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MOSER STABILITY FOR LOCALLY CONFORMALLY
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(Communicated by Jon G. Wolfson)

ABSTRACT. We formulate and prove the analogue of Moser’s stability theorem
for locally conformally symplectic structures. As special cases we recover some
results previously proved by Banyaga.

1. INTRODUCTION

In this paper we prove a version of the Moser stability theorem for locally con-
formally symplectic structures. These structures were introduced by Lee [6] and
Vaisman [§] and have been studied extensively by Vaisman, Banyaga and many
others. We refer the reader to [11 2, B B} 6 8] and to the references given there for
a more thorough discussion.

A locally conformally symplectic or lcs form on a manifold M is a non-degenerate
2-form w which is locally conformal to a symplectic form. More formally:

Definition 1.1. A non-degenerate 2-form w on a manifold M is said to be locally
conformally symplectic if there exists an open covering {U;} of M and a smooth
positive function f; on each U; such that f;w|y, is symplectic on Us.

It is straightforward to see, and was first observed by Lee [6], that this is equiv-
alent to the existence of a closed 1-form 6 such that

(1.1) dw =60 Nw.

We assume throughout that the dimension of M is at least 4. Then the 1-form 6,
called the Lee form of w, is uniquely determined by w because the wedge product
with a non-degenerate 2-form is injective on 1-forms. When 6 vanishes identically,
the form w is symplectic.

Two les forms w and ' are said to be (conformally) equivalent if there exists
some positive function f such that w = fw’. A locally conformally symplectic
structure is an equivalence class of lcs forms for this relation. Note that the de Rham
cohomology class of the Lee form is an invariant of the lcs structure because a
conformal rescaling of w changes 6 by the addition of an exact form.
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If an lcs structure contains a symplectic representative, then the structure is
globally conformally symplectic. This is the case if and only if the Lee form is
exact.

The purpose of this paper is to give a necessary and sufficient condition for the
existence of an isotopy making a smooth family of lcs structures constant. This
result, Theorem Bl proved in Section 3] is the lcs analogue of Moser’s theorem [7]
for symplectic forms. However, for the conformally invariant notion of lcs forms,
the appropriate formulation is not for an isotopy of forms, but for an isotopy of their
conformal equivalence classes. We will show that Theorem Bl implies as special
cases some results of Banyaga [I] giving sufficient conditions for the existence of an
isotopy of certain families of lcs structures. Although we prove a more general result
than Banyaga [I], our proofs are simpler, even for the special cases he considered;
compare Section (] below.

The proof of Theorem [3.I] involves Hodge theory for the Lichnerowicz cohomol-
ogy, which we review in Section[2l As a byproduct we give an answer to a question
raised by Banyaga in [2].

To end this introduction, let us remark on the notation we use. There are a
number of conventions, especially concerning signs, involved in the definition of
the Lee form and in the discussion of Lichnerowicz cohomology. We use (LI]) as
our definition of the Lee form, and we have chosen the sign conventions for the
Lichnerowicz cohomology in such a way that they fit conveniently with (II).

2. LICHNEROWICZ COHOMOLOGY

An important tool in the study of Ics structures is the dg-cohomology introduced
in [4]; compare also [2| [3, [5].

Let M be a smooth manifold, and 6 a closed 1-form on M. One defines a
first-order differential operator dy as follows:

(2.1) dofB=dB— 0 A B,

where 3 is any differential form. It is straightforward to verify that dy squares to
zero, so that one obtains a modified de Rham complex (Q*(M), dy). Its cohomology
vector spaces H (M) are called the dg-cohomology, or Lichnerowicz cohomology of
M with respect to 6. This only depends on the de Rham cohomology class of 8, for
if / = 6 + dlIn f for some positive function f, then the formula

(2.2) fdeB = doam(fB)

shows that multiplication by f is a chain map between (Q*(M), dg) and (Q*(M), dg/)
inducing an isomorphism in cohomology.

In the case when 6 is the Lee form of an lcs form w, equation (LI)) shows that
w is dp-closed and so defines a class in HZ(M). If we consider the lcs structure
defined by w, and w’ = fw, then the Lee form of w’ is just ' = 6 + dIn f and the
class [w] € H3(M) is mapped to [w'] € HZ, (M) by the above isomorphism.

The Lichnerowicz cohomology shares many properties with the ordinary de Rham
cohomology; see, for example, [4,5]. For our purposes it is useful that Hodge theory
applies to the dy-cohomology.

