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CONCENTRATION OF 1-LIPSCHITZ MAPS
INTO AN INFINITE DIMENSIONAL �p-BALL

WITH THE �q-DISTANCE FUNCTION

KEI FUNANO

(Communicated by Mario Bonk)

Abstract. In this paper, we study the Lévy-Milman concentration phenom-
enon of 1-Lipschitz maps into infinite dimensional metric spaces. Our main
theorem asserts that the concentration to an infinite dimensional �p-ball with
the �q-distance function for 1 ≤ p < q ≤ +∞ is equivalent to the concentration
to the real line.

1. Introduction

This paper is devoted to investigating the Lévy-Milman concentration phenom-
enon of 1-Lipschitz maps from mm-spaces (metric measure spaces) to infinite di-
mensional metric spaces. Here, an mm-space is a triple (X, dX , µX), where dX is a
complete separable metric on a set X and µX is a finite Borel measure on (X, dX).
The theory of concentration of 1-Lipschitz functions was first introduced by V.
D. Milman in his investigation of asymptotic geometric analysis ([17], [18], [19]).
Nowadays, the theory blends with various areas of mathematics, such as geometry,
functional analysis and infinite dimensional integration, discrete mathematics and
complexity theory, probability theory, and so on (see [16], [21], [22], [24] and the
references therein for further information).

The theory of concentration of maps into general metric spaces was first studied
by M. Gromov ([11], [12], [13]). He established the theory by introducing the
observable diameter ObsDiamY (X;−κ) for an mm-space X, a metric space Y ,
and κ > 0 in [13] (see Section 2 for the definition of the observable diameter).
Given a sequence {Xn}∞n=1 of mm-spaces and a metric space Y , we note that
limn→∞ ObsDiamY (Xn;−κ) = 0 for any κ > 0 if and only if for any sequence
{fn : Xn → Y }∞n=1 of 1-Lipschitz maps, there exists a sequence {mfn

}∞n=1 of points
in Y such that

lim
n→∞

µXn
({xn ∈ Xn | dY (fn(xn), mfn

) ≥ ε}) = 0
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for any ε > 0. If limn→∞ ObsDiamR(Xn;−κ) = 0 for any κ > 0, then the sequence
{Xn}∞n=1 of mm-spaces is called a Lévy family. The Lévy families were first intro-
duced and analyzed by Gromov and Milman in [10]. In previous works [2], [3], [4],
[5], the author proved that if a metric space Y is either an R-tree, a doubling space,
a metric graph, or a Hadamard manifold, then limn→∞ ObsDiamY (Xn;−κ) = 0
holds for any κ > 0 and any Lévy family {Xn}∞n=1. To prove these results, we
needed to assume the finiteness of the dimension of the target metric spaces.

In this paper, we treat the case where the dimension of the target metric space
Y is infinite. The author has proved in [1] that if the target space Y is so big that
an mm-space X with some homogeneity property can isometrically be embedded
into Y , then its observable diameter ObsDiamY (X;−κ) is not close to zero. It
seems from this result that the concentration to an infinite dimensional metric
space cannot happen easily.

A main theorem of this paper is the following. For 1 ≤ p ≤ +∞, we denote by
B∞

�p an infinite dimensional �p-ball {(xn)∞n=1 ∈ R
∞ |

∑∞
n=1 |xn|p ≤ 1} and by d�p

the �p-distance function.

Theorem 1.1. Let {Xn}∞n=1 be a sequence of mm-spaces and 1 ≤ p < q ≤ +∞.
Then, the sequence {Xn}∞n=1 is a Lévy family if and only if

lim
n→∞

ObsDiam(B∞
�p ,d�q )(Xn;−κ) = 0 for any κ > 0.(1.1)

As a result, we obtain the example of the infinite dimensional target metric space
such that the concentration to the space happens as often as the concentration to
the real line.

The proof of the sufficiency of Theorem 1.1 is easy. The observations of A. Gour-
nay and M. Tsukamoto play important roles for the proof of the converse ([9], [28]).
Answering a question of Gromov in [14, Section 1.1.4], Tsukamoto proved in [28]
that the “macroscopic” dimension of the space (B∞

�p , d�q) for 1 ≤ p < q ≤ +∞ is
finite. Gournay independently proved it in [9] in the case of q = +∞. For any
(p, q) ∈ {(k, l) ∈ N × N | l ≤ k} \ {(k, 1) | k ≥ 2}, we have an example of a Lévy
family which does not satisfy (1.1) (see Proposition 4.4).

