CONCENTRATION OF 1-LIPSCHITZ MAPS INTO AN INFINITE DIMENSIONAL ℓ^{p}-BALL WITH THE ℓ^{q}-DISTANCE FUNCTION

KEI FUNANO

(Communicated by Mario Bonk)

Abstract

In this paper, we study the Lévy-Milman concentration phenomenon of 1-Lipschitz maps into infinite dimensional metric spaces. Our main theorem asserts that the concentration to an infinite dimensional ℓ^{p}-ball with the ℓ^{q}-distance function for $1 \leq p<q \leq+\infty$ is equivalent to the concentration to the real line.

1. Introduction

This paper is devoted to investigating the Lévy-Milman concentration phenomenon of 1-Lipschitz maps from mm-spaces (metric measure spaces) to infinite dimensional metric spaces. Here, an mm-space is a triple $\left(X, d_{X}, \mu_{X}\right)$, where d_{X} is a complete separable metric on a set X and μ_{X} is a finite Borel measure on $(X, d X)$. The theory of concentration of 1-Lipschitz functions was first introduced by V. D. Milman in his investigation of asymptotic geometric analysis ([17], [18], [19]). Nowadays, the theory blends with various areas of mathematics, such as geometry, functional analysis and infinite dimensional integration, discrete mathematics and complexity theory, probability theory, and so on (see [16], [21], [22], 24] and the references therein for further information).

The theory of concentration of maps into general metric spaces was first studied by M. Gromov ([11], 12], [13]). He established the theory by introducing the observable diameter $\operatorname{ObsDiam}_{Y}(X ;-\kappa)$ for an mm-space X, a metric space Y, and $\kappa>0$ in [13] (see Section 2 for the definition of the observable diameter). Given a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of mm-spaces and a metric space Y, we note that $\lim _{n \rightarrow \infty} \operatorname{ObsDiam}_{Y}\left(X_{n} ;-\kappa\right)=0$ for any $\kappa>0$ if and only if for any sequence $\left\{f_{n}: X_{n} \rightarrow Y\right\}_{n=1}^{\infty}$ of 1-Lipschitz maps, there exists a sequence $\left\{m_{f_{n}}\right\}_{n=1}^{\infty}$ of points in Y such that

$$
\lim _{n \rightarrow \infty} \mu_{X_{n}}\left(\left\{x_{n} \in X_{n} \mid d Y\left(f_{n}\left(x_{n}\right), m_{f_{n}}\right) \geq \varepsilon\right\}\right)=0
$$

[^0]for any $\varepsilon>0$. If $\lim _{n \rightarrow \infty} \operatorname{ObsDiam}_{\mathbb{R}}\left(X_{n} ;-\kappa\right)=0$ for any $\kappa>0$, then the sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of mm-spaces is called a Lévy family. The Lévy families were first introduced and analyzed by Gromov and Milman in [10]. In previous works [2, [3, 4], [5], the author proved that if a metric space Y is either an \mathbb{R}-tree, a doubling space, a metric graph, or a Hadamard manifold, then $\lim _{n \rightarrow \infty} \operatorname{ObsDiam}_{Y}\left(X_{n} ;-\kappa\right)=0$ holds for any $\kappa>0$ and any Lévy family $\left\{X_{n}\right\}_{n=1}^{\infty}$. To prove these results, we needed to assume the finiteness of the dimension of the target metric spaces.

In this paper, we treat the case where the dimension of the target metric space Y is infinite. The author has proved in [1] that if the target space Y is so big that an mm-space X with some homogeneity property can isometrically be embedded into Y, then its observable diameter $\operatorname{ObsDiam}_{Y}(X ;-\kappa)$ is not close to zero. It seems from this result that the concentration to an infinite dimensional metric space cannot happen easily.

