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K-EXACT GROUPS AND COARSELY EMBEDDABLE GROUPS

SEMAİL ÜLGEN YILDIRIM

(Communicated by Marius Junge)

Abstract. In this paper we introduce the notion of K-exact C∗-algebras,
in particular K-exact groups. We prove that K-exactness is stable under
direct limits and that coarsely embeddable groups are K-exact groups under
a technical condition.

1. Introduction

K-exactness is the K-theoretic analogue of the structural property known as
exactness. An exact discrete group Γ is one for which the minimal tensor product
with its reduced C∗-algebra C∗

r Γ (equivalently [6], the crossed product by Γ) pre-
serves short exact sequences. A C∗-algebra A is K-exact if the six-term sequence of
K-theory groups is exact. Moreover, a group Γ is called K-exact if the minimal ten-
sor product by C∗

r (Γ) preserves the K-theoretic six-term exact sequence regardless
of whether it preserves short exact sequences of C∗-algebras. K-exactness is very
important since it is related to notions such as K-amenability, K-nuclearity, and
coarse embeddability. We present the relationship to K-amenability, K-nuclearity,
and coarse embeddability. We prove that K-exactness is stable under direct limits.
Moreover, in this paper we give a proof of a theorem that shows the relationship
between coarsely embeddable groups and K-exact groups. To be more precise, we
prove the following theorem:

Theorem 1.1. If Γ is a countable discrete group that is coarsely embeddable into
a separable infinite dimensional Hilbert space H and the pair (C∗

r (Γ), C(βΓ) �r Γ)
is a KK-split pair of C∗-algebras, then Γ is K-exact.

The following two definitions help to express the technical condition in the above
Theorem 1.1 better.

Definition 1.1. The subalgebra B of A is KK-split if there is an element j in
KK(A, B) such that i⊗̂Aj is the identity in KK(B, B), where i ∈ KK(B, A) is
induced by the inclusion i : B ↪→ A.

Definition 1.2. A pair of C∗-algebras (B, A) is a KK-split pair if the C∗-algebra B
is a KK-split subalgebra of A.
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2. K-exactness

In this section we recall the full and the reduced group C∗-algebras, direct lim-
its, and K-exact groups and C∗-algebras. We show in Proposition 2.7 that K-
exact groups are stable under direct limits. Hence, K-exact groups share the same
permanence property with exact groups and coarsely embeddable groups [9]. Also,
we present the relation to K-amenability and K-nuclearity.

The fundamental tool in the calculation of the K-theory of C∗-algebras is the
fact that a short exact sequence of C∗-algebras has an associated six-term exact
sequence of K-theory groups [2], and it is recalled in Theorem 2.1 below.
Theorem 2.1 ([2], The six-term exact sequence). For every exact sequence of
C∗-algebras

0 −−−−→ I
ϕ−−−−→ B

ψ−−−−→ B/I −−−−→ 0,

the following associated six-term sequence in K-theory is exact:

K0(I)
ϕ∗−−−−→ K0(B)

ψ∗−−−−→ K0(B/I)

δ1

�
⏐
⏐

⏐
⏐
�δ0

K1(B/I) Sψ∗←−−−− K1(B) Sϕ∗←−−−− K1(I)

By putting a norm say α on the algebraic tensor product A�B of the C∗-algebras
A and B, we make it a normed algebra, (A ⊗α B, ||.||α). There is a largest and a
smallest of such norms, namely the maximal and the minimal norms, ||.||max and
||.||min, respectively. Given a ∗-homomorphism φ : A → B, and a C∗-algebra D, the
map φ induces a map of tensor products of C∗-algebras φ⊗α1D : A⊗αD → B⊗αD
as well as a map of K-theory groups (φ⊗α 1D)∗ : KK(C, A⊗α D) → KK(C, B ⊗α

D). The sequences of C∗-algebras (completed with respect to ||.||max and ||.||min,
respectively),