Let us assume that M is closed and oriented. Then the modified de Rham
complex (2*(M),dy) is an elliptic complex. In particular, its cohomology is finite-
dimensional. If we equip M with an arbitrary Riemannian metric g, then we can
define an operator dj as the formal L?-adjoint of dy with respect to ¢g. Further,
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Ay = dgd}y + djdy is the corresponding Laplacian. These operators are lower-order
perturbations of the corresponding operators in the usual Hodge-de Rham theory
(corresponding to 8 = 0) and therefore have much the same analytic properties.
For example, the usual proof of the Hodge decomposition theorem (see e.g. [9]) goes
through, and one obtains an orthogonal decomposition

OF(M) = H* (M) © do(Q* (M) @ dy(2* (M)

where H¥(M), the space of Ap-harmonic forms, is isomorphic to Hj (M).
Any dg-exact k-form is contained in dp(Q*~!(M)), which is in fact equal to
dpdy(Q2*(M)). Integration by parts shows that

do: dy(QF(M)) — QF (M)

is injective, so that every dg-exact form has a unique primitive in the image of dj.
Finally, note that on a closed oriented manifold the index of the elliptic complex
(Q*(M),dyg) is determined, via the Atiyah—Singer index theorem, by its symbol
sequence, which is independent of #. Therefore, the Euler characteristic of the
Lichnerowicz cohomology coincides with the usual Euler characteristic.

Example 2.1. Banyaga [2] considers the Lichnerowicz cohomology on a certain
4-manifold M of Euler characteristic zero. For a particular closed one-form 6 he
shows that the dimensions of Hj(M) are at least one for i = 1,2, 3, and asks whether
the dimensions might be exactly one; see Question 3 on page 5 of [2].

In this case the one-form 6 is not exact, and so a result of [4, 5] shows that H} (M)
vanishes for i = 0 and ¢ = 4. Therefore the vanishing of the Euler characteristic
implies that H, 92(M ) is at least 2-dimensional, giving a negative answer to Banyaga’s
question.

3. MOSER STABILITY

In this section we consider families w; of locally conformally symplectic forms
depending smoothly on a parameter ¢t € [0, 1]. The uniqueness of the Lee form 6,
implies that this depends smoothly on t as well.

Recall that Moser’s stability theorem [7] says that if the w; are actually symplec-
tic, then they are isotopic as forms if and only if their de Rham cohomology class is
independent of ¢. Now one expects to transpose this statement to the lcs category
by replacing the de Rham cohomology by the Lichnerowicz cohomology. This is
slightly complicated for two reasons. First of all, the Lichnerowicz cohomology de-
pends on 6;, which is not necessarily fixed, but varies with ¢t. Thus the cohomology
one needs to consider also varies with ¢. Second of all, we would like to have a
conformally invariant statement, which holds for lcs structures rather than forms.
This explains why the following theorem looks more complicated than Moser’s.

Theorem 3.1. Let w; be a family of locally conformally symplectic forms on a
closed manifold M, depending smoothly on t € [0,1]. Denote by 6; the Lee form of
Wt.

There exists an isotopy ¢+ with ¢;w; conformally equivalent to wo for all t if and
only if there are positive smooth functions f; on M, varying smoothly with t, such
that the time derivative %( fiwt) of the conformally rescaled family fiw; is dg; -exact
for every t, where 0, = 0; + d1n f; is the Lee form of fiwy.



2422 G. BANDE AND D. KOTSCHICK

Proof. First suppose that there is an isotopy ¢; so that ¢;w; is conformally equiv-
alent to wy for all t. After rescaling the w; suitably, we may assume ¢;w; = wo.
Let X; be the time-dependent vector field obtained by differentiating ¢;. By the
Cartan formula we have

0= % (67w) = 670 + Lxwi)
= o1 (Wt + dix,wt + ix,dw;)
= ¢y (Wi + dix,wr +ix, (W A 6y))
= ¢; (W + dix,we — 0 A (ix,wi) + 0, (Xt)wy) -
We conclude that
(3.1) wr = —dy, (ix,wt) — 0:(Xp)we

Now consider the family fiw; with

f = exp ( /0 t 0S(Xs>ds> .

%(ftwt) = frws + i
= fibe(Xi)wr — fildg, (ix,wi) + 01(Xt)wr)
= *ftde,, (iX,,OJt)

= —dg,+dmn £, (frix,we) ,

where we first used (3I) and then (Z2). Thus £ (fuw;) is indeed dy;-exact, where
0, = 6; + d1n f; is the Lee form of fiw;.