A main theorem of this paper is the following. For $1 \leq p \leq+\infty$, we denote by $B_{\ell^{p}}^{\infty}$ an infinite dimensional ℓ^{p}-ball $\left\{\left.\left(x_{n}\right)_{n=1}^{\infty} \in \mathbb{R}^{\infty}\left|\sum_{n=1}^{\infty}\right| x_{n}\right|^{p} \leq 1\right\}$ and by dℓ^{p} the ℓ^{p}-distance function.

Theorem 1.1. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of mm-spaces and $1 \leq p<q \leq+\infty$. Then, the sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a Lévy family if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{ObsDiam}_{\left(B_{\ell p}^{\infty}, d_{\ell} q\right)}\left(X_{n} ;-\kappa\right)=0 \text { for any } \kappa>0 \tag{1.1}
\end{equation*}
$$

As a result, we obtain the example of the infinite dimensional target metric space such that the concentration to the space happens as often as the concentration to the real line.

The proof of the sufficiency of Theorem 1.1]is easy. The observations of A. Gournay and M. Tsukamoto play important roles for the proof of the converse (9 , [28]). Answering a question of Gromov in [14, Section 1.1.4], Tsukamoto proved in [28] that the "macroscopic" dimension of the space $\left(B_{\ell^{p}}^{\infty}, d \ell^{q}\right)$ for $1 \leq p<q \leq+\infty$ is finite. Gournay independently proved it in 9 in the case of $q=+\infty$. For any $(p, q) \in\{(k, l) \in \mathbb{N} \times \mathbb{N} \mid l \leq k\} \backslash\{(k, 1) \mid k \geq 2\}$, we have an example of a Lévy family which does not satisfy (1.1) (see Proposition (4.4).

As applications of Theorem 1.1, by virtue of [3, Propositions 4.3 and 4.4], we obtain the following corollaries of a Lévy group action. Lévy groups were first introduced by Gromov and Milman in [10]. Let a topological group G act on a metric space X. The action is called bounded if for any $\varepsilon>0$ there exists a neighborhood U of the identity element $e_{G} \in G$ such that $d_{X}(x, g x)<\varepsilon$ for any $g \in U$ and $x \in X$. Note that every bounded action is continuous. We say that the topological group G acts on X by uniform isomorphisms if for each $g \in G$, the $\operatorname{map} X \ni x \mapsto g x \in X$ is uniformly continuous. The action is said to be uniformly equicontinuous if for any $\varepsilon>0$ there exists $\delta>0$ such that $d_{X}(g x, g y)<\varepsilon$ for every $g \in G$ and $x, y \in X$ with $d_{X}(x, y)<\delta$. Given a subset $S \subseteq G$ and $x \in X$, we put $S x:=\{g x \mid g \in S\}$.

Corollary 1.2. Let $1 \leq p<q \leq+\infty$ and assume that a Lévy group G boundedly acts on the metric space $\left(B_{\ell^{p}}^{\infty}, d_{\ell^{q}}\right)$ by uniform isomorphisms. Then for any compact subset $K \subseteq G$ and any $\varepsilon>0$, there exists a point $x_{\varepsilon, K} \in B_{\ell^{p}}^{\infty}$ such that $\operatorname{diam}\left(K x_{\varepsilon, K}\right) \leq \varepsilon$.

Corollary 1.3. There are no non-trivial bounded uniformly equicontinuous actions of a Lévy group to the metric space $\left(B_{\ell^{p}}^{\infty}\right.$, d $\left.\ell^{q}\right)$ for $1 \leq p<q \leq+\infty$.

Gromov and Milman pointed out in [10] that the unitary group $U\left(\ell^{2}\right)$ of the separable Hilbert space ℓ^{2} with the strong topology is a Lévy group. Many concrete examples of Lévy groups are known by the works of S. Glasner [8], H. Furstenberg and B. Weiss (unpublished), T. Giordano and V. Pestov [6, 7], and Pestov [25], [26]. For examples, groups of measurable maps from the standard Lebesgue measure space to compact groups, unitary groups of some von Neumann algebras, groups of measure and measure-class preserving automorphisms of the standard Lebesgue measure space, full groups of amenable equivalence relations, and the isometry groups of the universal Urysohn metric spaces are Lévy groups (see the recent monograph [24] for precise statements).