(1) 0 −−−−→ I ⊗max A
i⊗max1A−−−−−−→ B ⊗max A

j⊗max1A−−−−−−→ B/I ⊗max A −−−−→ 0
and

(2) 0 −−−−→ I ⊗min A
i⊗min1A−−−−−−→ B ⊗min A

j⊗min1A−−−−−−→ B/I ⊗min A −−−−→ 0,

are not both exact. Indeed, for all C∗-algebras B, all ideals I in B, and a C∗-
algebra A, the sequence (1) is always exact [22] and implies a six-term exact se-
quence in K-theory by Theorem 2.1, whereas the sequence (2) may fail to be exact
[22]. The lack of exactness in the case of ⊗min leads us to the definition of K-
exactness.

Definition 2.1. A C∗-algebra A is K-exact if for every exact sequence of C∗-
algebras

(3) 0 −−−−→ I
i−−−−→ B

j−−−−→ B/I −−−−→ 0,

there exist δ maps (δ0 and δ1) leading to an exact six-term sequence in K-theory of
tensor product C∗-algebras:

(4)

K0(I ⊗min A)
(i⊗min1A)∗−−−−−−−−→ K0(B ⊗min A)

(j⊗min1A)∗−−−−−−−−→ K0(B/I ⊗min A)

δ1

�
⏐
⏐

⏐
⏐
�δ0

K1(B/I ⊗min A)
(j⊗min1A)∗←−−−−−−−− K1(B ⊗min A)

(i⊗min1A)∗←−−−−−−−− K1(I ⊗min A).
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Definition 2.2. A discrete group Γ is K-exact if the reduced group C∗-algebra
C∗

r (Γ) is K-exact.

Our examples below include certain full and reduced group C∗-algebras.

2.1. Examples. Any exact group is K-exact by definition of exactness. By [7, 8]
and [13], Gromov’s group is not exact, and it is not K-exact by Ozawa. Any
C∗-algebra A which is KK-equivalent to a K-exact C∗-algebra B is K-exact [12].
This follows from the Kasparov product. It is defined by Cuntz that a group
Γ is K-amenable if and only if the full and reduced group C∗-algebras have the
same K-theory groups [15]. The next proposition states the relationship between
K-amenable groups and the K-exactness of the full group C∗-algebras.

Proposition 2.2. If Γ is K-amenable and K-exact, then C∗(Γ) is K-exact.

Proof. Γ is K-amenable implies that the C∗-algebras C∗
r (Γ) and C∗(Γ) are KK-

equivalent [21]. For any C∗-algebra D, we have C∗
r (Γ) ⊗min D and C∗(Γ) ⊗min D

are KK-equivalent, and hence they are K-equivalent [21]. We have the following
diagram of groups:
(5)

Ki(I⊗minC∗(Γ))
(i⊗min1C∗(Γ))∗−−−−−−−−−−→ Ki(B⊗minC∗(Γ))

(j⊗min1C∗(Γ))∗−−−−−−−−−−→ Ki(B/I⊗minC∗(Γ))

(1I⊗minλ)∗

⏐
⏐
� (1B⊗minλ)∗

⏐
⏐
� (1B/I⊗minλ)∗

⏐
⏐
�

Ki(I⊗minC∗
r (Γ))

(i⊗min1C∗
r (Γ))∗−−−−−−−−−−→ Ki(B⊗minC∗

r (Γ))
(j⊗min1C∗

r (Γ))∗−−−−−−−−−−→ Ki(B/I⊗minC∗
r (Γ)),

and the vertical maps are isomorphisms for i = 0, 1. The exactness of the sequence
on the top row follows from the exactness of the sequence on the bottom row in
the diagram (5). Thus, C∗(Γ) is K-exact. �

Indeed, it is true that all K-amenable groups are K-exact [12]; hence this implies
that the reduced and the full group C∗-algebras are K-exact.