As applications of Theorem 1.1, by virtue of [3, Propositions 4.3 and 4.4], we
obtain the following corollaries of a Lévy group action. Lévy groups were first
introduced by Gromov and Milman in [10]. Let a topological group G act on
a metric space X. The action is called bounded if for any ε > 0 there exists a
neighborhood U of the identity element eG ∈ G such that dX(x, gx) < ε for any
g ∈ U and x ∈ X. Note that every bounded action is continuous. We say that
the topological group G acts on X by uniform isomorphisms if for each g ∈ G, the
map X � x �→ gx ∈ X is uniformly continuous. The action is said to be uniformly
equicontinuous if for any ε > 0 there exists δ > 0 such that dX(gx, gy) < ε for
every g ∈ G and x, y ∈ X with dX(x, y) < δ. Given a subset S ⊆ G and x ∈ X, we
put Sx := {gx | g ∈ S}.

Corollary 1.2. Let 1 ≤ p < q ≤ +∞ and assume that a Lévy group G bound-
edly acts on the metric space (B∞

�p , d�q) by uniform isomorphisms. Then for any
compact subset K ⊆ G and any ε > 0, there exists a point xε,K ∈ B∞

�p such that
diam(Kxε,K) ≤ ε.

Corollary 1.3. There are no non-trivial bounded uniformly equicontinuous actions
of a Lévy group to the metric space (B∞

�p , d�q) for 1 ≤ p < q ≤ +∞.
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Gromov and Milman pointed out in [10] that the unitary group U(�2) of the
separable Hilbert space �2 with the strong topology is a Lévy group. Many concrete
examples of Lévy groups are known by the works of S. Glasner [8], H. Furstenberg
and B. Weiss (unpublished), T. Giordano and V. Pestov [6], [7], and Pestov [25],
[26]. For examples, groups of measurable maps from the standard Lebesgue measure
space to compact groups, unitary groups of some von Neumann algebras, groups
of measure and measure-class preserving automorphisms of the standard Lebesgue
measure space, full groups of amenable equivalence relations, and the isometry
groups of the universal Urysohn metric spaces are Lévy groups (see the recent
monograph [24] for precise statements).

2. Preliminaries

Let Y be a metric space and ν a Borel measure on Y such that m := ν(Y ) < +∞.
We define for any κ > 0,

diam(ν, m − κ) := inf{diam Y0 | Y0 ⊆ Y is a Borel subset with ν(Y0) ≥ m − κ}
and call it the partial diameter of ν.

Definition 2.1 (Observable diameter). Let (X, dX , µX) be an mm-space with
mX := µX(X) and Y a metric space. For any κ > 0 we define the observable
diameter of X by

ObsDiamY (X;−κ) := sup{ diam(f∗(µX), mX − κ) |
f : X → Y is a 1-Lipschitz map},

where f∗(µX) stands for the push-forward measure of µX by f .

The idea of an observable diameter comes from quantum and statistical me-
chanics; that is, we think of µX as a state on a configuration space X and f is
interpreted as an observable.

Let (X, dX , µX) be an mm-space. For any κ1, κ2 ≥ 0, we define the separation
distance Sep(X; κ1, κ2) = Sep(µX ; κ1, κ2) of X as the supremum of the distance
dX(A, B) := inf{dX(a, b) | a ∈ A and b ∈ B}, where A and B are Borel subsets of
X satisfying that µX(A) ≥ κ1 and µX(B) ≥ κ2.

Lemma 2.2 (cf. [13, Section 31
2 .33]). Let X and Y be two mm-spaces and α > 0.

Assume that an α-Lipschitz map f : X → Y satisfies f∗(µX) = µY . Then we have

Sep(Y ; κ1, κ2) ≤ α Sep(X; κ1, κ2).

Relationships between the observable diameter and the separation distance are
the following. We refer to [4, Subsection 2.2] for precise proofs.