2. Preliminaries

Let Y be a metric space and ν a Borel measure on Y such that $m:=\nu(Y)<+\infty$. We define for any $\kappa>0$,

$$
\operatorname{diam}(\nu, m-\kappa):=\inf \left\{\operatorname{diam} Y_{0} \mid Y_{0} \subseteq Y \text { is a Borel subset with } \nu\left(Y_{0}\right) \geq m-\kappa\right\}
$$

and call it the partial diameter of ν.
Definition 2.1 (Observable diameter). Let $\left(X, d_{X}, \mu_{X}\right)$ be an mm-space with $m_{X}:=\mu_{X}(X)$ and Y a metric space. For any $\kappa>0$ we define the observable diameter of X by

$$
\begin{aligned}
& \operatorname{ObsDiam}_{Y}(X ;-\kappa):=\sup \{ \operatorname{diam}\left(f_{*}\left(\mu_{X}\right), m_{X}-\kappa\right) \mid \\
&f: X \rightarrow Y \text { is a 1-Lipschitz map }\},
\end{aligned}
$$

where $f_{*}\left(\mu_{X}\right)$ stands for the push-forward measure of μ_{X} by f.
The idea of an observable diameter comes from quantum and statistical mechanics; that is, we think of μ_{X} as a state on a configuration space X and f is interpreted as an observable.

Let $\left(X, d x, \mu_{X}\right)$ be an mm-space. For any $\kappa_{1}, \kappa_{2} \geq 0$, we define the separation distance $\operatorname{Sep}\left(X ; \kappa_{1}, \kappa_{2}\right)=\operatorname{Sep}\left(\mu_{X} ; \kappa_{1}, \kappa_{2}\right)$ of X as the supremum of the distance $d_{X}(A, B):=\inf \left\{d_{X}(a, b) \mid a \in A\right.$ and $\left.b \in B\right\}$, where A and B are Borel subsets of X satisfying that $\mu_{X}(A) \geq \kappa_{1}$ and $\mu_{X}(B) \geq \kappa_{2}$.

Lemma 2.2 (cf. [13, Section $\left.\left.3 \frac{1}{2} .33\right]\right)$. Let X and Y be two mm-spaces and $\alpha>0$. Assume that an α-Lipschitz map $f: X \rightarrow Y$ satisfies $f_{*}\left(\mu_{X}\right)=\mu_{Y}$. Then we have

$$
\operatorname{Sep}\left(Y ; \kappa_{1}, \kappa_{2}\right) \leq \alpha \operatorname{Sep}\left(X ; \kappa_{1}, \kappa_{2}\right)
$$

Relationships between the observable diameter and the separation distance are the following. We refer to [4, Subsection 2.2] for precise proofs.
Lemma 2.3 (cf. [13, Section $\left.3 \frac{1}{2} .33\right]$). Let X be an mm-space and $\kappa, \kappa^{\prime}>0$ with $\kappa>\kappa^{\prime}$. Then we have

$$
\operatorname{ObsDiam}_{\mathbb{R}}\left(X ;-\kappa^{\prime}\right) \geq \operatorname{Sep}(X ; \kappa, \kappa)
$$

Remark 2.4. In [13, Section $3 \frac{1}{2} .33$], Lemma 2.3 is stated as $\kappa=\kappa^{\prime}$, but that is not true in general. For example, let $X:=\left\{x_{1}, x_{2}\right\}, d_{X}\left(x_{1}, x_{2}\right):=1$, and $\mu_{X}\left(\left\{x_{1}\right\}\right)=$ $\mu_{X}\left(\left\{x_{2}\right\}\right):=1 / 2$. Putting $\kappa=\kappa^{\prime}=1 / 2$, we have $\operatorname{ObsDiam}_{\mathbb{R}}(X ;-1 / 2)=0$ and $\operatorname{Sep}(X ; 1 / 2,1 / 2)=1$. This issue can be removed if in the definition of $\operatorname{diam}(\nu, m-\kappa)$, we ask for $\nu\left(Y_{0}\right)>m-\kappa$ instead of $\nu\left(Y_{0}\right) \geq m-\kappa$.

