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PROPER ACTIONS WHICH ARE NOT SATURATED

DAMIÁN MARELLI AND IAIN RAEBURN

(Communicated by Marius Junge)

Abstract. If a locally compact group G acts properly on a locally compact
space X, then the induced action on C0(X) is proper in the sense of Rieffel,
with generalised fixed-point algebra C0(G\X). Rieffel’s theory then gives a
Morita equivalence between C0(G\X) and an ideal I in the crossed product

C0(X) × G; we identify I by describing the primitive ideals which contain it,
and we deduce that I = C0(X)×G if and only if G acts freely. We show that if
a discrete group G acts on a directed graph E and every vertex of E has a finite
stabiliser, then the induced action α of G on the graph C∗-algebra C∗(E) is
proper. When G acts freely on E, the generalised fixed-point algebra C∗(E)α

is isomorphic to C∗(G\E) and Morita equivalent to C∗(E) × G, in parallel
with the situation for free and proper actions on spaces, but this parallel does
not seem to give useful predictions for nonfree actions.

1. Introduction

A famous theorem of Green [2] asserts that if a locally compact group G acts
freely and properly on a locally compact space X, then the crossed product C0(X)×
G is Morita equivalent to the algebra C0(G\X) of continuous functions on the orbit
space; a bimodule implementing the equivalence is obtained by completing Cc(X)
in the norm coming from a C0(G\X)-valued inner product (see [10]). Rieffel has
considered a class of proper actions α : G → AutA on noncommutative C∗-algebras
which share key properties with the actions on C0(X) induced by proper actions
on X, and for which there is a dense invariant subalgebra A0 of A with properties
like those of the subalgebra Cc(X) of C0(X) [12]. Associated to every proper
action is a Morita equivalence between an ideal IY in the reduced crossed product
A ×α,r G and a generalised fixed-point algebra Aα contained in M(A); a bimodule
Y implementing the equivalence is obtained by completing A0 in a norm coming
from an Aα-valued inner product. Rieffel also abstracted the concept of freeness
by identifying a class of saturated proper actions for which IY = A ×α,r G.

Rieffel’s theory of proper actions has found substantial applications (see, for
example, [11, 1, 3]), and there are many interesting examples of proper actions
[12, 13, 6]. In particular, it was shown in [6] that if a discrete group G acts freely on a
directed graph E, then the induced action of G on the graph algebra C∗(E) is proper
and saturated with generalised fixed-point algebra C∗(G\E) (and Rieffel’s Morita
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equivalence was first obtained by Kumjian and Pask [5]). In all these applications,
though, the emphasis is on the saturated proper actions which generalise free and
proper actions on locally compact spaces.

Here we consider proper actions arising from nonfree actions on spaces and
graphs. We had hoped to find useful descriptions of the generalised fixed-point
algebra Aα and the ideal IY which is Morita equivalent to it. We have succeeded
when G acts properly on a locally compact space X: the induced action on C0(X)
is proper with generalised fixed-point algebra C0(G\X), and we can identify IY

by specifying the primitive ideals which contain it (see Theorem 3.3). We deduce
that the action is saturated if and only if G acts freely on X. For actions on graph
algebras, the picture is less clear. We prove that an action of G on a directed graph
E with finite stabilisers induces a proper action of G on C∗(E) (Theorem 4.1).
However, the generalised fixed-point algebra may not be isomorphic to C∗(G\E),
and while IY can certainly be a proper ideal of C∗(E)×α,r G, there are situations
where the action on E is not free but the induced action on C∗(E) is saturated.

Our results on graph algebras may be a little surprising. Previous papers have
exhibited a striking parallel between actions on spaces and actions on graphs: im-
portant Morita equivalences for free and proper transformation groups, such as
Green’s theorem and the symmetric imprimitivity theorem of [10], have direct ana-
logues for free actions on directed graphs [5, 6]. Our results suggest that this parallel
completely breaks down in the absence of freeness.

We begin with a short section on preliminary material. In §3, we consider actions
of locally compact groups induced by proper actions on locally compact spaces. In
§4, we consider actions on graph algebras induced by actions on directed graphs with
finite stabilisers. After proving that these are always proper, we discuss the question
of identifying C∗(E)α and IY ; our main tool here is the dual graph construction,
which allows us to use known results about free actions to study some nonfree
actions.

