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TROPICAL BASES BY REGULAR PROJECTIONS

KERSTIN HEPT AND THORSTEN THEOBALD

(Communicated by Bernd Ulrich)

Abstract. We consider the tropical variety T (I) of a prime ideal I generated
by the polynomials f1, . . . , fr and revisit the regular projection technique intro-
duced by Bieri and Groves from a computational point of view. In particular,
we show that I has a short tropical basis of cardinality at most r +codim I +1
at the price of increased degrees, and we provide a computational description
of these bases.

1. Introduction

Given a field K endowed with a non-trivial real valuation ord : K → R∞ :=
R ∪ {∞}, the valuation extends to any fixed algebraic closure K̄. The tropical
variety T (I) of an ideal I � K[x1, . . . , xn] is defined as the topological closure of
the set

(1) ordV(I) = {(ord(z1), . . . , ord(zn)) : z ∈ V(I)} ⊆ Rn ,

where V(I) denotes the zero set of I in (K̄∗)n. Tropical varieties have been the
subject of intensive recent studies ([2, 4, 8, 9, 11]; see [10] for a general introduction).

A basis F = {f1, . . . , fr} of I is called a tropical basis of I if
⋂r

i=1 T (fi) =
T (I). Bogart, Jensen, Speyer, Sturmfels, and Thomas initiated the systematic
computational investigation of tropical bases [2, 8], by providing Gröbner-related
techniques for computing tropical bases as well as by providing lower bounds on
the size. They consider the field of Puiseux series K = C{{t}} with the natural
valuation and concentrate on the “constant coefficient case”, i.e., I �C[x1, . . . , xn].
As a lower bound, they show that for 1 ≤ d ≤ n there is a d-dimensional linear
ideal I in C[x1, . . . , xn] such that any tropical basis of linear forms in I has size at
least 1

n−d+1

(
n
d

)
.

In this paper we explain that by dropping the assumption on the degree of the
polynomials there always exists a small tropical basis for a prime ideal I, thus
contrasting that lower bound.

Theorem 1.1. Let I �K[x1, . . . , xn] be a prime ideal generated by the polynomials
f1, . . . , fr. Then there exist g0, . . . , gn−dim I ∈ I with

(2) T (I) =
n−dim I⋂

i=0

T (gi)
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and thus G := {f1, . . . , fr, g0, . . . , gn−dim I} is a tropical basis for I of cardinality
r + codim I + 1.

In particular, this also implies the universal (i.e., independent of dim I) bound
of n + 1 polynomials in the representation (2).

The statement comes as a consequence of the regular projection technique intro-
duced by Bieri and Groves [1]. The purpose of this paper is to revisit this approach
from the computational point of view, with the goal to provide an explicit and
constructive description of the resulting tropical bases. Specifically, we apply trop-
ical elimination on a particular class of ideals; for a general treatment of tropical
elimination see the recent papers of Sturmfels, Tevelev, and Yu [12, 13].

Based on this construction, we characterize the Newton polytopes of the polyno-
mials gi in the tropical bases for the special case of ideals generated by two linear
polynomials. The tradeoff between the cardinality and the degree of tropical bases
in the general case is subject to further study.

We remark that Theorem 1.1 can be seen as a tropical analogue to the Eisenbud-
Evans Theorem from classical algebraic geometry, which states that every algebraic
set in n-space is the intersection of n hypersurfaces [5].

This paper is structured as follows. In Section 2 we introduce the relevant
notation from tropical geometry and their relation to valuations. In Section 3 we
provide the computational treatment of regular projections and prove Theorem 1.1.
Section 4 provides some results on the characterization of the resulting Newton
polytopes of the basis polynomials.

2. Tropical geometry

For a field K, a real valuation is a map ord : K → R∞ = R ∪ {∞} with
K \ {0} → R and 0 �→ ∞ such that ord(ab) = ord(a) + ord(b) and ord(a + b) ≥
min{ord(a), ord(b)}. Thus ord = − log || · || for a non-Archimedean norm || · || on K.
Examples include K = Q with the p-adic valuation or the field K = C{{t}} of
Puiseux series with the natural valuation. We can extend the valuation map to K̄
(cf. [4]) and to K̄n via

ord : K̄n → Rn
∞, (a1, . . . , an) �→ (ord(a1), . . . , ord(an)) .

We always assume that ord is non-trivial, i.e., ord(K̄∗) 	= {0}. Then the image
ord(K̄∗) is dense in R.