Lemma 2.5 (cf. [13, Section $\left.3 \frac{1}{2} .33\right]$). Let ν be a Borel measure on \mathbb{R} with $m:=$ $\nu(\mathbb{R})<+\infty$. Then, for any $\kappa>0$ we have

$$
\operatorname{diam}(\nu, m-2 \kappa) \leq \operatorname{Sep}(\nu ; \kappa, \kappa)
$$

In particular, for any $\kappa>0$ we have

$$
\operatorname{ObsDiam}_{\mathbb{R}}(X ;-2 \kappa) \leq \operatorname{Sep}(X ; \kappa, \kappa)
$$

Combining Lemma 2.3 with Lemma 2.5, we obtain the following corollary:
Corollary 2.6 (cf. [13, Section $\left.3 \frac{1}{2} .33\right]$). A sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of mm-spaces is a Lévy family if and only if $\lim _{n \rightarrow \infty} \operatorname{Sep}\left(X_{n} ; \kappa, \kappa\right)=0$ for any $\kappa>0$.

Lemma 2.7. Let ν be a finite Borel measure on $\left(\mathbb{R}^{k}\right.$, d$\left.\ell^{p}\right)$ with $m:=\nu\left(\mathbb{R}^{k}\right)$. Then for any $\kappa>0$ we have

$$
\operatorname{diam}(\nu, m-\kappa) \leq k^{1 / p} \operatorname{Sep}\left(\nu ; \frac{\kappa}{2 k}, \frac{\kappa}{2 k}\right)
$$

Proof. For $i=1,2, \cdots, k$, let $\operatorname{proj}_{i}: \mathbb{R}^{k} \ni\left(x_{i}\right)_{i=1}^{k} \mapsto x_{i} \in \mathbb{R}$ be the projection. For any Borel subsets $A_{1}, A_{2}, \cdots, A_{k} \subseteq \mathbb{R}$ with $\left(\operatorname{proj}_{i}\right)_{*}(\nu)\left(A_{i}\right) \geq m-\kappa / k$, we have

$$
\nu\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)=\nu\left(\bigcap_{i=1}^{k}\left(\operatorname{proj}_{i}\right)^{-1}\left(A_{i}\right)\right) \geq m-\kappa
$$

which leads to

$$
\operatorname{diam}(\nu, m-\kappa) \leq \operatorname{diam}\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right) \leq k^{1 / p} \max _{1 \leq i \leq k} \operatorname{diam} A_{i}
$$

We therefore get

$$
\operatorname{diam}(\nu, m-\kappa) \leq k^{1 / p} \max _{1 \leq i \leq k} \operatorname{diam}\left(\left(\operatorname{proj}_{i}\right)_{*}(\nu), m-\frac{\kappa}{k}\right)
$$

Combining this with Lemmas 2.2 and 2.5, we obtain

$$
\operatorname{diam}(\nu, m-\kappa) \leq k^{1 / p} \max _{1 \leq i \leq k} \operatorname{Sep}\left(\left(\operatorname{proj}_{i}\right)_{*}(\nu) ; \frac{\kappa}{2 k}, \frac{\kappa}{2 k}\right) \leq k^{1 / p} \operatorname{Sep}\left(\nu ; \frac{\kappa}{2 k}, \frac{\kappa}{2 k}\right) .
$$

This completes the proof.
Lemma 2.8. Let a, b be two real numbers with $a<b$. Then, a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of mm-spaces is a Lévy family if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{ObsDiam}_{[a, b]}\left(X_{n} ;-\kappa\right)=0 \text { for any } \kappa>0 \tag{2.1}
\end{equation*}
$$