2. Preliminaries and notation

Suppose α is an action of a locally compact group G on a C∗-algebra A. The
crossed product A ×α G is the completion of a convolution algebra Cc(G, A) in a
norm which makes A×α G universal for covariant representations: every covariant
representation (π, U) of (A, G, α) on H has an integrated form π × U : A ×α G →
B(H) such that

(2.1) (π × U(z)ξ | η) =
∫

G

(π(z(s))Usξ | η) ds for z ∈ Cc(G, A).

The reduced crossed product A ×α,r G is the completion of Cc(G, A) in the norm
determined by a single covariant representation (π̃, λ) induced from a faithful rep-
resentation π : A → B(Hπ). (See [14, Chapter 2 and §7.2] for details.) We denote
by Ĝ the set of irreducible unitary representations of a locally compact group G
and by 1 the trivial one-dimensional representation.

Following [12, Definition 1.2], we say that α : G → AutA is proper with respect
to A0 if A0 is a dense α-invariant ∗-subalgebra of A such that, for every a, b ∈ A0,

(P1) the functions s �→ aαs(b) and s �→ ∆(s)−1/2aαs(b) are integrable, and
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(P2) there exists 〈a, b〉D ∈ M(A0) := {m ∈ M(A) : c ∈ A0 =⇒ mc ∈ A0} such
that

〈a, b〉Dc =
∫

G

aαs(b∗c) ds for every c ∈ A0.

(Multipliers 〈a, b〉D with this property are automatically invariant under α, as re-
quired in [12].) For such an action,

Aα := span{〈a, b〉D : a, b ∈ A0}
is a C∗-subalgebra of M(A) called the generalised fixed-point algebra, the set

(2.2) IY := span{I〈a, b〉 : s �→ ∆(s)−1/2aαs(b) : a, b ∈ A0}
is an ideal in the reduced crossed product A ×α,r G, and the closure Y of A0 in
the norm ‖a‖2 := ‖〈a, a〉D‖ is an IY -Aα imprimitivity bimodule (see [12, Corol-
lary 1.7]).

In §4, we consider actions of a discrete group G on the C∗-algebra of a row-
finite directed graph E = (E0, E1, r, s). For graphs and their algebras we use the
conventions of [8]. Thus, for example, a path in E is a sequence µ = µ1 · · ·µn

such that s(µi) = r(µi+1), and the partial isometries in a Cuntz-Krieger E-family
{S, P} satisfy S∗

eSe = Ps(e) and Pv =
∑

r(e)=v SeS
∗
e . The C∗-algebra C∗(E) is

generated by a universal Cuntz-Krieger E-family {s, p}, and we write πS,P for the
representation of C∗(E) corresponding to a Cuntz-Krieger family {S, P}.

3. Proper actions on locally compact spaces

We consider a left action of a locally compact group G on a locally compact
space X (always assumed to be Hausdorff). Throughout this section we assume
that the action is proper, in the sense that inverse images of compact sets under
the map (s, x) �→ (x, s · x) : G× X → X × X are compact. For such an action, the
orbit space G\X is again locally compact and Hausdorff (see [14, Corollary 3.43]).

We now consider the induced action lt of G on C0(X) defined by ltt(f)(x) :=
f(t−1 · x). The following well-known fact is implicit in [12].

Proposition 3.1. The induced action lt of G on C0(X) is proper with respect to
the subalgebra Cc(X), and the inclusion of C0(G\X) in Cb(X) = M(C0(X)) is an
isomorphism of C0(G\X) onto the generalised fixed-point algebra C0(X)lt.