Tropical polynomials are polynomials over the tropical semiring (R∞, min, +).
For any polynomial f =

∑
α cαxα ∈ K[x1, . . . , xn], the tropicalization of f is the

tropical polynomial defined by

trop(f) = min
α

{ord(cα) + α1x1 + · · · + αnxn} ,

and the tropical hypersurface of f is

T (f) = {w ∈ Rn : the minimum in trop(f) is attained at least twice in w} .

For an ideal I � K[x1, . . . , xn], the tropical variety of I can be defined either by

T (I) =
⋂
f∈I

T (f)

or equivalently by (1); see [4]. Note that we consider tropical varieties from a
set-theoretic point of view; see [12] for a more refined treatment of the underlying
multiplicities.
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We shortly review the link between tropical geometry and classical valuation
theory. For a prime ideal I, let A := K[x1, . . . , xn]/I be its coordinate ring. It is
well known (see, e.g., [6]) that each valuation on K can be extended to a valuation
on A. Let ∆ord

A be defined by

∆ord
A = {(w(x1), . . . , w(xn)) ∈ Rn | w : A → R∞ a valuation with w|K = ord} .

This subset of Rn coincides with the tropical variety of I,

∆ord
A = T (I)

(see [4]). Bieri and Groves [1] showed that ∆ord
A (and thus T (I) as well) is a pure

polyhedral complex of dimension equal to the transcendence degree of A over K
and rationally defined over the value group ord(K∗) of ord.

3. Projections and the main theorem

Let I �K[x1, . . . , xn] be an m-dimensional prime ideal. The main geometric idea
is to consider n−m+1 different (rational) projections π0, . . . , πn−m : Rn → Rm+1.
If these projections are sufficiently generic (as specified below), then we obtain

n−m⋂
i=0

π−1
i (πi(T (I))) = T (I) ,

and each of the sets π−1
i (πi(T (I))) is a tropical hypersurface.

First we consider the image of the tropical variety T (I) under a single (rational)
projection

π : Rn → Rm+1 ,

x �→ Ax

with a non-singular rational matrix A whose rows are denoted by a(1), . . . , a(m+1).
Let u(1), . . . , u(l) ∈ Zn with l := n−(m+1) be a basis of the orthogonal complement
of span{a(1), . . . , a(m+1)}.

Set R = K[x1, . . . , xn, λ1, . . . , λl], and for any polynomial f ∈ K[x1, . . . , xn] let

f̂ be the composition of f with the monomial map xi �→ xi

∏l
j=1 λj

u
(j)
i , i.e.,

f̂(x1, . . . , xn, λ1, . . . , λl) = f(x1

l∏
j=1

λj
u

(j)
1 , . . . , xn

l∏
j=1

λj
u(j)

n ) ∈ R .

Define the ideal J � R by

J =
〈
f̂ ∈ R : f ∈ I

〉
.

We show the following characterization of π−1(π(T (I))) in terms of elimination.

Theorem 3.1. Let I � K[x1, . . . , xn] be an m-dimensional prime ideal and π :
Rn → Rm+1 be a rational projection. Then π−1(π(T (I))) is a tropical variety with

(3) π−1(π(T (I))) = T (J ∩ K[x1, . . . , xn]) .

In order to prove Theorem 3.1, we first consider algebraically regular projections
(as defined below). At the end of this section we also cover the remaining special
cases.

We start with an auxiliary statement which holds for an arbitrary rational pro-
jection π.
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Lemma 3.2. For any w ∈ T (J ∩ K[x1, . . . , xn]) and u ∈ span{u(1), . . . , u(l)} we
have w + u ∈ T (J ∩ K[x1, . . . , xn]).

Proof. Let u =
∑l

i=1 µju
(j) with µ1, . . . , µl ∈ Q. The case of real µi then follows

as well.
Let w ∈ T (J ∩ K[x1, . . . , xn]). Since T (J ∩ K[x1, . . . , xn]) is closed, we can

assume without loss of generality that there exists z ∈ V(J ∩ K[x1, . . . , xn]) with
ord z = w. Define y = (y′, y′′) ∈ (K̄∗)n+l by

y = (y′, y′′) =
(
z1t

∑l
j=1 µju

(j)
1 , . . . , znt

∑l
j=1 µju(j)

n , t−µ1 , . . . , t−µl

)
.

For any f ∈ I, the point y is a zero of the polynomial f̂ in the ring R, and thus
y ∈ V(J). Hence, y′ ∈ V(J ∩ K[x1, . . . , xn]). Moreover,

ord y′ = (w1 +
l∑

j=1

µju
(j)
1 , . . . , wn +

l∑
j=1

µju
(j)
n ) = w +

l∑
j=1

µju
(j) = w + u ,

which proves our claim. �
Lemma 3.3. Let I � K[x1, . . . , xn] be an ideal. Then J ∩ K[x1, . . . , xn] ⊆ I.