Proof. The necessity is obvious. We shall prove the converse. Suppose that the sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ with the property (2.1) is not a Lévy family. Then, by Corollary [2.6, there exists $\kappa>0$ and Borel subsets $A_{n}, B_{n} \subseteq X_{n}$ such that $\mu_{X_{n}}\left(A_{n}\right) \geq \kappa$, $\mu_{X_{n}}\left(B_{n}\right) \geq \kappa$, and $\lim \sup _{n \rightarrow \infty} d_{X_{n}}\left(A_{n}, B_{n}\right)>0$. Define a function $f_{n}: X_{n} \rightarrow \mathbb{R}$ by $f_{n}(x):=\max \left\{d_{X_{n}}\left(x, A_{n}\right)+a, b\right\}$. Since $\mu_{X_{n}}\left(B_{n}\right) \geq \kappa$ and $\lim \sup _{n \rightarrow \infty} d_{X_{n}}\left(A_{n}, B_{n}\right)$ >0, we have

$$
\limsup _{n \rightarrow \infty} \operatorname{diam}\left(\left(f_{n}\right)_{*}\left(\mu_{X_{n}}\right), m_{X_{n}}-\kappa^{\prime}\right)>0
$$

for any $0<\kappa^{\prime}<\kappa$. Since each f_{n} is a 1 -Lipschitz function, this contradicts the assumption (2.1). This completes the proof.

3. Proof of the main theorem

To prove the main theorem, we extract arguments from Gournay's paper 9] and Tsukamoto's paper [28].

For $k \in \mathbb{N}$, we identify \mathbb{R}^{k} with the subset $\left\{\left(x_{1}, x_{2}, \cdots, x_{k}, 0,0, \cdots\right) \in \mathbb{R}^{\infty} \mid x_{i} \in\right.$ \mathbb{R} for all $i\}$ of \mathbb{R}^{∞}. Given $k \in \mathbb{N} \cup\{\infty\}$, let \mathfrak{S}_{k} be the k-th symmetric group. We consider the group $G_{k}:=\{ \pm 1\}^{k} \rtimes \mathfrak{S}_{k}$. The multiplication in G_{k} is given by

$$
\left(\left(\varepsilon_{n}\right)_{n=1}^{k}, \sigma\right) \cdot\left(\left(\varepsilon_{n}^{\prime}\right)_{n=1}^{k}, \sigma^{\prime}\right):=\left(\left(\varepsilon_{n} \varepsilon_{\sigma^{-1}(n)}^{\prime}\right)_{n=1}^{k}, \sigma \sigma^{\prime}\right)
$$

The group G_{k} acts on the space \mathbb{R}^{k} by

$$
\left(\left(\varepsilon_{n}\right)_{n=1}^{k}, \sigma\right) \cdot\left(x_{n}\right)_{n=1}^{k}:=\left(\varepsilon_{n} x_{\sigma^{-1}(n)}\right)_{n=1}^{k}
$$

Note that this action preserves the k-dimensional ℓ^{p}-ball $B_{\ell^{p}}^{k} \subseteq B_{\ell^{p}}^{\infty}$ and the ℓ^{q} distance function $\ell_{\ell} q$. Define a subset $\Lambda_{k} \subseteq B_{\ell^{p}}^{k}$ by

$$
\Lambda_{k}:=\left\{x \in B_{\ell^{p}}^{k} \mid x_{i-1} \geq x_{i} \geq 0 \text { for all } i\right\}
$$