Lemma 2.3 (cf. [13, Section 31
2 .33]). Let X be an mm-space and κ, κ′ > 0 with

κ > κ′. Then we have

ObsDiamR(X;−κ′) ≥ Sep(X; κ, κ).

Remark 2.4. In [13, Section 31
2 .33], Lemma 2.3 is stated as κ = κ′, but that is not

true in general. For example, let X := {x1, x2}, dX(x1, x2) := 1, and µX({x1}) =
µX({x2}) := 1/2. Putting κ = κ′ = 1/2, we have ObsDiamR(X;−1/2) = 0
and Sep(X; 1/2, 1/2) = 1. This issue can be removed if in the definition of
diam(ν, m − κ), we ask for ν(Y0) > m − κ instead of ν(Y0) ≥ m − κ.
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Lemma 2.5 (cf. [13, Section 31
2 .33]). Let ν be a Borel measure on R with m :=

ν(R) < +∞. Then, for any κ > 0 we have

diam(ν, m − 2κ) ≤ Sep(ν; κ, κ).

In particular, for any κ > 0 we have

ObsDiamR(X;−2κ) ≤ Sep(X; κ, κ).

Combining Lemma 2.3 with Lemma 2.5, we obtain the following corollary:

Corollary 2.6 (cf. [13, Section 31
2 .33]). A sequence {Xn}∞n=1 of mm-spaces is a

Lévy family if and only if limn→∞ Sep(Xn; κ, κ) = 0 for any κ > 0.

Lemma 2.7. Let ν be a finite Borel measure on (Rk, d�p) with m := ν(Rk). Then
for any κ > 0 we have

diam(ν, m − κ) ≤ k1/p Sep
(
ν;

κ

2k
,

κ

2k

)
.

Proof. For i = 1, 2, · · · , k, let proji : R
k � (xi)k

i=1 �→ xi ∈ R be the projection. For
any Borel subsets A1, A2, · · · , Ak ⊆ R with (proji)∗(ν)(Ai) ≥ m − κ/k, we have

ν(A1 × A2 × · · · × Ak) = ν
( k⋂

i=1

(proji)
−1(Ai)

)
≥ m − κ,

which leads to

diam(ν, m − κ) ≤ diam(A1 × A2 × · · · × Ak) ≤ k1/p max
1≤i≤k

diamAi.

We therefore get

diam(ν, m − κ) ≤ k1/p max
1≤i≤k

diam
(
(proji)∗(ν), m − κ

k

)
.

Combining this with Lemmas 2.2 and 2.5, we obtain

diam(ν, m − κ) ≤ k1/p max
1≤i≤k

Sep
(
(proji)∗(ν);

κ

2k
,

κ

2k

)
≤ k1/p Sep

(
ν;

κ

2k
,

κ

2k

)
.

This completes the proof. �

Lemma 2.8. Let a, b be two real numbers with a < b. Then, a sequence {Xn}∞n=1

of mm-spaces is a Lévy family if and only if

lim
n→∞

ObsDiam[a,b](Xn;−κ) = 0 for any κ > 0.(2.1)

Proof. The necessity is obvious. We shall prove the converse. Suppose that the
sequence {Xn}∞n=1 with the property (2.1) is not a Lévy family. Then, by Corol-
lary 2.6, there exists κ > 0 and Borel subsets An, Bn ⊆ Xn such that µXn

(An) ≥ κ,
µXn

(Bn) ≥ κ, and lim supn→∞ dXn
(An, Bn) > 0. Define a function fn : Xn → R by

fn(x) := max{dXn
(x, An)+a, b}. Since µXn

(Bn) ≥ κ and lim supn→∞ dXn
(An, Bn)

> 0, we have

lim sup
n→∞

diam((fn)∗(µXn
), mXn

− κ′) > 0

for any 0 < κ′ < κ. Since each fn is a 1-Lipschitz function, this contradicts the
assumption (2.1). This completes the proof. �
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3. Proof of the main theorem

To prove the main theorem, we extract arguments from Gournay’s paper [9] and
Tsukamoto’s paper [28].

