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OFF-DIAGONAL MATRIX COEFFICIENTS ARE TANGENTS
TO STATE SPACE: ORIENTATION AND C*-ALGEBRAS

MARTIN E. WALTER

(Communicated by Marius Junge)

Abstract. Any non-commutative C*-algebra A, e.g., two by two complex
matrices, has at least two associative multiplications for which the collection
of positive linear functionals is the same. Alfsen and Shultz have shown that
by selecting an orientation for the state space K of A, i.e., the convex set of
positive linear functionals of norm one, a unique associative multiplication for
A is determined. We give a simple method for describing this orientation.

1. Introduction

In [1] and [2], Alfsen and Shultz give a complete description of state spaces
of operator algebras, Jordan as well as associative, such as C*-algebras and von
Neumann algebras, plus necessary prerequisites. In particular they show that the
state space of a C*-algebra A together with an orientation of that state space
determine the associative multiplication of A, hence completely determine the C*-
algebra structure of A. Let us define some terminology.

We will follow the notation from [1]; in particular, H will denote a Hilbert space,
with inner product (sesquilinear form) (ξ, η) ∈ H×H �→ (ξ|η) ∈ C, conjugate linear
in η, where C is the complex numbers; and B(H) will denote the (Banach ∗-algebra
of) bounded, i.e., continuous, linear maps of H to itself with sup norm, i.e., if T ∈
B(H), ||T || = sup{|(Tξ|η)| : ξ, η ∈ H, ||ξ|| ≤ 1, ||η|| ≤ 1}. The adjoint operation is
defined by (Tξ|η) = (ξ|T ∗η) ∀ξ, η ∈ H. Since ||T ∗T || = ||T ||2 ∀T ∈ B(H), B(H) is
a C*-algebra.

The linear functional ωξ,η : B(H) → C is defined by ωξ,η(T ) = (Tξ|η) for
ξ, η ∈ H. If ξ = η we often write ωξ in place of ωξ,ξ. A (linear) functional
f : B(H) → C is positive iff f(T ∗T ) ≥ 0 ∀T ∈ B(H). The functional ωξ is positive,
and ||ωξ|| = ||ξ||2. In general, if f is a positive linear functional, ||f || = sup{|f(T )| :
||T || ≤ 1, T ∈ B(H)} = f(I), where I is the identity operator in B(H). We say f
is a state on B(H) if f is a positive linear functional with ||f || = 1. We let K be
the set of all states on B(H). Observe that K is a convex set and ∂eK denotes the
extreme points of this convex set. Note for specialists: If H is infinite dimensional,
then K in [1] denotes the normal states, i.e., states continuous in a certain topology
on B(H); cf. [1, Chapter 2]. The proofs in this paper will mostly be for the case
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dim H = 2, since this case essentially contains all our new ideas. If dim H < ∞,
then all topologies of interest on B(H) are equivalent (to the norm topology) and
the normal state space of B(H) is identical with the state space of B(H). Thus we
note from [1, Proposition 4.1] that ∂eK, the extreme points of the (normal) state
space K of B(H), equals {ωξ : ξ ∈ H, ||ξ|| = 1}. The interested reader can refer
to [1, 2] as an excellent, detailed guide for generalizing our results to arbitrary C*
and von Neumann algebras.

Now from [1, p. 197] we read:

“In this chapter we have seen that the canonical map ξ �→ ωξ from a Hilbert
space H to the normal state space K of B(H) relates the “flat complex” geometry
of H to the “curved real” geometry of ∂eK. More specifically, we have seen how
it connects important geometric constructs in the two spaces, . . . . But there is
one concept in H which has no obvious counterpart in K, namely the complex
structure. This structure is relevant in our context because it serves to distinguish
between left and right multiplication in B(H) . . . .”

In the next section we show in detail, for the case A = M2(C), the 2 × 2 complex
matrices, how the complex structure of H = C⊕C transfers to K, the state space of
A, and to the (complex) tangent space(s) of K. We then show how an orientation
of K can be defined and specified which uniquely determines the C*-product on
M2(C). Observe that M2(C) is a C*-algebra with respect to two possible products.
The first is the usual matrix product of X, Y ∈ M2(C) : (XY )ij = Xi1Y1j +Xi2Y2j ,
1 ≤ i, j ≤ 2, where ( )ij refers to the component in the i-th row and j-th column.
The second is the “opposed product” defined thusly: X ◦ Y = Y X. The transpose
operation (Xt)ij = Xji for X ∈ M2(C) defines a linear isomorphism between these
two multiplicative structures, i.e., (X ◦ Y )t = (Y X)t = XtY t.