For the converse assume that we have rescaled w; in such a way that w; is dp,-
exact for every t. As explained in Section 2l by Hodge theory for the Lichnerowicz
cohomology, there is a unique o in the image of dj with the property that dy, o =
wi. As wy depends smoothly on ¢, and «ay is specified uniquely for every t, it follows
that o, also depends smoothly on t. We define a time-dependent vector field X; by
the requirement that

This satisfies

Ix,Wy = —0y .

This exists and is unique because w; is non-degenerate. As both w; and oy depend
smoothly on ¢, so does X;. Let ¢; be its flow. Now the same calculation as before
yields

W — dg, o + 0, (X¢)wy)

(
r(wt + dZ.tht - 9,5 A (Z.tht) + 9t(Xt)wt)
(
(0:(X3)) - drwr -

It follows that
t
¢;wy = exp </ ¢Z(05(Xs))ds> “wo -
0

This completes the proof. Il
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Note that in the second part of the proof we produced an isotopy ¢; between the
conformal equivalence classes of the w;. As the de Rham cohomology class of the
Lee form is conformally invariant, and ¢; acts trivially on de Rham cohomology,
we conclude that the de Rham cohomology class of the Lee forms 6, is independent
of t. We do not need to assume this in the theorem, as the proof shows that it is
implied by the assumption that %( fiwt) is dg;-exact for all t.

If we assume that the Lee forms are independent of ¢, then Theorem [B.1] implies
the following statement, first proved by Banyaga (Theorem 4 of [1]):

Corollary 3.2. Let wy be a smooth family of lcs forms on a compact manifold M
having the same Lee form 0. If w —wyq is dg-exact for all t, then there exist a family
of functions f; and an isotopy ¢+ such that ¢F (wi) = frwo.

Another special case of Theorem B.1] previously proved by Banyaga is the follow-
ing (Theorem 5 of [1]):

Corollary 3.3. Let wy be a smooth family of lcs forms on a compact manifold M
such that the corresponding Lee forms 6; have the same de Rham cohomology class.
Suppose there exists a smooth family of 1-forms oy such that wy = doy — 0 N ay.
Then there exists an isotopy ¢, such that ¢fw,; is conformally equivalent to wy for
all t.

Proof. In this case we have
(32) d)t:ddt—f)t/\dt—ét/\at:dgtdt—ét/\at.

Because of the second summand on the right-hand side, it is not obvious that
Theorem [B.1] applies. However, here one has the additional assumption that the
de Rham cohomology class of 8, is independent of ¢. This means that 6, = dhy for
some smoothly varying family of functions h;. Let

t
gt:—/ hsds
0

and f; = exp g;. With these definitions we have

d . )
E(ftwt) = fiwe + frwy

= frgewe + fi(do,éu — 01 N o)
= fi(=hy(day — 0y N o) + dg,éy — 0y A ory)
= fida, (—hioy + dy)
=dg,+am f, (fe(—heor + &)
where we used first (8:2)), then 0, = dhy, and finally 22).
We are now in a position to appeal to the sufficiency proof for the existence

of the isotopy from (the proof of) Theorem Bl However, as we have an explicit
smooth family of dg, 41 f,-primitives for < ( f,w;), Hodge theory is not needed. [

Remark 3.4. Instead of deducing Corollary B3] from Theorem Bl one can give
a quick direct proof as follows. Given a smooth family of functions h; such that
0; = dhy, one defines a time-dependent vector field X; by

itht = *O.lt —+ htOét .
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Then its flow ¢, satisfies

d * ok
E(@%) = ¢; ((0:(Xt) + he)wr)

by the same kind of calculation as above, and so provides the desired isotopy.

4. CONCLUSION

In this paper we have given a necessary and sufficient condition for the existence
of an isotopy ¢; making a smooth family of lcs structures constant. The necessity
had not appeared in the literature before. Banyaga [I] had discussed special cases
of the sufficiency. Comparing our arguments with his, the main difference is that
we work directly on a closed manifold M and construct the desired isotopy by
integrating a time-dependent vector field on M, whereas Banyaga [I] worked on
a covering of M which is no longer compact. The non-compactness leads to two
complications. One is that completeness of (time-dependent) vector fields is not
always available and care has to be taken to ensure it in the situation at hand. The
other complication is that Hodge theory is not available and the only way to find
smooth families of primitives for dg-exact forms is Grothendieck’s theory of nuclear
spaces.
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