Proof. Let p =
∑

i hif̂i be a polynomial in J ∩ K[x1, . . . , xn] with fi ∈ I. Since p
is independent of λ1, . . . , λl we have

p = p|λ1=1,...,λl=1 =
∑

i

hi|λ1=1,...,λl=1 fi ∈ I.

�
We call a rational projection algebraically regular for I if for each i ∈ {1, . . . , l}

the elimination ideal J ∩K[x1, . . . , xn, λ1, . . . , λi] has a finite basis Fi such that in
every polynomial f ∈ Fi the coefficients of the powers of λi (when considering f as
a polynomial in λi) are monomials in x1, . . . , xn, λ1, . . . , λi−1.

The following statement shows that the set of algebraically regular projections
is dense in the set of all real projections π : Rn → Rm+1.

Lemma 3.4. The set of projections which are not algebraically regular is contained
in a finite union of hyperplanes within the space of all projections π : Rn → Rm+1.

Proof. It suffices to show that for the choice of u(l), we just have to avoid a lower-
dimensional subset of Rn \ {0}. For u(1), . . . , u(l−1) we can then argue inductively
(however, an explicit description then becomes more involved). Assume that I is
generated by f1, . . . , fs. Then J = 〈f̂j : 1 ≤ j ≤ s〉 . For any fixed j, the polynomial
f̂j is of the form

f̂j =
∑

α∈Aj

cαxαλ
∑

αiu
(1)
i

1 · · ·λ
∑

αiu
(l)
i

l

with Aj ⊂ Zn finite. Thus all λk
l have monomial coefficients if

∑
αiu

(l)
i 	=

∑
βiu

(l)
i

for all α, β ∈ Aj with α 	= β. So we have to choose u(l) from the subset
⋂
j

{u ∈ Rn :
∑

αiu
(l)
i 	=

∑
βiu

(l)
i for all α, β ∈ Aj with α 	= β} .
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Hence, the algebraically non-regular projections are contained in a finite number of
hyperplanes. �

Theorem 3.5. Let I � K[x1, . . . , xn] be a prime ideal and π : Rn → Rm+1 be an
algebraically regular projection. Then π−1π(T (I)) is a tropical variety with

(4) π−1π(T (I)) = T (J ∩ K[x1, . . . , xn]) .

Proof. Let w ∈ π−1π(T (I)). Since the right-hand set of (4) is closed, we can assume
without loss of generality that there exists z′ ∈ V(I) and u ∈ span{u(1), . . . , u(l)}
with ord z′ = w + u. For any f ∈ I, the point

z := (z′, 1)

is a zero of the polynomial f̂ ∈ R, and thus z ∈ V(J). Hence, z′ ∈ V(J ∩
K[x1, . . . , xn]). By Lemma 3.2, w ∈ T (J ∩ K[x1, . . . , xn]) as well.

Now let w ∈ T (J ∩ K[x1, . . . , xn]). Again we can assume that there is a
z ∈ V(J ∩ K[x1, . . . , xn]) ⊆ (K̄∗)n with w = ord(z). The projection is alge-
braically regular, which means that the generators of the elimination ideals J ∩
K[x1, . . . , xn, λ1, . . . , λi] have only monomials as coefficients with respect to λi. By
the Extension Theorem (see, e.g., [3]), we can extend the root z inductively to a
root z̃ ∈ V(J) with the same first n entries. The definition of J says that

z′ := (z1z̃
u

(1)
1

n+1 · · · z̃
u

(l)
1

n+l, . . . , znz̃
u(1)

n
n+1 · · · z̃

u(l)
n

n+l)

is a root of I. Then

ord(z′) = ord(z) +
l∑

i=1

ord(z̃n+i)u(i),

which means that ord(z) = w ∈ π−1π(T (I)). �
This completes the proof of Theorem 3.1 for the case of algebraically regular

projections.
In the following, we consider the notion of geometric regularity.

Definition 1. Let C be a polyhedral complex in Rn. A projection π : Rn → Rm+1

is called geometrically regular if the following two conditions hold.
(1) For any k-face σ of C we have dim(π(σ)) = k, 0 ≤ k ≤ dim C .
(2) If π(σ) ⊆ π(τ ), then σ ⊆ τ for all σ, τ ∈ C .

