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CURVATURE ESTIMATES FOR MINIMAL SURFACES
WITH TOTAL BOUNDARY CURVATURE LESS THAN 4π

GIUSEPPE TINAGLIA

(Communicated by Richard A. Wentworth)

Abstract. We establish a curvature estimate for classical minimal surfaces
with total boundary curvature less than 4π. The main application is a bound
on the genus of these surfaces depending solely on the geometry of the bound-
ary curve. We also prove that the set of simple closed curves with total cur-
vature less than 4π and which do not bound an orientable compact embedded
minimal surface of genus greater than g, for any given g, is open in the C2,α

topology.

Introduction

In this paper we discuss the geometry and topology of compact minimal surfaces
with boundary Γ that have total curvature T (Γ) less than 4π; here T (Γ) =

∫
Γ
|k|,

where k is the curvature of Γ. If Γ is a connected simple closed curve, we denote by
M(Γ) the family of all orientable compact minimal surfaces with Γ as boundary. It
is well known that if Γ is a connected piecewise C1 simple closed curve, then M(Γ)
contains at least an immersed minimal disk [2, 11, 12]. We stress that Ekholm,
White, and Wienholtz proved in [3] that a classical minimal surface with boundary
Γ such that T (Γ) ≤ 4π must in fact be embedded, regardless of the topological
type.

The main theorem of this paper is the following curvature estimate:

Theorem 0.1. Let Γ ⊂ R
3 be a C2,α connected simple closed curve such that the

total curvature T (Γ) is strictly less than 4π. Then there exists a constant C = C(Γ)
such that

sup
Σ∈M(Γ)

|KΣ| ≤ C,

where KΣ is the Gaussian curvature of Σ.
The constant C depends on the radius of the largest embedded tubular neighbor-

hood around Γ, as well as on upper bounds for ‖Γ‖C2,α and the length of Γ.

A finer quantitative version of Theorem 0.1 is to be found in Section 2.
The proof of Theorem 0.1 is based on a compactness argument, which we now

sketch. Suppose that there exists a sequence of embedded minimal surfaces and
points on these surfaces which remain away from the boundary, where the curvature
blows up. This being the case, we use a rescaling argument to obtain a new sequence
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of surfaces that converges to a complete nonplanar embedded minimal surface. A
key point in the argument is a delicate application of the density estimates in [3]
which are used to prove that the limiting surface must in fact be a plane, thus
yielding a contradiction. A similar, yet more refined argument, is needed when the
sequence of points converges to a boundary point.

Using the Gauss-Bonnet formula, together with an area estimate for minimal
surfaces, our curvature estimate implies a bound on the genus of each Σ in M(Γ)
that depends only on the geometry of Γ. Consequently, the topology of the elements
in M(Γ) cannot be arbitrary. In addition to Theorem 0.1, we prove that the bound
on the Gaussian curvature varies continuously with Γ, relative to the C2,α topology.
This is used to establish that the set of all simple closed curves with T (Γ) < 4π, and
which do not bound an embedded and orientable minimal surface of genus greater
than g, for any given g, is open in the C2,α topology (Theorem 3.7).

There are many special curves Γ with total curvature less than 4π for which it
has been proved that M(Γ) consists only of disks (e.g., if Γ lies on the boundary of
a convex set [7]). Theorem 3.7 reveals that if Γ′ is a new curve which is obtained
by a slight modification of such a Γ, then M(Γ′) must still consist only of disks.
These results relate to the Ekholm-White-Wienholtz conjecture on the nature of
minimal surfaces spanning a curve Γ with T (Γ) ≤ 4π (see [3]).

This paper is organized as follows. In the first section we prove Theorem 0.1.
Next we examine the constant in Theorem 0.1 in order to prove that it depends
only on a few geometric quantities associated with the curve Γ. Finally, we discuss
some interesting applications of our curvature estimate.

1. Proof of Theorem 0.1

We begin by stating the density estimate in [3] which is needed in our arguments.
In the statement below, Θ(M, p) stands for the density of M at p; see [3] for details.

Proposition 1.2. Given θ > 0 there exists δ = δ(θ) > 0 such that the following
holds. Let Γ be a simple closed curve with T (Γ) ≤ θ < 4π and let p ∈ Σ ∈ M(Γ).
Then,

Θ(M, p) ≤ 2 − δ if p ∈ M(Γ)\Γ,(1.1)

Θ(M, p) ≤ 3
2
− δ if p ∈ Γ.(1.2)

Notice that the fact that Γ is C2,α implies that for any Σ ∈ M(Γ) there exists a
constant C(Σ) which bounds the Gaussian curvature (see [9]). In this paper, we are
showing that the bound does not depend on the surface, but only on the geometry
of the boundary. We also note that for a minimal surface, −2KΣ = |A|2. Here, as
usual, if we denote by k1 and k2 the principal curvatures, |A| =

√
k2
1 + k2

2 is the
norm of the second fundamental form, and KΣ = k1k2 is the Gaussian curvature.