Proof. For f, g ∈ C0(X), the functions s �→ f lts(g) are continuous and compactly
supported, so they and their products with ∆(s)−1/2 are integrable; the function

〈f, g〉D(G · x) :=
∫

G

f(t−1 · x)g(t−1 · x) dt

in Cc(G\X) defines a multiplier of C0(X) satisfying (P2). A compactness argument
shows that every function in Cc(G\X) arises as 〈f, g〉D, so the inclusion of C0(G\X)
in Cb(X) = M(C0(X)) is an isomorphism of C0(G\X) onto C0(X)lt. �

The general theory of [12] implies that the ideal IY defined in (2.2) is Morita
equivalent to C0(G\X). We now aim to identify IY by describing the corresponding
closed subset of the primitive ideal space of C0(X) ×lt,r G. Since G acts properly
on X, C0(X) ×lt,r G coincides with the full crossed product [7, Theorem 6.1], and
we can define a family of irreducible representations of C0(X) ×lt G as follows.
For x ∈ X and each irreducible representation V of Gx := {s ∈ G : s · x = x}, we
consider the induced representation IndG

Gx
V of G; we use the description of induced
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representations in [9, p. 296], which simplifies considerably in our situation because
each Gx is compact. Indeed, since the modular function ∆ of G is identically 1 on
compact subgroups (the image of the subgroup is a compact subgroup of (0,∞)),
we can use the constant function 1 as the rho-function, and the measure α on G/Gx

is then G-invariant. So IndG
Gx

V acts on the completion Hx,V of

Vc = {ξ ∈ Cc(G,HV ) : ξ(rt) = V −1
t (ξ(r)) for t ∈ Gx}

in the norm ‖ξ‖2 =
∫

G/Gx
‖ξ(r)‖2 dα(rGx), and IndG

Gx
V is given by(

(IndG
Gx

V )sξ
)
(t) = ξ(s−1t).

There is a representation µx : C0(X) → B(Hx,V ) such that

(µx(f)ξ)(t) = f(t · x)ξ(t) for ξ ∈ Vc,

and then (µx, IndG
Gx

V ) is a covariant representation of (C0(X), G, lt).
Because G\X is Hausdorff, the assertions in the following proposition are con-

tained in [14, 8.27 and 8.9]. However, in our setting we can give short direct proofs.

Proposition 3.2. For each x ∈ X and V ∈ Ĝx, the representation (µx, IndG
Gx

V )
is irreducible, and every irreducible covariant representation of (C0(X), G, lt) is
equivalent to one of these.

Proof. First let x ∈ X and V ∈ Ĝx. Because G acts properly, the map t �→ t · x
induces a homeomorphism of G/Gx onto G · x [14, Corollary 3.45], and RG·x :
f �→ f |G·x induces a surjection RG·x × id of C0(X) ×lt G onto C0(G · x) ×lt G ∼=
C0(G/Gx) ×lt G. Since µx vanishes on the kernel of RG·x, the integrated form
µx × IndG

Gx
V factors through RG·x × id, and the corresponding representation of

C0(G/Gx) ×lt G is the representation M × IndG
Gx

V induced from the representa-
tion V of C∗(Gx) under Rieffel’s Morita equivalence (see [9, Corollary C.31 and
Theorem C.33]). Since induction by a Morita equivalence preserves irreducibility,
µx × IndG

Gx
V is irreducible.

Now suppose that (π, U) is an irreducible representation of (C0(X), G, lt). The
representation π is nondegenerate and hence extends to M(C0(X)) = Cb(X). For
f ∈ C0(G\X), covariance implies that π(f) commutes with every Ut, and since it
certainly commutes with every π(g), irreducibility implies that π(f) ∈ C1. Thus
there exists G ·x ∈ G\X such that π(f) = f(G ·x)1 for every f ∈ C0(G\X). If a ∈
C0(X) satisfies a|G·x = 0, then we can approximate a by fa for some f ∈ C0(G\X)
satisfying f(G · x) = 0, and then π(a) ∼ π(fa) = f(G · x)π(a) = 0. Thus π × U
factors through RG·x × id and is given by a representation of C0(G/Gx)×lt G; the
imprimitivity theorem implies that this representation is equivalent to one induced
from an irreducible representation V of Gx, and pulling this equivalence back to
C0(X) ×lt G shows that (π, U) is equivalent to (µx, IndG

Gx
V ). �

Theorem 3.3. Suppose a locally compact group G acts properly on a locally com-
pact space X. Then C0(G\X) is Morita equivalent to the ideal

(3.1)
⋂{

ker(µx × IndG
Gx

V ) : x ∈ X, V ∈ Ĝx, V �= 1
}

in C0(X) ×lt G.