For k ∈ N, we identify R
k with the subset {(x1, x2, · · · , xk, 0, 0, · · · ) ∈ R

∞ | xi ∈
R for all i} of R∞. Given k ∈ N ∪ {∞}, let Sk be the k-th symmetric group. We
consider the group Gk := {±1}k � Sk. The multiplication in Gk is given by

((εn)k
n=1, σ) · ((ε′n)k

n=1, σ
′) := ((εnε′σ−1(n))

k
n=1, σσ′).

The group Gk acts on the space Rk by

((εn)k
n=1, σ) · (xn)k

n=1 := (εnxσ−1(n))k
n=1.

Note that this action preserves the k-dimensional �p-ball Bk
�p ⊆ B∞

�p and the �q-
distance function d�q . Define a subset Λk ⊆ Bk

�p by

Λk := {x ∈ Bk
�p | xi−1 ≥ xi ≥ 0 for all i}.

Given an arbitrary ε > 0, we put k(ε) := 
(2/ε)pq/(q−p)�− 1, where 
(2/ε)pq/(q−p)�
denotes the smallest integer which is not less than (2/ε)pq/(q−p). For k ≥ k(ε) + 1,
we define a continuous map fk,ε : Λk → Rk(ε) by

fk,ε(x) := (x1 − xk(ε)+1, x2 − xk(ε)+1, · · · , xk(ε) − xk(ε)+1, 0, 0, · · · ).

For any x ∈ Bk
�p , taking g ∈ Gk such that gx ∈ Λk, we define

Fk,ε(x) := g−1fk,ε(gx).

This definition of the map Fk,ε : Bk
�p → Bk

�p is well-defined (see [28, Section 2] for
details). Given k ∈ N, we put Ak :=

⋃
g∈G∞

gR
k ⊆ R

∞.

Theorem 3.1 (cf. [9, Proposition 1.3] and [28, Section 2]). The map Fk,ε : Bk
�p →

Bk
�p satisfies that Fk,ε(Bk

�p) ⊆ Ak(ε) and

d�q(x, Fk,ε(x)) ≤ ε

2
(3.1)

for any x ∈ Bk
�p .

Lemma 3.2. The map Fk,ε : (Bk
�p , d�q) → (Ak(ε), d�q) is a (1 + k(ε)1/q)-Lipschitz

map.

Proof. By the definition of the map Fk,ε, it suffices to prove that the map F :=
F2k(ε)+2,ε : (B2k(ε)+2

�p , d�q) → (B2k(ε)+2
�p , d�q) is (1 + k(ε)1/q)-Lipschitz. Recall that

F (x) = (x1 − xk(ε)+1, x2 − xk(ε)+1, · · · , xk(ε) − xk(ε)+1, 0, 0, · · · , 0)

for any x ∈ Λ2k(ε)+2. We hence get

d�q(F (x), F (y)) ≤ d�q(x, y) + k(ε)1/q|xk(ε)+1 − yk(ε)+1| ≤ (1 + k(ε)1/q) d�q(x, y)

for any x, y ∈ Λ2k(ε)+2. Since each g ∈ G2k(ε)+2 preserves the distance function
d�q , the map F is (1 + k(ε)1/q)-Lipschitz on each gΛ2k(ε)+2.

Let x, y ∈ B
2k(ε)+2
�p be arbitrary points. Observe that there exist a division

t0 := 0 ≤ t1 ≤ t2 ≤ · · · ≤ ti−1 ≤ 1 =: ti and g1, g2, · · · , gi ∈ G2k(ε)+2 such that
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(1 − t)x + ty ∈ gjΛ2k(ε)+2 for any t ∈ [tj−1, tj ]. We therefore obtain

d�q(F (x), F (y)) ≤
i∑

j=1

d�q(F ((1 − tj−1)x + tj−1y), F ((1 − tj)x + tjy))

≤ (1 + k(ε)1/q)
i∑

j=1

d�q((1 − tj−1)x + tj−1y, (1 − tj)x + tjy)

= (1 + k(ε)1/q) d�q(x, y).

This completes the proof. �

The following lemma is a key to proving Theorem 1.1.