Example 2.3. Let F2 be the free group on two generators. Since F2 is K-amenable
[15], the full group C∗-algebra C∗(F2) and the reduced group C∗-algebra C∗

r (F2)
are K-exact by Proposition 2.2. This also follows from the reduced group C∗-
algebra C∗

r (F2) being exact [23], and hence it is K-exact. The full group C∗-
algebra C∗(F2) is K-exact, but it is not exact [23].

2.2. Group C∗-algebras. A unitary representation of a discrete group Γ in a
Hilbert space H is a homomorphism π : Γ → U(H), where U(H) is the algebra
of unitary operators on H. The algebras derived from group Γ are C[Γ], �1(Γ),
C∗(Γ) and C∗

r (Γ). C[Γ] is the algebra of Γ over the complex numbers. If a ∈ C[Γ],
then a =

∑
agug (finite sum with ag ∈ C and basis (ug)g). The convolution product

is given as ug.ug′ = ug.g′ and the involution is defined as (cγ)∗ = cγ−1. The algebra
�1(Γ) consists of elements a =

∑
agug, where

∑
|ag| < ∞. Given a countable

discrete group Γ and a unitary representation π : Γ → U(Hπ), one can extend π
to a ∗-homomorphism on C[Γ] (or �1Γ) as follows: π :

∑
agug →

∑
agπ(g). To

any unitary representation π, we associate a C∗-subalgebra C∗
π(Γ) ⊆ B(Hπ), the

closure of π(C[Γ]) (or equivalently, π(�1(Γ)) in B(Hπ)). Abstractly, one can take
the completion of C[Γ] or �1(Γ) with respect to the norm ||.||B(Hπ). For example, if t
is the trivial representation of Γ, then C∗

t (Γ) ∼= C. Two group C∗-algebras derived
from a group Γ in a similar way are the full group C∗-algebra and the reduced
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group C∗-algebra (C∗(Γ) and C∗
r (Γ), respectively). If λ : Γ → B(�2(Γ)) denotes

the left regular representation of Γ, given by λ(g)(ξ(h)) = g.ξ(h) = ξ(g−1h), where
ξ ∈ �2(Γ), and g, h ∈ Γ, then the reduced group C∗-algebra C∗

r (Γ) is generated by
the elements of Γ acting as a unitary operator λ(g) via the left translation on �2(Γ)
given above. Hence, C∗

λ(Γ) ∼= C∗
r (Γ) ⊂ B(�2(Γ)).

Definition 2.3. The reduced C∗-algebra of Γ is defined as C∗
r (Γ) = λ(C[Γ]), where

the closure is taken in the operator norm on B(�2(Γ)).

Next, we consider a ∗-homomorphism α : H → G. In general, α will not induce
a ∗-homomorphism on the reduced group C∗-algebra C∗

r (H). Of course, it does
induce a homomorphism α : C[H] → C[G], but this need not be continuous with
respect to the respective minimal norms. For example, C∗

r (F2), the reduced C∗-
algebra of the free group on two generators, is a simple C∗-algebra. If the trivial
homomorphism t : F2 → 1 were uniformly continuous, then we would obtain a ∗-
homomorphism t̂ : C∗

r (F2) → C which would have to be an isomorphism. But it is
easy to see that C∗

r (F2) is not a commutative algebra. However, if α were injective,
then a homomorphism on the reduced C∗-algebras would be induced. We will see
below that this homomorphism will be injective as well.

Proposition 2.4. Let α : H → G be an injective homomorphism between groups
H and G. Then there exists an injective ∗-homomorphism α∗ : C∗

r (H) → C∗
r (G).

Proof. Let λG and λH be the regular representations of G and H, respectively.
Since there is an injective map α from H into G, one can think of representing H
in �2(G). We have that �2(G) = �2(H\G)⊗�2(H), where H\G is the right conjugacy
class of G. For a ∈ CH, λG(α(a)) = id�2(H\G) ⊗ λH(a). We have G =

⊔
γ∈H\G(H ·

γ), and it follows that �2(G) =
⊕

γ∈H\G �2(H · γ). We also have λG(α(a)) =
⊕

γ∈H\G λH(a). Then ||λG(α(a))||�2(G) = ||id�2(H\G) ⊗ λH(a)||�2(H\G)⊗�2(H) =
||λH(a)||�2(H) as required. �

Let G1 denote the category of countable groups and injective homomorphisms,
and let C1 denote the category of C∗-algebras and injective ∗-homomorphisms.
Then we get the following proposition.