The crux of the proof is the following well-known lemma.
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Lemma 3.4. Suppose that V is an irreducible representation of a compact group
K and V �= 1. Then for every h ∈ HV , we have

∫
K

Vkh dk = 0.

Proof. First suppose dimHV > 1 and h ∈ HV . Then h0 :=
∫

K
Vkh dk is fixed

under every Vl, and hence Ch0 is an invariant subspace for V ; since Ch0 is not all
of HV , it must be {0}, and h0 = 0, as claimed. Now suppose dimHV = 1, so that
V : K → T is a character of K; since V �= 1, there exists l ∈ K such that Vl �= 1.
Then ∫

K

Vk dk =
∫

K

Vkl dk =
( ∫

K

Vk dk
)
Vl

forces
∫

Vk dk = 0. �
Proof of Theorem 3.3. We know from Rieffel’s theory that C0(G\X) is Morita
equivalent to IY , so we want to identify IY with the ideal (3.1). Since IY is the
intersection of the primitive ideals containing it, and since Proposition 3.2 implies
that every primitive ideal has the form ker(µx × IndG

Gx
V ), it suffices to show that

(3.2) IY ⊂ ker(µx × IndG
Gx

V ) ⇐⇒ V �= 1.

Let V be an irreducible representation of Gx, and write (µ, λ) for (µx, IndG
Gx

V ).
Let a ∈ Cc(G, C0(X)) ⊂ C0(X)×lt G and ξ ∈ Vc; we need a formula for µ× λ(a)ξ.
By expressing (µ×λ(a)ξ | η) as in (2.1) and applying Fubini’s theorem, we find that

(µ × λ(a)ξ)(t) =
∫

G

a(s)(t · x)ξ(s−1t) ds for t ∈ G.

Now we let r = s−1t, decompose the Haar measure as in [9, Lemma C.2], and recall
that the modular function is identically 1 on compact subgroups:

(µ × λ(a)ξ)(t) =
∫

G

a(tr−1)(t · x)ξ(r)∆(r)−1 dr

=
∫

G/Gx

∫
Gx

a(t(uv)−1)(t · x)ξ(uv)∆(uv)−1 dv dα(uGx)

=
∫

G/Gx

∆(u)−1

∫
Gx

a(t(uv)−1)(t · x)V −1
v (ξ(u)) dv dα(uGx).

Now we let f, g ∈ Cc(X), a = I〈f, g〉 and plug in

a(r)(x) = I〈f, g〉(r)(x) = ∆(r)−1/2f(x)g(r−1 · x)

to get

(µ × λ(I〈f, g〉)ξ)(t) =
∫

G/Gx

∆(tu)−1/2

∫
Gx

f(t · x)g(u · x)V −1
v (ξ(u)) dv dα(uGx)

=
∫

G/Gx

∆(tu)−1/2f(t · x)g(u · x)
(∫

Gx

V −1
v (ξ(u)) dv

)
dα(uGx).

If V is not identically 1, then Lemma 3.4 implies that the inside integral vanishes
for every u, so µx × IndG

Gx
V (I〈f, g〉) = 0 and

IY := span{I〈f, g〉} ⊂ ker(µx × IndG
Gx

V ).

On the other hand, when V = 1, Vc = Cc(G/Gx), the inside integral is ξ(u · Gx),
and

(µ × λ(E〈f, g〉)ξ)(t) =
∫

G/Gx

∆(tu)−1/2f(t · x)g(u · x)ξ(u · Gx) dα(uGx);
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taking ξ, f and g to be positive functions with ξ(Gx) > 0, f(x) > 0 and g(x) > 0
shows that this need not vanish, so IY is not contained in ker(µx × IndG

Gx
V ). �

Corollary 3.5. Suppose a locally compact group G acts properly on a locally
compact space X. Then the action lt on C0(X) is saturated (in the sense that
IY = C0(X) ×lt G) if and only if G acts freely on X.

Proof. It is proved in [10], for example, that the action is saturated when G acts
freely. If G does not act freely, then there is a point x whose stabiliser Gx has
|Gx| > 1. Then Gx has an irreducible representation V which is not identically 1,
and then µx × IndG

Gx
V is an irreducible representation of C0(X)×lt G whose kernel

is a proper ideal. So (3.2) implies that IY is not all of C0(X) ×lt G. �

Example 3.6. Consider the action of the two-element group C2 = {e, a} on T by
reflection in the x-axis (so a · eπiθ = e−πiθ). For θ ∈ [0, 1] and f ∈ C(T), we define

πθ(f) :=
(

f(eπiθ) 0
0 f(e−πiθ)

)
, Ua :=

(
0 1
1 0

)
.