2. The case A = M2(C)

We begin by stating a result which clearly shows in our context the geometric
consequences of non-commutativity. From [1, Corollary 4.8] we have: The face
generated by two distinct extreme points of the normal state space of B(H) is a
Euclidean 3-ball.

Recall that in a convex set such as K, F ⊂ K is a face of K if λf1+(1−λ)f2 ∈ F ,
for 0 < λ < 1 and fi ∈ K, i = 1, 2, imply that f1 and f2 are both in F . Extreme
points of K are faces which are a single point.

This result, which those who deal mainly with “commutative objects” initially
find startling, is a consequence of the (partial) order structure on K. To understand
why the face generated by two extreme points of K is not just the line segment
joining them, we refer the reader to [1].

We now follow [1, pp. 179–180] and describe in detail the state space, K, of
M2(C). Let B3 denote the Euclidean 3-ball, i.e., B3 = {(β1, β2, β3) : βi ∈ R,∑3

i=1 β2
i ≤ 1}, where R denotes the real numbers.

Now K identifies precisely with the set of positive (definite) 2 × 2 matrices with
trace equal to 1. In [1] it is shown that

(β1, β2, β2) �→
1
2

(
1 + β1 β2 + iβ3

β2 − iβ3 1 − β1

)
is an affine isomorphism of B3 with K. Thus one can think of K as a solid Euclidean
3-ball sitting inside M2(C), and the extreme points are precisely the points on the
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surface of this unit ball. Observe that the tangent space to a point on the surface
of K, viewed as a subset in M2(C), is not just a copy of R2, but rather a complex
vector space, as we will see!

Moreover if ω = (ρij) is a 2 × 2 positive (definite) matrix with trace 1, we have
from [1]: β1 = ρ11−ρ22, β2 = ρ12 +ρ21, β3 = −i(ρ12−ρ21), where i =

√
−1. Recall

that a matrix (ρij) is positive (definite), by definition, if
∑

i,j λiλ̄jρij ≥ 0 whenever
the λi, λj are in C . We have denoted by λ̄j the complex conjugate of λj .

Now if X ∈ M2(C) and {ξ1, ξ2} is an orthonormal basis of H = C ⊕ C, then
without loss of generality ξ1 = (1, 0), ξ2 = (0, 1), and

X = (ωξi,ξj
(X))1≤i,j≤2.

Thus ωξ1,ξ1 and ωξ2,ξ2 are (extreme) states and ωξ1,ξ2(X) and ωξ2,ξ1(X) are called
off-diagonal matrix coefficients of X. Using the affine isomorphism of K with B3

we see that
(

1 0
0 0

)
= ωξ1 ∈ ∂eK �→ (1, 0, 0) ∈ B3 and that

(
0 0
0 1

)
= ωξ2 ∈

∂eK �→ (−1, 0, 0) ∈ B3. Thus ωξ1 and ωξ2 are antipodal points of K.
We now ask the fundamental question: Does K determine ωξ1,ξ2 and ωξ2,ξ1? If

yes, how?
A trivial answer to this question is given by polarization of the inner product on

H, viz., ωξ1,ξ2 = 1
4

∑3
n=0 inωξ1+inξ2 .

The following observation, however, leads to a geometric determination by K of
ωξ1,ξ2 and ωξ2,ξ1 in the spirit of the work of Alfsen and Shultz.

The curve p1(θ) = ωξ1 cos θ+ξ2 sin θ ∈ ∂eK, 0 ≤ θ ≤ π/2, is a great semicircle of
B3, starting at p1(0) = ωξ1 and ending at p1(π/2) = ωξ2 .