Proof of Theorem 0.1. To prove the bound on the Gaussian curvature we use a
compactness argument. Assuming that the statement is false, we can find a se-
quence of minimal surfaces Σn such that

max
Σn

|An| > n.

Let pn ∈ Σn such that
|An(pn)| = max

Σn

|An| > n,
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and let qn ∈ Γ such that

rn = distΣn
(Γ, pn) = distΣn

(qn, pn).

Alternative I: rn|An(pn)| tends to infinity. Consider the sequence of minimal sur-
faces, which we will still call Σn, obtained by rescaling the connected component of
Σn ∩Brn

(pn) which contains pn, by a factor |A(pn)|; here Br(p) denotes the ball of
radius r centered at p. After a translation that takes pn to the origin, Σn becomes
a sequence of embedded minimal surfaces with |An| uniformly bounded by one, and
|An(0)| = 1. After possibly going to a subsequence, since limn→∞ rn|An(pn)| = ∞,
we can assume that Σn converges to an orientable properly embedded minimal
surface Σ with bounded norm of the second fundamental form which is one at the
origin (in particular, Σ is not a plane). Thanks to the results in [3] there exists
δ > 0 such that

(1.3)
Area(Σn ∩ Br(q))

πr2
< 2 − δ < 2, for any q ∈ Σn and any r > 0.

In particular, (1.3) gives

(1.4)
Area(Σ ∩ Br(q))

πr2
< 2 − δ < 2, for any q ∈ Σ and any r > 0.

Our goal is to reach a contradiction by showing that Σ must be a plane. Since
Σ has quadratic area growth, it is possible to take its cone at infinity. In other
words, there exists a sequence tn > 0 approaching zero such that tnΣ converges to
a stationary cone C with density at the origin less than 2 − δ. It is known that
the intersection of C with the unit sphere consists of a collection of geodesic arcs.
We claim that the said intersection consists of a single great circle with multiplicity
one, which would imply that Σ is a plane. In order to prove the claim we rule out
the possibility that there is a point which is the end point of more than two arcs.
Clearly, there cannot be a point where more than three arcs meet; otherwise the
density at that point would be at least 2, and that would contradict (1.4). If there
exists a point where exactly three arcs meet, then we can find a large circle which is
transverse to Σ and intersects Σ in exactly three points. However, this contradicts
the fact that the intersection number of the circle and the minimal surface is zero
mod 2 (see [6]).
Alternative II: rn|An(pn)| is bounded. Note that |pn − qn||An(pn)| ≤ rn|An(pn)|
is bounded. Reasoning as in the previous case, we obtain a sequence of minimal
surfaces Σn that converges to an orientable properly embedded minimal surface Σ,
bounded by a straight line L. As before, Σ has bounded second fundamental form
with length one at a certain point (in particular, Σ is not a half-plane). Moreover,
there exists δ > 0 such that

(1.5)
Area(Σ ∩ Br(q))

πr2
< 2 − δ < 2, for any q ∈ M\L and any r > 0,

and

(1.6)
Area(Σ ∩ Br(q))

πr2
<

3
2
− δ <

3
2
, for any q ∈ L and any r > 0.

Our goal is to reach a contradiction by showing that Σ must be a half-plane. Let
C be the cone at infinity. The intersection of C with the unit sphere consists of a
collection of geodesic arcs which must contain two antipodal points P, Q. We can
always assume P = (0, 1, 0), Q = (0,−1, 0). We claim that the intersection of C
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with the unit sphere consists of a single half great circle. This implies that Σ is a
half-plane. Similarly to the previous case, one can show that the intersection of C
with the unit sphere consists of halves of great circles having P, Q as the endpoints.
Moreover, there can be at most two great circles; otherwise the density at the origin
would be at least 3

2 , and that contradicts (1.6). Assume therefore that there are two
half great circles. Using the Schwarz reflection principle, one obtains an orientable
properly immersed minimal surface M ′ without boundary. Let C ′ be its cone at
infinity. We have already shown that the intersection of C ′ with the unit sphere
consists of at most two great circles. Let π be a plane through the origin which
does not contain either great circle, and let

(1.7) ω(R) = {(0, 0, t) : −R ≤ t ≤ R} ∪ {(t, 0, R) : 0 ≤ t ≤ R}
∪ {(R, 0, t) : −R ≤ t ≤ R} ∪ {(t, 0,−R) : 0 ≤ t ≤ R}.