It is easy to check that (πθ, U) is a covariant representation of (C(T), C2, lt). For
θ ∈ (0, 1), the ranges of πθ and U generate M2(C); for θ = 0 or θ = 1, πθ(f) is
a multiple of the identity matrix 12, and C∗(πθ(C(T)), U) = C∗(Ua), which is the
C∗-algebraic direct sum CP1 ⊕ CP−1 associated to the spectral projections

P1 = 2−1(1 + Ua) = 2−1

(
1 1
1 1

)
and P−1 = 2−1(1 − Ua) = 2−1

(
1 −1
−1 1

)
.

The point is that when θ is 0 or 1, the stabiliser of eπiθ is C2, and there are two
one-dimensional irreducible representations (µeπiθ , V ). The representations in the
invariant subspaces CP1 and CP−1 are equivalent to (µeπiθ , V ) for Va = 1 and
Va = −1, respectively. So

IY
∼= {f ∈ C([0, 1], M2(C)) : f(0) and f(1) ∈ CP1}.

Conjugating by W := 2−1/2
(

1 1
1 −1

)
diagonalises U , carries C(T) ×lt C2 into

A := {f ∈ C([0, 1], M2) : f(0) and f(1) are diagonal},

and IY into {f ∈ A : f(0)22 = f(1)22 = 0}. Notice that the spectrum ÎY is
homeomorphic to [0, 1], which is what we would expect since C2\T is homeomorphic
to [0, 1]. The algebra A, on the other hand, has highly non-Hausdorff spectrum:
πθ × U converges to two distinct points of Â as θ → 0+ and as θ → 1− (as in [9,
Example A.25]).

4. Proper actions on graph algebras

We suppose that a (discrete) group G acts on the left of a row-finite directed
graph E and that the stabiliser Gv of each vertex v in E is finite. As in [5], there
is an action α : G → AutC∗(E) such that αt(sµs∗ν) = st·µs∗t·ν for all µ, ν ∈ E∗.

Theorem 4.1. Suppose that G acts on E with finite stabilisers. Then (C∗(E), α)
is proper with respect to the dense subalgebra

Y0(E) := span{sµs∗ν : µ, ν ∈ E∗}.
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The characterising property of α implies that Y0(E) is α-invariant. By linearity,
it suffices to verify property (P1) for a = sαs∗β and b = sµs∗ν . But then

(4.1) aαt(b) �= 0 =⇒ s∗βst·µ �= 0 =⇒ r(β) = t · r(µ),

which is true for only finitely many t; thus the function t �→ aαt(b) has finite
support, and (P1) is trivially true. To verify property (P2), we need the following
lemma.

Lemma 4.2. Suppose b ∈ Y0(E). Then there exists ΣG(b) ∈ M(Y0(E)) such that

ΣG(b)a =
∑
t∈G

αt(b)a and aΣG(b) =
∑
t∈G

aαt(b) for every a ∈ Y0(E).

Again, it suffices to prove Lemma 4.2 for b = sµs∗ν , and we need an estimate:

Lemma 4.3. Suppose that F is a finite subset of G. Then∥∥∥ ∑
t∈F

st·µs∗t·ν

∥∥∥ ≤
√
|Gr(µ)| |Gr(ν)|.

Proof. We choose a faithful representation πS,P : C∗(E) → B(H), and let h ∈ H.
Pythagoras’s theorem gives∥∥∥ ∑

t∈F

St·µS∗
t·νh

∥∥∥2

=
∥∥∥ ∑

w∈E0

∑
t∈F, r(t·µ)=w

St·µS∗
t·νh

∥∥∥2

=
∑

w∈E0

∥∥∥ ∑
t∈F, t·r(µ)=w

St·µS∗
t·νPt·r(ν)h

∥∥∥2

.