These conditions ensure that we can recover the whole complex C from the
projections.

Corollary 3.6. In the situation of Theorem 3.5, if dim π(T (I)) = m, then
π−1π(T (I)) is a tropical hypersurface.

In particular, this holds when the projection is geometrically regular.

Proof. dim π−1π(T (I)) = dimπ(T (I))+dimker π = m+(n−(m+1)) = n−1 . �
Let I � K[x1, . . . , xn] be a prime ideal and m = dim I. Then T (I) is a pure m-

dimensional polyhedral complex. Bieri and Groves [1] used the following geometric
technique (which actually was also used to prove that T (I) has this polyhedral
property).

There exists a finite family X = {X1, . . . ,Xs} of m-dimensional affine subspaces
with T (I) ⊆

⋃s
i=1 Xs. By the finiteness of X , for a sufficiently generic choice of
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n−m+1 geometrically regular projections π0, . . . , πn−m, the set-theoretic intersec-
tion of the inverse projections exactly yields the original polyhedral complex. This
follows from [1, Thm. 4.4] (and its proof) in connection with the pure-dimensionality
of T (I).

Proposition 3.7 (Bieri, Groves [1]). Let I�K[x1, . . . , xn] be a prime ideal. For any
dense set D of projections there exist codim I + 1 projections π0, . . . , πcodim I ∈ D
such that

T (I) =
codim I⋂

i=0

π−1
i πi(T (I)) .

By Lemma 3.4, the set of algebraically regular projections is dense in the space
of projections. Hence, combining Proposition 3.7 with Theorem 3.5 yields The-
orem 1.1. Note that by Lemma 3.3, the generators gi are actually contained in
I.

Using this knowledge about the existence of some tropical basis, we can also
provide the proof of Theorem 3.1 for arbitrary rational projections.

Theorem 3.8 (Tropical Extension Theorem). Let I � K[x0, . . . , xn] be an ideal
and I1 = I ∩ K[x1, . . . , xn] be its first elimination ideal. For any w ∈ T (I1) there
exists a point w̃ = (w0, . . . , wn) ∈ Rn+1 with wi = w̃i for 1 ≤ i ≤ n and w̃ ∈ T (I).

Proof. First let w ∈ ord(V(I1)), so that there exists z ∈ V(I1) with ord(z) = w. Let
G = {g1, . . . , gs} be a reduced Gröbner basis of I with respect to a lexicographical
term order with x0 > xi, 1 ≤ i ≤ n, i.e.,

gi = hi(x1, . . . , xn)x
degx0

gi

0 + terms of lower degree in x0 .

There are two cases to consider:

Case 1. z /∈ V(h1, . . . , hs). Then by the classical Extension Theorem there is a root
z̃ of I which extends z, so ord(z̃) =: w̃ extends w.

Case 2. z ∈ V(h1, . . . , hs). Then w = ord(z) ∈ T (h1, . . . , hs). Let P = {p1, . . . , pt}
be a tropical basis of I.

Let pj be any of these polynomials. pj has the form

pj = qj(x1, . . . , xn)x
degx0

pj

0 + terms of lower degree in x0 .

Since G is a lexicographic Gröbner basis, we have qj(x1, . . . , xn) =:
∑

kαxα ∈
〈h1, . . . , hs〉. Hence, the minimum

min
α

{ord(kα) + α1x1 + · · · + αnxn}

is attained twice at w. We can pick a sufficiently small value w
(j)
0 ∈ R so that all

terms xm1
1 · · ·xmn

n xm0
0 of pj with m0 < degx0

pj have a larger value m1w1 + · · · +
mnwn + m0w

(j)
0 . But then the minimum of all values of all terms of pj is attained

at least twice; it is

min
α

{ord(kα) + α1w1 + · · · + αnwn} + degx0
pj · w(j)

0 .

So (w(j)
0 , w1, . . . , wn) ∈ T (hj).

By setting w0 = minj{w(j)
0 } and w̃ := (w0, . . . , wn) ∈ T (I), we obtain the desired

extension of w. This completes case 2.
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Now let w = limi→∞ w(i) be in the closure of ord(V(I1)). Then there exist
w̃(i) ∈ T (I) with w̃

(i)
j = w

(i)
j for 1 ≤ j ≤ n. Let P = {p1, . . . , pt} be again a tropical

basis of I. Then we can assume w.l.o.g. that the minimum in trop(pk), 1 ≤ k ≤ t,
for w̃(i) is attained at the same terms. This gives us conditions for the w̃

(i)
0 :

k(i) ≤ w̃
(i)
0 ≤ l(i) (one of them can be ±∞) .