In fact the four terms in the polarization identity lead to four (pairwise) distinct
great semicircles joining ωξ1 to ωξ2 . Thus for 0 ≤ θ ≤ π/2 we have:

p−1(θ) = ωξ1 cos θ−ξ2 sin θ,

pi(θ) = ωξ1 cos θ+iξ2 sin θ,

p−i(θ) = ωξ1 cos θ−iξ2 sin θ.

Note that ωξ2 = ω−ξ2 = ωiξ2 = ω−iξ2 .
Consider the curves p1(θ) and pi(θ), 0 ≤ θ ≤ π/2, bounding one “quadrant”

of B3. If X ∈ M2(C), let p1(θ, X) = ωξ1 cos θ+ξ2 sin θ(X). For a fixed X, let us
compute the derivative with respect to θ at θ = 0. Leibnitz’s rule applies to the
inner product; thus dp1(θ,X)

dθ

∣∣∣
θ=0

= ṗ1(0, X) = ωξ1,ξ2(X) + ωξ2,ξ1(X).

Remark. We can think of p1(θ, X) as X̂(p1(θ)), where X̂(f) = f(X), by definition,
for any state f . Thus X̂ is an affine function on the state space K, analogous to a
“Fourier transform.” Then ṗ1(0, X) is the derivative of X̂ at ωξ1,ξ1 in the direction
defined by p1(θ).

Similarly, consider pi(θ, X) and calculate its derivative with respect to θ at θ = 0
and get ṗi(0, X) = i[ωξ2,ξ1(X)− ωξ1,ξ2(X)]. We can now solve for ωξ1,ξ2 and ωξ2,ξ1

in terms of ṗ1 and ṗi, and we get:

ωξ1,ξ2 =
1
2
[ṗ1(0) + iṗi(0)],

ωξ2,ξ1 =
1
2
[ṗ1(0) − iṗi(0)].
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Some calculation shows that in the “B3-picture”,

ωξ1,ξ2 = (0, 1, i), tangent at ωξ1,ξ1 ∈ B3;

ωξ2,ξ1 = (0, 1,−i), tangent at ωξ1,ξ1 ∈ B3.

Thus K and in particular its tangent spaces are equipped in a natural way with a
structure involving i =

√
−1, i.e., a complex structure. In this structure replacing i

by −i has the effect of interchanging the matrix coefficients ωξ1,ξ2(X) and ωξ2,ξ1(X)
for any X ∈ M2(C). This is equivalent to taking the transpose of the matrix for X
when written in terms of the ωξi,ξj

(X).
In fact, in the above setup, replacing i by −i causes a reflection of K = B3 in

the great circle (disk) determined by great semicircles p1 and p−1. Thus the act of
choosing i or −i in the above discussion is equivalent, in the sense of Alfsen and

Shultz, to choosing an orientation of K. Note that if U(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

a one-parameter group of unitaries in M2(C), then p1(θ) = ωU(θ)ξ1 and p−1(θ) =
ωU(−θ)ξ1 . In the “B3 picture” these U(θ) implement rotations of B3 about the axis
through the antipodal states 1

2ωξ1+iξ2 and 1
2ωξ1−iξ2 .

3. The case of Mn(C)

Given an n × n matrix with respect to an orthonormal basis {ξi}1≤i≤n, we can
consider X = (ωξi,ξj

(X))1≤i,j≤n and examine as in the previous section the 2 × 2

submatrix
(

ωξi0 ,ξi0
ωξi0 ,ξj0

ωξj0 ,ξi0
ωξj0 ,ξj0

)
for each choice of i0 
= j0, since the face of the state

space of Mn(C) generated by ωξi0 ,ξi0
and ωξj0 ,ξj0

is a Euclidean 3-ball.
How one consistently pastes together the orientations of these 3-balls, and more

generally how one treats the case of a general C*-algebra or von Neumann algebra,
can be understood from reading [1, 2].

Remarks. We have benefited from discussions long ago with Professor Alfsen and
thank Professors Alfsen and Shultz for writing [1] [2]. The path that led us to
this note was inspired not only by [1, 2] but also by [3, 4, 5] and differentiation
on the duals of the quaternion and dihedral groups of order 8. This path is quite
distinct from the logical presentation above. Finally, we observe that the present
note can be used to see a connection between off-diagonal matrix coefficients and
order derivations; cf. [2, Chapter 6].
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