Lemma 3.3. Let k ∈ N and {νn,k}∞n=1 be a sequence of finite Borel measures on
(Ak, d�q) satisfying that

lim
n→∞

Sep(νn,k; κ1, κ2) = 0(3.2)

for any κ1, κ2 > 0. Then, putting mn := νn,k(Ak), we have

lim
n→∞

diam(νn,k, mn − κ) = 0(3.3)

for any κ > 0.

Proof. It suffices to prove (3.3) by choosing a subsequence. We shall prove it by
induction on k.

For k = 0, since A0 = {(0, 0, · · · )}, we have diam(νn,0, mn − κ) = 0.
Assume that (3.3) holds for any sequence {νn,k−1}∞n=1 of finite Borel measures

on (Ak−1, d�q) having the property (3.2). Let {νn,k}∞n=1 be any sequence of finite
Borel measures on (Ak, d�q) having the property (3.2). Since limn→∞ mn = 0
implies (3.3), we assume that infn∈N mn > 0. Putting

an := max
{

Sep
(
νn,k;

mn

6
,
κ

2

)
, Sep

(
νn,k;

mn

6
,
mn

6

)}
,

we get limn→∞ an = 0 by the assumption (3.2) and infn∈N mn > 0. Define subsets
Bn,1 and Bn,2 of the set Ak by Bn,1 := (Ak−1)an

∩Ak and Bn,2 := Ak \Bn,1, where
(Ak−1)an

denotes the closed an-neighborhood of Ak−1. Since Ak = Bn,1 ∪ Bn,2,
either (1) or (2) holds:

(1) νn,k(Bn,1) ≥ mn/2 for any sufficiently large n ∈ N.
(2) νn,k(Bn,2) ≥ mn/2 for infinitely many n ∈ N.
We first consider the case (2). We denote by Cn the set of all connected com-

ponents of the set Bn,2. The proof of the following claim is easy, so we omit the
proof.

Claim 3.4. For any C ∈ Cn, there exists g ∈ G∞ such that

C = g{(x1, · · · , xk) ∈ R
k | xi ≥ an for each i}.

Claim 3.5. There exists Cn ∈ Cn such that νn,k(Cn) ≥ mn/6.

Proof. If νn,k(C) < mn/6 for all C ∈ Cn, then there exists C′
n ⊆ Cn such that

mn

6
≤ νn,k

( ⋃
C′∈C′

n

C ′
)

<
mn

3
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since νn,k(Bn,2) ≥ mn/2. Putting C′′
n := Cn \ C′

n, by Claim 3.4, we therefore obtain

21/qan ≤ d�q

( ⋃
C′∈C′

n

C ′,
⋃

C′′∈C′′
n

C ′′
)
≤ Sep

(
νn,k;

mn

6
,
mn

6

)
< an,

which is a contradiction. This completes the proof of the claim. �

Claim 3.6. Putting Dn := Ak∩(Cn)Sep(νn,k;mn/6,κ/2), we have νn,k(Dn) ≥ mn−κ/2.

Proof. Take any δ > 0. Supposing that νn,k((Dn)δ) < mn − κ/2, by Claim 3.5, we
get

Sep
(
νn,k;

mn

6
,
κ

2

)
< d�q(Cn, Ak \ (Dn)δ) ≤ Sep

(
νn,k;

mn

6
,
κ

2

)
,

which is a contradiction. This proves that νn,k((Dn)δ) ≥ mn − κ for any δ > 0.
Tending δ to zero, we obtain the claim. �

By using Claim 3.4, there exists gn ∈ G∞ such that

Cn = gn{(x1, · · · , xk) ∈ R
k | xi ≥ an for each i}.

Since an ≥ Sep(νn,k, mn/6, κ/2), we observe that

Dn ⊆ Ak ∩ gn({(x1, · · · , xk) ∈ R
k | xi ≥ an for each i})an

= Ak ∩ gn

( k⋃
j=1

{(x1, · · · , xk) ∈ R
k | xj ≥ 0 and xi ≥ an for each i = j}

∪
∞⋃

j=k+1

{(x1, · · · , xk, 0, · · · , 0, xj , 0, 0, · · · ) ∈ R
∞ | |xj | ≤ an

and xi ≥ an for each i = 1, · · · , k}
)

⊆ gnR
k.