For fixed w ∈ E0 we have∥∥∥ ∑
t∈F, t·r(µ)=w

St·µS∗
t·νPt·r(ν)h

∥∥∥2

≤
( ∑

t∈F, t·r(µ)=w

‖Pt·r(ν)h‖
)2

=
∑

ti∈F, t1·r(µ)=t2·r(µ)=w

‖Pt1·r(ν)h‖ ‖Pt2·r(ν)h‖

≤
∑

ti∈F, t1·r(µ)=t2·r(µ)=w

2−1
(
‖Pt1·r(ν)h‖2 + ‖Pt2·r(ν)h‖2

)
.

Since {t : t · v = s · v} = sGv has |Gv| elements, for w, v ∈ E0 and i = 1, 2 we have

|{ti ∈ F : ti · r(µ) = w}| ≤ |{t ∈ G : t · r(µ) = w}| ≤ |Gr(µ)|,

so ∑
ti∈F, t1·r(µ)=t2·r(µ)=w

2−1
(
‖Pt1·r(ν)h‖2 + ‖Pt2·r(ν)h‖2

)
≤

∑
t∈F, t·r(µ)=w

|Gr(µ)| ‖Pt·r(ν)h‖2.
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Adding up over w gives∥∥∥ ∑
t∈F

St·µS∗
t·νh

∥∥∥2

≤ |Gr(µ)|
∑

w∈E0

∑
t∈F, t·r(µ)=w

‖Pt·r(ν)h‖2

= |Gr(µ)|
∑
t∈F

‖Pt·r(ν)h‖2

= |Gr(µ)|
∑

v∈E0

∑
t∈F, t·r(ν)=v

‖Pvh‖2

≤ |Gr(µ)|
∑

v∈E0

|Gr(ν)| ‖Pvh‖2

= |Gr(µ)| |Gr(ν)| ‖h‖2.

Since πS,P is isometric, the result follows. �

Proof of Lemma 4.2. For b = sµs∗ν , we define Lb, Rb : Y0(E) → Y0(E) by

Lb(a) =
∑
t∈G

αt(sµs∗ν)a =
∑
t∈G

st·µs∗t·νa and Rb(a) =
∑
t∈G

ast·µs∗t·ν ;

we know from (4.1) that for fixed a, all these summands vanish outside a finite set
F , and then Lemma 4.3 gives the estimate

‖Lb(a)‖ ≤
∥∥∥ ∑

t∈F

st·µs∗t·ν

∥∥∥ ‖a‖ ≤
√
|Gr(µ)| |Gr(ν)| ‖a‖

with constant independent of a. Thus Lb extends to a bounded linear operator
Lb : C∗(E) → C∗(E); so does Rb. A calculation shows that Rb(a)c = aLb(c) for
a, c ∈ Y0(E), and this extends to a, c ∈ C∗(E) by continuity. So the pair (Lb, Rb) is
a double centraliser of C∗(E), and hence defines a multiplier ΣG(b) ∈ M(C∗(E)).
Since left and right multiplication by ΣG(b) (that is, the maps Lb and Rb) map
Y0(E) into Y0(E), ΣG(b) belongs to M(Y0(E)). �

To check that (C∗(E), α) satisfies property (P2), we take 〈b, c〉D := ΣG(b∗c),
and this completes the proof of Theorem 4.1.

Theorem 4.1 and Corollary 1.7 of [12] imply that the closure Y (E) of Y0(E) in
the D-norm implements a Morita equivalence between C∗(E)α and an ideal IY (E)

in C∗(E) ×α,r G. Theorem 1.6 of [6] tells us that when G acts freely, C∗(E)α

is isomorphic to the algebra C∗(G\E) of the quotient graph, and IY (E) is all of
C∗(E) ×α,r G. We will use this result and the dual graph construction to get
information about C∗(E)α and IY (E) for nonfree actions which are free on some
path space En.

The dual graph Ê is the quadruple (E1, E2, r, s) in which r(fe) = f and s(fe) =
e. Assume that E has no sources. The proof of [8, Corollary 2.6], for example,
shows that there is an isomorphism φ of C∗(Ê) = C∗(t, q) onto C∗(E) = C∗(s, p)
such that

(4.2) φ(tfe) = sfses
∗
e and φ(qe) = ses

∗
e.