Given an arbitrary $\varepsilon>0$, we put $k(\varepsilon):=\left\lceil(2 / \varepsilon)^{p q /(q-p)}\right\rceil-1$, where $\left\lceil(2 / \varepsilon)^{p q /(q-p)}\right\rceil$ denotes the smallest integer which is not less than $(2 / \varepsilon)^{p q /(q-p)}$. For $k \geq k(\varepsilon)+1$, we define a continuous map $f_{k, \varepsilon}: \Lambda_{k} \rightarrow \mathbb{R}^{k(\varepsilon)}$ by

$$
f_{k, \varepsilon}(x):=\left(x_{1}-x_{k(\varepsilon)+1}, x_{2}-x_{k(\varepsilon)+1}, \cdots, x_{k(\varepsilon)}-x_{k(\varepsilon)+1}, 0,0, \cdots\right)
$$

For any $x \in B_{\ell^{p}}^{k}$, taking $g \in G_{k}$ such that $g x \in \Lambda_{k}$, we define

$$
F_{k, \varepsilon}(x):=g^{-1} f_{k, \varepsilon}(g x) .
$$

This definition of the map $F_{k, \varepsilon}: B_{\ell^{p}}^{k} \rightarrow B_{\ell^{p}}^{k}$ is well-defined (see [28, Section 2] for details). Given $k \in \mathbb{N}$, we put $A_{k}:=\bigcup_{g \in G_{\infty}} g \mathbb{R}^{k} \subseteq \mathbb{R}^{\infty}$.

Theorem 3.1 (cf. [9, Proposition 1.3] and [28, Section 2]). The map $F_{k, \varepsilon}: B_{\ell^{p}}^{k} \rightarrow$ $B_{\ell^{p}}^{k}$ satisfies that $F_{k, \varepsilon}\left(B_{\ell^{p}}^{k}\right) \subseteq A_{k(\varepsilon)}$ and

$$
\begin{equation*}
d \ell q\left(x, F_{k, \varepsilon}(x)\right) \leq \frac{\varepsilon}{2} \tag{3.1}
\end{equation*}
$$

for any $x \in B_{\ell^{p}}^{k}$.
Lemma 3.2. The map $F_{k, \varepsilon}:\left(B_{\ell^{p}}^{k}, d \ell^{q}\right) \rightarrow\left(A_{k(\varepsilon)}, d \ell^{q}\right)$ is a $\left(1+k(\varepsilon)^{1 / q}\right)$-Lipschitz map.

Proof. By the definition of the map $F_{k, \varepsilon}$, it suffices to prove that the map $F:=$ $F_{2 k(\varepsilon)+2, \varepsilon}:\left(B_{\ell^{p}}^{2 k(\varepsilon)+2}, d \ell^{q}\right) \rightarrow\left(B_{\ell^{p}}^{2 k(\varepsilon)+2}, d \ell^{q}\right)$ is $\left(1+k(\varepsilon)^{1 / q}\right)$-Lipschitz. Recall that

$$
F(x)=\left(x_{1}-x_{k(\varepsilon)+1}, x_{2}-x_{k(\varepsilon)+1}, \cdots, x_{k(\varepsilon)}-x_{k(\varepsilon)+1}, 0,0, \cdots, 0\right)
$$

for any $x \in \Lambda_{2 k(\varepsilon)+2}$. We hence get

$$
d \ell^{q}(F(x), F(y)) \leq d \ell^{q}(x, y)+k(\varepsilon)^{1 / q}\left|x_{k(\varepsilon)+1}-y_{k(\varepsilon)+1}\right| \leq\left(1+k(\varepsilon)^{1 / q}\right) d_{\ell}(x, y)
$$

for any $x, y \in \Lambda_{2 k(\varepsilon)+2}$. Since each $g \in G_{2 k(\varepsilon)+2}$ preserves the distance function $d \ell^{q}$, the map F is $\left(1+k(\varepsilon)^{1 / q}\right)$-Lipschitz on each $g \Lambda_{2 k(\varepsilon)+2}$.

