �
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