Proposition 2.5. The reduced C∗-algebra provides a covariant functor from G1 to
C1.

Proof. The fact that composition and the identity homomorphism behave correctly
is obvious. The only thing to check is injectivity of the induced homomorphism.
This is true by Proposition 2.4. �

The full group C∗-algebras are as important as the reduced group C∗-algebras
in the theory of noncommutative geometry. Next we recall the definition of the
full group C∗-algebras. Let Hu =

⊕
π Hπ be the Hilbert sum over all isomorphism

classes of representations of Γ. Then C∗(Γ) = C∗
u(Γ) is the full C∗-algebra of Γ.

Definition 2.4. The full C∗-algebra of Γ, C∗(Γ), is the completion of C[Γ] under
the norm ||a||C∗(Γ) = supπ ||π(a)||, where π is a unitary operator and a ∈ C.

The universal property implies that for all unitary representations π, there exists
a unique extension of C∗

r (Γ) → B(Hπ) to C∗(Γ). For a given countable discrete
group Γ, there is a quotient map Q between C∗(Γ) and C∗

r (Γ), Q : C∗(Γ)→ C∗
r (Γ).
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This map becomes isomorphic when the group G is amenable. The induced K-
theory map Q∗ : K(C∗(Γ))→K(C∗

r (Γ)) is isomorphic when Γ is K-amenable, [15].
Note that the map C∗(Γ)→ C∗

r (Γ) is not injective for the free group F2, since F2

is not amenable. We give some examples of K-exact groups and C∗-algebras next.
Indeed, in the next section we see that K-exactness is stable under direct limits.

2.3. Direct limits and K-exactness. Taking direct limits of C∗-algebras or
groups helps to build new ones. In particular, consider the inductive sequence
of groups with injective homomorphisms {Γi, µi} with direct limit Γ = lim−→Γi. For
each Γi, we have the full and the reduced group C∗-algebras. The next proposition
will make it clear that the limits of these C∗-algebras are again group C∗-algebras.
By the continuity property of K-theory, we get that K-exactness is stable under
direct limits. If we also assume that each Γi is K-exact, then we get that C∗

r (Γ) is
K-exact. Moreover, C∗(Γ) becomes K-exact if each C∗(Γi) is K-exact.

Proposition 2.6. lim−→C∗
r (Γi) ∼= C∗

r (Γ) and lim−→C∗(Γi) ∼= C∗(Γ) for {Γi, µi} given
as above.

Proof. We prove the first equality, and the second equality follows similarly. It is
easy to see that lim−→C[Γi] ∼= C[Γ] as ∗-algebras. The norm on C[Γ] which yields
C∗

r (Γ) induces a norm on lim−→C[Γi], and it will be sufficient to show that the com-
pletion with respect to this norm is lim−→C∗

r (Γi).
Let x ∈ lim−→C[Γi]. Then there exists an n such that x ∈ C[Γn]. Using the

isomorphism lim−→C[Γi] ∼= C[Γ], it is easy to see that the norm of x is just ‖x‖C∗
r (Γn).

On the other hand, the inclusions

lim−→C[Γi] → limalg C∗
r (Γi) → lim−→C∗

r (Γi)

show that the norm induced from including into the direct limit is also ‖x‖C∗
r (Γn).

Thus, the norms, and hence the respective completions agree. It is direct to check
that lim−→C[Γi] is dense in lim−→C∗

r (Γi). This completes the proof. �

Proposition 2.7. The direct limit of K-exact groups is K-exact.