These bounds vary continuously with w(i). So we can choose w̃0 arbitrarily in
[lim k(i), lim l(i)] (only one of the limits can be ±∞). �

4. The Newton polytopes for the linear case

As mentioned earlier, an ideal generated by linear forms may not have a small
tropical basis if we restrict the basis to consist of linear forms. Using our results
from Section 3, we can provide a short basis at the price of increased degrees.
A natural question is to provide a good characterization for the Newton polytopes
of the resulting basis polynomials. Here, we briefly discuss the special case of a
prime ideal I generated by two linear polynomials f =

∑n
i=1 aixi + an+1, g =∑n

i=1 bixi + bn+1 ∈ K[x1, . . . , xn] and kernel direction v. We assume v ∈ Z3
+.

In order to characterize the Newton polytope of the additional polynomials in
the tropical basis, we consider the resultant of the polynomials f̂ , ĝ:

f̂ = a1x1λ
v1 + · · · + anxnλvn + an+1 ,

ĝ = b1x1λ
v1 + · · · + bnxnλvn + bn+1

in K[x1, . . . , xn, λ]. Suppose that the components vi are distinct. Then w.l.o.g. we
can assume v1 > v2 > · · · > vn > vn+1 := 0.

In order to apply the results of Gel′fand, Kapranov and Zelevinsky [7] on the
Newton polytope of the resultant, we consider the representation

(5) Resλ(f̂ , ĝ) =
∑
p,q

cp,qa
pbqxp1+q1

1 · · ·xpn+qn
n

with p = (p1, . . . , pn+1), q = (q1, . . . , qn+1) ∈ Zn+1
+ . Regarding (5) as a polynomial

in a1, . . . , an+1, b1, . . . , bn+1, the Newton polytope is contained in the set Qn ⊂
Z2n+2 of non-negative integer points (p, q) with

(1)
n+1∑
i=1

pi =
n+1∑
j=1

qj = v1 ,

(2)
n+1∑
i=1

vipi +
n+1∑
j=1

vjqj = v2
1 ,

(3)
∑

1≤k≤n
0≤v1−vk≤i

(i − v1 + vk)pk +
∑

1≤l≤n
0≤v1−vl≤j

(j − v1 + vl)ql ≥ ij (0 ≤ i, j ≤ v1) .

Hence, we can conclude:

Corollary 4.1. The set of integer points in the Newton polytope New(Resλ(f̂ , ĝ))
⊂ Zn is contained in the image of Qn under the mapping

(p1, . . . , pn+1, q1, . . . , qn+1) �→ (p1 + q1, . . . , pn + qn) .

Example 4.2. Let f = 2x + y − 4, g = x + 2y + z − 1 and I � K[x, y, z] be the
ideal generated by f and g. Further let ord(·) be the 2-adic valuation (see Figure 1
for a figure of T (I)).
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Figure 1. Tropical line T (I) in 3-space

Actually, the first projection can be chosen arbitrarily (even geometrically non-
regular). We choose a projection π1 whose kernel is generated by (0, 0, 1). Then the
tropical hypersurface π−1

1 π1(T (I)) is obviously generated by the first polynomial,
i.e. π−1

1 π1(T (I)) = T (2x + y − 4), and the Newton polytope of that polynomial is
a triangle (so the projection is geometrically non-regular).

We choose π2 as the projection with kernel generated by v = (1, 2, 0). Since
Resλ(f̂ , ĝ) = y · (6x2 +6x2z +49y +14yz +yz2), we obtain π−1

2 π2(T (I)) = T (6x2 +
6x2z + 49y + 14yz + yz2). The intersection of π−1

1 π1(T (I)) and π−1
2 π2(T (I)) is

one-dimensional.
For the last projection π3 we choose a projection whose kernel is generated by

(3, 2, 1). In this case, the resultant is x(8x2 + 147y3 + 16xz3 − 76xyz − 12y2z2),
and hence π−1

3 π3(T (I)) = T (8x2 + 147y3 + 16xz3 − 76xyz − 12y2z2). For π3, all
possible vectors (p1 + q1, p2 + q2, p3 + q3) of Corollary 4.1 are

{(3, 0, 0), (2, 1, 1), (2, 0, 3), (1, 3, 0), (1, 2, 2)} ,

and this set coincides with the support of the resultant.
The Newton polytopes of the last two of the three tropical hypersurfaces are

quadrangles. Adding the three non-linear polynomials to the basis of I yields a
tropical basis.
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