If there are two great circles, because of the symmetry of M ′, for large R, the
union of curves, ω(R), intersects M ′ in an odd number of points. But, again, this
contradicts the fact that the mod 2 intersection number of ω(R) and the minimal
surface is zero. �

Remarks. (1) The conclusion in Theorem 0.1 may fail if Γ is only assumed to be
continuous. Certainly there exist continuous (but not C2,α) simple closed
curves Γ and minimal surfaces Σ ∈ M(Γ) such that supΣ |KΣ| = ∞ (see
[9, 10]).

(2) The connectedness hypothesis in Theorem 0.1 is redundant and was in-
cluded only to preserve the flow of the presentation. In fact, by the Fenchel-
Borsuk theorem the total curvature of a connected simple closed curve Γ is
always greater than or equal to 2π, with equality holding if and only if Γ
is a convex planar curve (see [1, 4, 5, 8]).

2. The constant C

A slight modification of the argument in the proof of Theorem 0.1 also yields
the following result.

Theorem 2.3. Let Γ ⊂ R
3 be a C2,α connected simple closed curve such that

T (Γ) < 4π. There exists ρ > 0 and C(Γ, ρ) such that if Γ′ is a simple closed curve
and ‖Γ − Γ′‖C2,α ≤ ρ, then

sup
Σ∈M(γ)

|KΣ| ≤ C(Γ, ρ).

Let us denote by E(Γ) the radius of the largest embedded tubular neighborhood
around Γ. Using Theorem 2.3 we can now prove a finer quantitative version of
Theorem 0.1. For simplicity, we state the theorem assuming that the length of Γ is
less than one.

Theorem 2.4. Given ε > 0, ∆ > 0 and θ < 4π, there exists a constant C(ε, ∆, θ)
such that the following holds. If Γ ⊂ R

3 is a C2,α connected simple closed curve
with length less than one, E(Γ) ≥ ε, ‖Γ‖C2,α ≤ ∆, and T (Γ) ≤ θ, then

sup
Σ∈M(Γ)

|KΣ| ≤ C(ε, ∆, θ).
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Proof. Suppose that there exist sequences Γn and Σn ∈ M(Γn) for which the curva-
ture goes to infinity. The conditions on Γn guarantee that there exists a connected
simple closed curve Γ with total curvature less than or equal to θ, and a subsequence
Γnk

such that ‖Γ − Γnk
‖C2,α is going to zero. We can then apply Theorem 2.3 to

reach a contradiction. �

3. Applications

The results below are consequences of the theorems discussed in the previous
sections.

Corollary 3.5. If Γ ⊂ R
3 is a C2,α, connected, simple closed curve such that

T (Γ) < 4π, then M(Γ) is compact.

Corollary 3.6. Let Γ ⊂ R
3 be a C2,α, connected, simple closed curve such that

T (Γ) < 4π. There exists a constant N(Γ) such that the genus of any Σ ∈ M(Γ) is
less than or equal to N(Γ).

Proof. The Gauss-Bonnet Theorem states that∫
Γ

�k · �nds +
∫

Σ

KΣ = 2πχ(Σ),

where �k is the curvature vector of the curve Γ, �n is the exterior normal of Σ, and
χ(Σ) is the Euler characteristic of Σ. The first integral is bounded in absolute value
by the total curvature of Γ, while the second integral is bounded by the area of Σ
times the bound on the curvature given by Theorem 0.1. Hence, |χ(Σ)| is bounded
and so is the genus. �
Theorem 3.7. The set of C2,α, connected, simple closed curves with T (Γ) < 4π
and which do not bound an embedded and orientable minimal surface of genus
greater than g, for any given g, is open in the C2,α topology.

Proof. Let Γ and N(Γ) be as above. It suffices to show that for any C2,α, connected,
simple closed curve Γ there exists an ε > 0 such that if Γ′ is a connected, simple
closed curve such that ‖Γ − Γ′‖C2,α < ε, then the genus of any Σ ∈ M(Γ′) is
bounded by N(Γ). Assuming that the statement is false, for any n > 0 there exist
Γn and Σn ∈ M(Γn) such that ‖Γ−Γn‖C2,α < 1

n and the genus of Σn is greater than
N(Γ). However, the second fundamental forms of the Σn’s are uniformly bounded.
Therefore, after going to a subsequence, Σn converges to a surface Σ ∈ M(Γ) with
genus greater than N(Γ), which is a contradiction. �

Using a compactness argument like the one in the proof of Theorem 0.1, one
can prove that the bound on the genus depends on the constants described in
Theorem 0.1:

Theorem 3.8. Given ε > 0, ∆ > 0 and θ < 4π there exists a constant N(ε, ∆, θ)
such that the following holds. Let Γ ⊂ R

3 be a C2,α, connected, simple closed curve
with length less than one and such that E(Γ) ≥ ε, ‖Γ‖C2,α ≤ ∆, and T (Γ) ≤ θ.
Then the genus of any Σ ∈ M(Γ) is bounded by N(Γ).
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