Proof. Let lim−→Γn = Γ, and assume that each Γn is K-exact, for each n. Since
the maps for groups in the direct limit are one-one, we get maps on reduced C∗-
algebras. The continuity property in K-theory implies that lim−→K∗(C∗

r (Γn)) =
K∗(C∗

r (lim−→Γn)). Next, we take an exact sequence of C∗-algebras B and its ideal I.
We tensor each term C∗

r (Γn) for every n. If we take the K-theory of each sequence of
C∗-algebras (not necessarily exact), each sequence of abelian groups becomes exact
by the assumption that each Γn is K-exact. Next, we take the limit of the exact
K-theory sequences. Since the direct limit of exact sequences of abelian groups is
exact [20], the limiting sequence will be exact. �

A similar argument yields the following two propositions.

Proposition 2.8. The direct limit of K-exact C∗-algebras is K-exact.

Proof. For a direct system of (An, ϕn), with lim−→An = A, we assume that An is
K-exact, for each n. We get that lim−→K∗(An) = K∗(lim−→An) by continuity of the
K-theory functor. Next, take an exact sequence and tensor it with each An. We
are assuming that each An is K-exact, so the tensored sequence has an exact K-
theory sequence. The limit of the exact K-theory sequences will be exact, since
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the direct limit of exact sequences of abelian groups is exact. By continuity of
K-theory, we get that A = lim−→An is K-exact. �

Proposition 2.9. Let lim−→Γn = Γ, and assume that C∗(Γn) is K-exact for each n.
Then C∗(Γ) is K-exact.

Proof. The proof follows from Propositions 2.6 and 2.8. �

3. Coarse embeddability

Coarsely embeddable groups have drawn significant attention for the last fifteen
years. This is mainly because of their connections to the coarse Baum-Connes
conjecture and the Novikov conjecture. Both the Baum-Connes and the coarse
Baum-Connes conjectures have geometric implications, for instance, in particular,
the Novikov Conjecture. Yu proved that coarsely embeddable groups satisfy the
coarse Baum-Connes conjecture and therefore the Novikov conjecture [17]. The
results above suggest that the next setting where these conjectures have to be
studied should be K-exact groups. In this paper we prove the relationship be-
tween K-exactness and coarse embeddability of groups into a Hilbert space H.
Indeed, Theorem 1.1 states that (under a technical condition) every coarsely em-
beddable countable discrete group Γ is K-exact. The notion of coarsely embeddable
metric spaces (into a separable infinite dimensional Hilbert space H) was introduced
by Gromov to express the idea of inclusion in the large scale geometry of groups
[18]. We recall that for metric spaces (X, dX) and (Y, dY ) the function F : X → Y
is a coarse embedding if there exist nondecreasing functions ρ± : R+ → R+ such
that lim t→∞ ρ±(t) = ∞ and

(6) ρ−(dX(x, x′)) ≤ dY (F (x), F (x′)) ≤ ρ+(dX(x, x′)), for all x, x′ ∈ X.

Definition 3.1 ([18]). X is coarsely embeddable if there exists a coarse embedding
F of X into a Hilbert space H.

One can view countable discrete groups as metric spaces by attaching a natural
suitable metric to them. This allows us to study coarsely embeddable groups. The
class of coarsely embeddable groups is provided mainly by the class of exact discrete
groups. Finite groups; Z; Z

n; amenable groups; Fn; hyperbolic groups; one-relator
groups [20]; every countable subgroup of the general linear group GL(n, K), K a
field [5], are all coarsely embeddable groups. Gromov’s group is not a coarsely
embeddable group in a Hilbert space [19].

3.1. K-nuclearity and K-exactness. In this section we recall the K-nuclear C∗-
algebras due to Skandalis [16] and show that K-exactness and K-nuclearity are re-
lated. When compared to nuclearity, K-nuclearity is less restrictive. Every nuclear
C∗-algebra is K-nuclear. However, a K-nuclear C∗-algebra may not be nuclear.
Before we define K-nuclearity we recall Kasparov modules.