The action of G on E induces an action on Ê such that t · (fe) = (t · f)(t · e).
This action on Ê also has finite stabilisers, because the stabiliser of any edge in
E is contained in the stabiliser of its range. Thus Theorem 4.1 implies that the
induced action α̂ of G on C∗(Ê) is proper with respect to the subalgebra Y0(Ê).
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The isomorphism φ satisfies φ ◦ α̂ = α ◦φ, and hence by [14, Theorem 2.48] induces
an isomorphism φ × id of C∗(Ê) ×α̂ G onto C∗(E) ×α G, which maps the dense
subalgebra Cc(G, C∗(Ê)) into Cc(G, C∗(E)) according to the formula

(4.3) (φ × id)(z)(t) = φ(z(t)).

Composing with φ × id carries the regular representation induced from a faithful
representation π of C∗(E) into the regular representation induced from π ◦ φ, and
hence φ×id descends to an isomorphism φ×r id of C∗(Ê)×α̂,r G onto C∗(E)×α,r G.

Proposition 4.4. Suppose that E has no sources and that G acts on E with finite
stabilisers. Let φ : C∗(Ê) → C∗(E) be the isomorphism characterised by (4.2).
Then φ restricts to an isomorphism of C∗(Ê)α̂ onto C∗(E)α, and the triple

(φ ×r id, φY , φ|) : (IY (Ê), Y (Ê), C∗(Ê)α̂) → (IY (E), Y (E), C∗(E)α)

is an isomorphism of imprimitivity bimodules.

Lemma 4.5. The isomorphism φ characterised by (4.2) maps Y0(Ê) onto Y0(E),
and its extension φ : M(C∗(Ê)) → M(C∗(E)) satisfies φ ◦ ΣÊ

G = ΣE
G ◦ φ.

Proof. We first take σ ∈ Ên and τ ∈ Êm with s(σ) = s(τ ), and aim to show that
φ(tσt∗τ ) is in Y0(E). Every path in Ên has the form µ̂ := (µ1µ2)(µ2µ3) · · · (µnµn+1)
for some µ ∈ En+1, so there exist µ ∈ En+1 and ν ∈ Em+1 such that σ = µ̂ and
τ = ν̂. Then s(σ) = s(τ ) implies that µn+1 = νm+1, and we can compute

φ(tσt∗τ )=(sµ1sµ2s
∗
µ2

) (sµ2sµ3s
∗
µ3

)· · ·(sµn
sµn+1s

∗
µn+1

) (sνm+1s
∗
νm+1

s∗νm
)· · ·(sν2s

∗
ν2

s∗ν1
)

=sµ1(sµ2s
∗
µ2

sµ2)· · ·(sµn
s∗µn

sµn
) (sµn+1s

∗
µn+1

sνm+1s
∗
νm+1

) (s∗νm
sνm

s∗νm
)· · ·s∗ν1

=sµ1sµ2 · · ·sµn
sµn+1s

∗
νm+1

s∗νm
· · ·s∗ν1

=sµs∗ν ,

which certainly belongs to Y0(E). Since E has no sources, the elements sµs∗ν with
|µ| ≥ 1 and |ν| ≥ 1 span Y0(E), and the same computation shows that every
spanning element sµs∗ν = φ(sµ̂s∗ν̂) belongs to the range of φ. Thus φ maps Y0(Ê)
onto Y0(E).

The extension φ is characterised by φ(m)φ(b) = φ(mb) for m ∈ M(C∗(Ê)) and
b ∈ C∗(Ê), and it suffices by continuity to consider b ∈ Y0(Ê). Then for a ∈ Y0(Ê),

φ(ΣÊ
G(a))φ(b) = φ

(∑
t∈G α̂t(a)b

)
=

∑
t∈G αt(φ(a))φ(b) = ΣE

G(φ(a))φ(b)

implies that φ ◦ ΣÊ
G = ΣE

G ◦ φ. �

Proof of Proposition 4.4. For b, c ∈ Y0(Ê), the last assertion in Lemma 4.5 implies

(4.4) φ(〈b, c〉D) = φ ◦ ΣÊ
G(b∗c) = ΣE

G(φ(b∗c)) = 〈φ(b), φ(c)〉D.