Hence Dn is isometrically embedded into the �q-space (Rk, d�q). Combining Lem-
ma 2.7 and Claim 3.6, we therefore obtain

diam(νn,k, mn − κ) ≤ diam(νn,k|Dn
, mn − κ)

≤ diam
(
νn,k|Dn

, νn,k(Dn) − κ

2

)

≤ k1/q Sep
(
νn,k|Dn

;
κ

4k
,

κ

4k

)

≤ k1/q Sep
(
νn,k;

κ

4k
,

κ

4k

)
→ 0 as n → ∞.

This implies (3.2).
We next consider the case (1). Putting bn := an + Sep(νn,k; mn/2, κ/2), as in

the proof of Claim 3.6, we get

νn,k((Ak−1)bn
∩ Ak) = νn,k((Bn,1)Sep(νn,k;mn/2,κ/2) ∩ Ak) ≥ mn − κ

2
.

Note that there exists a Borel measurable map fn : (Ak−1)bn
∩ Ak → Ak−1 such

that

d�q(x, fn(x)) = min{d�q(x, y) | y ∈ Ak−1} ≤ bn(3.4)
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for any x ∈ (Ak−1)bn
∩ Ak. Put νn,k−1 := (fn)∗(νn,k|(Ak−1)bn∩Ak

). An easy calcu-
lation proves that

Sep(νn,k−1; κ1, κ2) ≤ Sep(νn,k; κ1, κ2) + 2bn

for any κ1, κ2 > 0. By this and the property (3.2) for νn,k, the measures νn,k−1 on
Ak−1 satisfy that

lim
n→∞

Sep(νn,k−1; κ1, κ2) = 0

for any κ1, κ2 > 0. By the assumption of the induction, we therefore get

lim
n→∞

diam
(
νn,k−1, νn,k−1(Ak−1) −

κ

2

)
= 0

for any κ > 0. By using (3.4), we finally obtain

diam(νn,k, mn − κ) ≤ diam(νn,k−1, mn − κ) + 2bn

≤ diam(νn,k−1, νn,k−1(Ak−1) − κ/2) + 2bn → 0 as n → ∞.

This completes the proof of the lemma. �
Proof of Theorem 1.1. Lemma 2.8 directly implies the sufficiency of Theorem 1.1.
We shall prove the converse. Let {fn : Xn → (B∞

�p , d�q)}∞n=1 be any sequence of
1-Lipschitz maps. Given an arbitrary ε > 0, we shall prove that

diam((fn)∗(µXn
), mXn

− κ) ≤ 2ε

for any κ > 0 and any sufficiently large n ∈ N. Put k := k(ε) and νn,k :=
(F∞,ε ◦ fn)∗(µXn

). Since

diam((fn)∗(µXn
), mXn

− κ) ≤ diam(νn,k, mXn
− κ) + ε

by (3.1), it suffices to prove that

lim
n→∞

diam(νn,k, mXn
− κ) = 0.(3.5)

Since Lemma 2.2 together with Corollary 2.6 and Lemma 3.2 implies that

Sep(νn,k; κ1, κ2) ≤ (1 + k(ε)1/q) Sep(Xn; κ1, κ2) → 0 as n → ∞
for any κ1, κ2 > 0, by virtue of Lemma 3.3, we obtain (3.5). This completes the
proof. �

4. Case of 1 ≤ q ≤ p ≤ +∞

For an mm-space X, we define the concentration function αX : (0, +∞) → R

as the supremum of µX(X \ A+r), where A runs over all Borel subsets of X with
µX(A) ≥ mX/2 and A+r is an open r-neighborhood of A.

Lemma 4.1 (cf. [3, Corollary 2.6]). A sequence {Xn}∞n=1 of mm-spaces is a Lévy
family if and only if limn→∞ αXn

(r) = 0 for any r > 0.