Definition 3.2 ([21]). Let A and B be C∗-algebras. E(A, B) is the set of all
triples (E, φ, F ), where E is a countably generated Hilbert module over B, φ : A →
B(E) is a ∗-homomorphism, and F ∈ B(E), such that [F, φ(a)], (F 2 − 1)φ(a), and
(F − F ∗)φ(a) are all in K(E) for all a ∈ A. The elements of E(A, B) are called
Kasparov modules for (A, B).
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Sometimes φ might be suppressed in the notation to regard (E, F ) as an (A, B)-
bimodule. Next we recall a nuclear Kasparov bimodule which resembles the defini-
tion of nuclear C∗-algebras.

Definition 3.3 ([16]). A Kasparov (A, B)-module (E, φ, F ) is nuclear if φ : A →
B(E) can be approximated in the topology of pointwise strong operator convergence
by completely positive finite-rank contractions.

The K-nuclearity of a C∗-algebra is defined in the same spirit of J. Cuntz’s
K-theoretic amenability [15]. Indeed, K-nuclearity is the representability of an
identity element in a KK-theory group by nuclear bimodules.

Definition 3.4 ([16]). A C∗-algebra A is K-nuclear if 1A ∈ KK(A, A) is repre-
sented by a nuclear Kasparov (A, A)-bimodule (E, F ).

Group C∗-algebras of K-amenable groups, nuclear C∗-algebras and K-contract-
ible C∗-algebras are K-nuclear [16]. Skandalis gave an example of a non-K-nuclear
algebra [16], as recalled in the next paragraph.

Example 3.1. If G is a connected simple Lie group of rank one and Γ is an infinite
discrete subgroup of G having property T of Kazhdan, then C∗

r (Γ) is not K-nuclear
[16]. Hence, it is not strongly K-nuclear. (See below for its definition.)

Although it may sound true that a K-nuclear C∗-algebra is a C∗-algebra which
is KK-equivalent to a nuclear C∗-algebra, we see that a C∗-algebra A which is KK-
equivalent to a nuclear C∗-algebra might be different from a K-nuclear algebra.

Definition 3.5. A C∗-algebra A is strongly K-nuclear if A is KK-equivalent to a
nuclear C∗-algebra B.

Lemma 3.2. If a C∗-algebra A is strongly K-nuclear, then it is K-nuclear.

Proof. Let A be a strongly K-nuclear C∗-algebra. By definition, A is KK-equiva-
lent to a nuclear C∗-algebra. Nuclear C∗-algebras are K-nuclear [16], and K-
nuclear C∗-algebras are closed under KK-equivalency. Hence we get that A is
K-nuclear. �

If A is a K-nuclear C∗-algebra, then it is not always true that it is strongly
K-nuclear. The relation between K-exactness and K-nuclearity is stated in the
next lemma.

Proposition 3.3. If a C∗-algebra A is K-nuclear, then A is K-exact. In particular,
if a C∗-algebra A is strongly K-nuclear, then A is K-exact.

Proof. Let A be K-nuclear. Then, for any C∗-algebra D we have that PA,D :
A⊗maxD → A⊗minD is invertible in K-theory, by Proposition 3.5, in [16]. Namely,
A⊗max D and A⊗min D are KK-equivalent via xD ∈ KK(A⊗max D, A⊗min D)
and yD ∈ KK(A⊗min D, A⊗max D). Indeed, xD = PA,D and yD = τD(u), where
u ∈ KKnuc(A, A) such that θ(u) = 1A. For the definitions of τD, KKnuc and θ,
see Skandalis’s paper [16]. We will not write the subscripts D for xD and yD. It is
easily understood that they correspond to the related C∗-algebras in the expression.
We define maps ψD,x : Ki(A⊗maxD) → Ki(A⊗minD) and ψD,y : Ki(A⊗minD) →
Ki(A⊗max D) as ψD,x(z) = z⊗A⊗maxD x and ψD,y(t) = t⊗A⊗minD y, respectively.
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We have that ψD,x and ψD,y are inverses of each other. In the commutative diagram