Equation (4.4) implies, first, that φ maps C∗(Ê)α̂ into C∗(E)α, and, second, since φ

maps Y0(Ê) onto Y0(E), that φ maps C∗(Ê)α̂ onto C∗(E)α. Since φ is isometric on
C∗(Ê), (4.4) also implies that φ : Y0(Ê) → Y0(E) is isometric for the inner-product
norms, and hence extends to an isometry φY : Y (Ê) → Y (E). Equation (4.4)
now extends to elements b, c of the completion Y (Ê), and says that φY is a φ|-
compatible isomorphism of Hilbert modules. This isomorphism φY in turn induces
an isomorphism φK of IY (Ê) = K(Y (Ê)) onto IY (E) = K(Y (E)) such that

φK(I〈b, c〉) = I〈φY (b), φY (c)〉.
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However, for b, c ∈ Y0(Ê), a computation using (4.3) shows that

(φ × id)(I〈b, c〉)(t) = I〈φ(b), φ(c)〉(t) for every t ∈ G;

this implies, first, that φ ×r id = φK, and hence is an isomorphism of IY (Ê) onto
IY (E), and, second, that (φ ×r id, φY , φ|) has the algebraic properties required of
an imprimitivity-bimodule isomorphism. �

Corollary 4.6. Suppose that E has no sources and that the action of G on E is
free on E1. Then IY (E) = C∗(E) ×α G, and C∗(E)α is isomorphic to C∗(G\Ê).

Proof. Since G acts freely on E1 = Ê0, [6, Theorem 1.6] implies that IY (Ê) =

C∗(Ê)×α̂,rG and C∗(Ê)α̂ is isomorphic to C∗(G\Ê). Since [4, Corollary 3.3] implies
that C∗(Ê) ×α̂,r G = C∗(Ê) ×α̂ G, the result follows from Proposition 4.4. �

Example 4.7. Let E be the Cuntz graph consisting of one vertex v and two loops
f , g at v, so that C∗(E) is the Cuntz algebra O2. The cyclic group C2 = {e, a} acts
on E by fixing v and swapping f and g: a ·f = g and a · g = f . Since C2 acts freely
on E1, Corollary 4.6 implies that IY (E) = O2 ×α C2 and that Oα

2 is isomorphic
to C∗(C2\Ê). Here Ê is the complete graph on two vertices; the quotient C2\Ê
has the single vertex C2 · f = C2 · g and two edges C2 · ff and C2 · fg, and hence
is isomorphic to E. Thus Rieffel’s theorem gives a Morita equivalence between
O2 ×α C2 and O2.

This example shows that C∗(E)α is not always isomorphic to C∗(G\E): the
quotient graph C2\E consists of the single loop C2 ·f based at C2 ·v, and C∗(C2\E)
is isomorphic to C(T), which is quite different from C∗(E)α ∼= O2.

We can apply Corollary 4.6 to Ê, whose dual is isomorphic to E1,2 := (E2, E1,
r, s), and then inductively to the higher-order duals En,n+1 := (En+1, En, r, s) in
which r(µ) = µ1 · · ·µn and s(µ) = µ2 · · ·µn+1. If G acts freely on En, say, then
n−1 applications of Proposition 4.4 show that IY (E) is all of C∗(E)×α G and that
the generalised fixed-point algebra is isomorphic to C∗(G\En).

These arguments do not apply to every action with finite stabilisers. For example,
if f is a loop in E which is fixed by t ∈ G, then the path fn := ff · · · f (n times) is
a vertex in En,n+1 which is fixed by t. So it is not clear to us whether we can make
sensible conjectures about arbitrary actions with finite stabilisers. The ideal IY (E)

can certainly be proper — indeed, when a finite group G acts trivially on E, IY (E)

is the subalgebra of C(G, C∗(E)) ⊂ C∗(E)×α G = C∗(E)×α,r G consisting of the
constant functions, which is easily seen to be isomorphic to C∗(E), and Rieffel’s
equivalence becomes tautological. On the other hand, it does seem likely that
the full and reduced crossed products of (C∗(E), G, α) will still coincide when the
stabilisers are finite, even though the indirect arguments used in [4, Corollary 3.3]
or [6, Corollary 3.12] will not work when the action is not free.
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