Let p ≥ 1. We shall consider the �n
p -sphere Sn

�p := {(xi)n
i=1 ∈ Rn |

∑∞
i=1 |xi|p =

1}. We denote by µn,p the cone measure and by νn,p the surface measure on Sn
�p

normalized as µn,p(Sn
�p) = νn,p(Sn

�p) = 1. In other words, for any Borel subset
A ⊆ Sn

�p , we put

µn,p(A) :=
1

L(Bn
�p)

· L({tx | x ∈ A and 0 ≤ t ≤ 1}),

where L is the Lebesgue measure on Rn.
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By the works of G. Schechtman and J. Zinn [27, Theorems 3.1 and 4.1] and
R. Lata�la and J. O. Wojtaszczyk [15, Theorem 5.31], we obtain

α(Sn
�p ,d�2 ,µn,p)(r) ≤ C exp(−cnrmin{2,p}).(4.1)

This inequality for p ≥ 2 is also mentioned by A. Naor in [23, Introduction] (see
also [15, Proposition 5.21]).

Lemma 4.2. Let 1 ≤ q ≤ p ≤ +∞. Then, we have

α(Sn
�p ,d�q ,µn,p)(r) ≤ C exp(−cn1+(1/2−1/q)min{2,p}rmin{2,p}) if q < 2

and

α(Sn
�p ,d�q ,µn,p)(r) ≤ C exp(−cnrmin{2,p}) if q ≥ 2.

Proof. If q < 2, by d�q(x, y) ≤ n1/q−1/2 d�2(x, y), we then have

α(Sn
�p ,d�q ,µn,p)(r) ≤ α(Sn

�p ,d�2 ,µn,p)(n1/2−1/qr)

≤ C exp(−cn1+(1/2−1/q) min{2,p}rmin{2,p}).

If q ≥ 2, by d�q(x, y) ≤ d�2(x, y), we then obtain

α(Sn
�p ,d�q ,µn,p)(r) ≤ α(Sn

�p ,d�2 ,µn,p)(r) ≤ C exp(−cnrmin{2,p}).

This completes the proof. �

Corollary 4.3. The sequences {(Sn
�p , d�q , µn,p)}∞n=1 and {(Sn

�p , d�q , νn,p)}∞n=1 are
both Lévy families for (p, q) ∈ N × N \ {(k, 1) | k ≥ 2}.

Proof. Since 1 + (1/2 − 1/q) min{2, p} > 0, by Lemmas 4.1 and 4.2, the sequence
{(Sn

�p , d�q , µn,p)}∞n=1 is a Lévy family. By virtue of [23, Theorem 6], the sequence
{Sn

�p , d�q , νn,p)}∞n=1 is also a Lévy family. This completes the proof. �

Proposition 4.4. Let 1 ≤ q ≤ p ≤ +∞ and let µ be one of the two measures µn,p

and νn,p. Then, for any κ with 0 < κ < 1/2, we have

ObsDiam(B∞
�p ,d�q )((Sn

�p , d�q , µ);−κ) ≥ 2.

Proof. Let A ⊆ Sn
�p be a Borel subset such that µ(A) ≥ 1 − κ. Since µ(A) =

µ(−A) > 1/2, we have µ(A ∩ (−A)) > 0. Hence, there exists x ∈ A such that
−x ∈ A. Since diam A ≥ d�q(x,−x) ≥ d�p(x,−x) = 2, we obtain diam(µ, 1 − κ) =
2. Since the inclusion map from the space (Sn

�p , d�q) to the space (B∞
�p , d�q) is

1-Lipschitz, we obtain the conclusion. This completes the proof. �

Combining Corollary 4.3 with Proposition 4.4, we obtain an example of a Lévy
family which does not satisfy (1.1) in the case of (p, q) ∈ {(k, l) ∈ N × N | l ≤
k} \ {(k, 1) | k ≥ 2}.
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Boston, MA, 1999. MR1699320 (2000d:53065)

[14] M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic
maps. I, Math. Phys. Anal. Geom. 2, no. 4, 323–415, 1999. MR1742309 (2001j:37037)

[15] R. Lata�la and J. O. Wojtaszczyk, On the infimum convolution inequality, Studia Math. 189,
no. 2, 147–187, 2008. MR2449135

[16] M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and
Monographs, 89. American Mathematical Society, Providence, RI, 2001. MR1849347
(2003k:28019)

[17] V. D. Milman, A certain property of functions defined on infinite-dimensional manifolds

(Russian), Dokl. Akad. Nauk SSSR 200, 781–784, 1971. MR0309150 (46:8260)
[18] V. D. Milman, A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies
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