Ki(A ⊗max I) −−−−→ Ki(A ⊗max B) −−−−→ Ki(A ⊗max B/I)

ψI,x

⏐
⏐
� ψB,x

⏐
⏐
� ψB/I,x

⏐
⏐
�

Ki(A ⊗min I) −−−−→ Ki(A ⊗min B) −−−−→ Ki(A ⊗min B/I)
the maps ψ are all isomorphisms. By the Five Lemma, the exactness of the top
sequence implies the exactness of the bottom sequence. Hence, we get that A is
K-exact. �

We have the following result due to Skandalis.

Proposition 3.4 ([16]). The reduced C∗-algebra C∗
r (Γ) is K-nuclear if and only

if Γ is K-amenable .

Proposition 3.5. If a group Γ is K-amenable , then Γ is K-exact.

Proof. This follows from Propositions 3.3 and 3.4. �
Ozawa proved that a discrete countable group Γ is exact if and only if the

uniform Roe algebra UC∗(Γ) is nuclear [13]. We recall that UC∗(Γ) is defined as
the C∗-algebra generated by C∗

r (Γ) and �∞(Γ) both acting on �2(Γ). The uniform
Roe algebra UC∗(Γ) is isomorphic to C(βΓ) �r Γ [13]. Hence, group Γ is exact if
and only if C(βΓ) �r Γ is nuclear. We prove a parallel result at the K-theory level.
Under the assumptions that (C∗

r (Γ), C(βΓ)�rΓ) is a KK-split pair and C(βΓ)�r Γ
is K-nuclear, we get that group Γ is K-exact.

Lemma 3.6. If for a given countable discrete group Γ, the C∗-algebra C(βΓ) �r Γ
is K-nuclear and (C∗

r (Γ), C(βΓ) �r Γ) is a KK-split pair, then Γ is K-exact.

Proof. By Lemma 3.3, we get that C(βΓ)�rΓ is K-exact. If it is given that the pair
of C∗-algebras (C∗

r (Γ), C(βΓ)�rΓ) is KK-split, then there is a KK-theory element
j in KK(C(βΓ)�rΓ, C∗

r (Γ)) such that i⊗̂C(βΓ)�rΓj = 1C∗
r (Γ) in KK(C∗

r (Γ), C∗
r (Γ)),

where i ∈ KK(C∗
r (Γ), C(βΓ)�rΓ) is induced by the inclusion i : C∗

r (Γ) ↪→ C(βΓ)�r

Γ. We let A = C(βΓ) �r Γ, B = C∗
r (Γ), and for any C∗-algebra D the maps

ϕD,j : Ki(A⊗min D) → Ki(B ⊗min D) and ϕD,i : Ki(B ⊗min D) → Ki(A⊗min D)
are defined as ϕD,j(.) = . ⊗A⊗I τD,min(j) and ϕD,i(.) = . ⊗B⊗I τD,min(i). We
consider the following commutative diagram in K-theory:

Ki(A ⊗min I) −−−−→ Ki(A ⊗min E) −−−−→ Ki(A ⊗min E/I)

ϕI,j

⏐
⏐
� ϕE,j

⏐
⏐
� ϕE/I,j

⏐
⏐
�

Ki(B ⊗min I) −−−−→ Ki(B ⊗min E) −−−−→ Ki(B ⊗min E/I)

ϕI,i

⏐
⏐
� ϕE,i

⏐
⏐
� ϕE/I,i

⏐
⏐
�

Ki(A ⊗min I) −−−−→ Ki(A ⊗min E) −−−−→ Ki(A ⊗min E/I).
We prove that ϕD,j ◦ϕD,i(z) = z, z ∈ B⊗min D for all C∗-algebras D. This follows
from the following equations: ϕD,j ◦ϕD,i(z) = z⊗B⊗D τD,min(i)⊗A⊗D τD,min(j) =
z⊗B⊗D τD,min(i⊗A j) = z⊗B⊗D τD,min(1B) = z⊗B⊗D 1B⊗D = z. We get that the
groups Ki(B⊗min I), Ki(B⊗min E), and Ki(B⊗min E/I) are direct summands of
the groups Ki(A⊗min I), Ki(A⊗min E), and Ki(A⊗min E/I), respectively. Hence,
exactness of the top sequence implies exactness of the sequence in the middle of
the diagram above. We get that Γ is K-exact. �
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In the next section we prove the main Theorem 1.1, which describes the rela-
tionship between K-exact and coarsely embeddable groups.

3.2. Proof of Theorem 1.1. In this section we prove the main Theorem 1.1, which
states that under a technical condition coarse embeddability implies K-exactness.
We use the fact that group Γ being coarsely embeddable implies that Γ is K-nuclear.
We prove the main theorem when we combine this fact with the result above given
as when (C∗

r (Γ), C(βΓ) �r Γ) is a KK-split pair of C∗-algebras and C(βΓ) �r Γ is
K-nuclear, then Γ is K-exact.

Proof. We assume that group Γ is coarsely embeddable and (C∗
r (Γ), C(βΓ)�r Γ) is

a KK-split pair of C∗-algebras. By Skandalis, Tu and Yu, the group Γ is coarsely
embeddable if and only if the groupoid βΓ � Γ has the Haagerup property [3, 8].
This implies that the groupoid βΓ � Γ is K-amenable [11]. Hence, we have that
the C∗-algebras C(βΓ) �r Γ and C(βΓ) � Γ are K-nuclear [10], [Proposition 4.17].
Hence, we get that Γ is K-exact, by Lemma 3.6. �
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[16] G. Skandalis, Une notion de nucléarité en K-théorie (d’après J. Cuntz), K-theory, 1 (1998),
549-573. MR953916 (90b:46131)

[17] G. L. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding
into Hilbert space, Invent. Math., 139 (2000), 201–240. MR1728880 (2000j:19005)

http://www.ams.org/mathscinet-getitem?mr=2067646
http://www.ams.org/mathscinet-getitem?mr=2067646
http://www.ams.org/mathscinet-getitem?mr=1783408
http://www.ams.org/mathscinet-getitem?mr=1783408
http://www.ams.org/mathscinet-getitem?mr=1388312
http://www.ams.org/mathscinet-getitem?mr=1388312
http://www.ams.org/mathscinet-getitem?mr=2217050
http://www.ams.org/mathscinet-getitem?mr=2217050
http://www.ams.org/mathscinet-getitem?mr=1725812
http://www.ams.org/mathscinet-getitem?mr=1725812
http://www.ams.org/mathscinet-getitem?mr=2160829
http://www.ams.org/mathscinet-getitem?mr=2160829
http://www.ams.org/mathscinet-getitem?mr=1876896
http://www.ams.org/mathscinet-getitem?mr=1876896
http://www.ams.org/mathscinet-getitem?mr=1974686
http://www.ams.org/mathscinet-getitem?mr=1974686
http://www.ams.org/mathscinet-getitem?mr=1703305
http://www.ams.org/mathscinet-getitem?mr=1703305
http://www.ams.org/mathscinet-getitem?mr=1798599
http://www.ams.org/mathscinet-getitem?mr=1798599
http://www.ams.org/mathscinet-getitem?mr=1763912
http://www.ams.org/mathscinet-getitem?mr=1763912
http://www.ams.org/mathscinet-getitem?mr=2357352
http://www.ams.org/mathscinet-getitem?mr=2357352
http://www.ams.org/mathscinet-getitem?mr=716254
http://www.ams.org/mathscinet-getitem?mr=716254
http://www.ams.org/mathscinet-getitem?mr=953916
http://www.ams.org/mathscinet-getitem?mr=953916
http://www.ams.org/mathscinet-getitem?mr=1728880
http://www.ams.org/mathscinet-getitem?mr=1728880
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