Let $x, y \in B_{\ell^{p}}^{2 k(\varepsilon)+2}$ be arbitrary points. Observe that there exist a division $t_{0}:=0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{i-1} \leq 1=: t_{i}$ and $g_{1}, g_{2}, \cdots, g_{i} \in G_{2 k(\varepsilon)+2}$ such that
$(1-t) x+t y \in g_{j} \Lambda_{2 k(\varepsilon)+2}$ for any $t \in\left[t_{j-1}, t_{j}\right]$. We therefore obtain

$$
\begin{aligned}
d_{\ell^{q}}(F(x), F(y)) & \leq \sum_{j=1}^{i} d \ell^{q}\left(F\left(\left(1-t_{j-1}\right) x+t_{j-1} y\right), F\left(\left(1-t_{j}\right) x+t_{j} y\right)\right) \\
& \leq\left(1+k(\varepsilon)^{1 / q}\right) \sum_{j=1}^{i} d \ell^{q}\left(\left(1-t_{j-1}\right) x+t_{j-1} y,\left(1-t_{j}\right) x+t_{j} y\right) \\
& =\left(1+k(\varepsilon)^{1 / q}\right) d_{\ell^{q}}(x, y) .
\end{aligned}
$$

This completes the proof.
The following lemma is a key to proving Theorem 1.1 .
Lemma 3.3. Let $k \in \mathbb{N}$ and $\left\{\nu_{n, k}\right\}_{n=1}^{\infty}$ be a sequence of finite Borel measures on $\left(A_{k}, \ell_{\ell q}\right)$ satisfying that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Sep}\left(\nu_{n, k} ; \kappa_{1}, \kappa_{2}\right)=0 \tag{3.2}
\end{equation*}
$$

for any $\kappa_{1}, \kappa_{2}>0$. Then, putting $m_{n}:=\nu_{n, k}\left(A_{k}\right)$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{diam}\left(\nu_{n, k}, m_{n}-\kappa\right)=0 \tag{3.3}
\end{equation*}
$$

for any $\kappa>0$.
Proof. It suffices to prove (3.3) by choosing a subsequence. We shall prove it by induction on k.

For $k=0$, since $A_{0}=\{(0,0, \cdots)\}$, we have $\operatorname{diam}\left(\nu_{n, 0}, m_{n}-\kappa\right)=0$.
Assume that (3.3) holds for any sequence $\left\{\nu_{n, k-1}\right\}_{n=1}^{\infty}$ of finite Borel measures on $\left(A_{k-1}, d \ell^{q}\right)$ having the property (3.2). Let $\left\{\nu_{n, k}\right\}_{n=1}^{\infty}$ be any sequence of finite Borel measures on ($A_{k}, d \ell^{q}$) having the property (3.2). Since $\lim _{n \rightarrow \infty} m_{n}=0$ implies (3.3), we assume that $\inf _{n \in \mathbb{N}} m_{n}>0$. Putting

$$
a_{n}:=\max \left\{\operatorname{Sep}\left(\nu_{n, k} ; \frac{m_{n}}{6}, \frac{\kappa}{2}\right), \operatorname{Sep}\left(\nu_{n, k} ; \frac{m_{n}}{6}, \frac{m_{n}}{6}\right)\right\},
$$

we get $\lim _{n \rightarrow \infty} a_{n}=0$ by the assumption (3.2) and $\inf _{n \in \mathbb{N}} m_{n}>0$. Define subsets $B_{n, 1}$ and $B_{n, 2}$ of the set A_{k} by $B_{n, 1}:=\left(A_{k-1}\right)_{a_{n}} \cap A_{k}$ and $B_{n, 2}:=A_{k} \backslash B_{n, 1}$, where $\left(A_{k-1}\right)_{a_{n}}$ denotes the closed a_{n}-neighborhood of A_{k-1}. Since $A_{k}=B_{n, 1} \cup B_{n, 2}$, either (1) or (2) holds:
(1) $\nu_{n, k}\left(B_{n, 1}\right) \geq m_{n} / 2$ for any sufficiently large $n \in \mathbb{N}$.
(2) $\nu_{n, k}\left(B_{n, 2}\right) \geq m_{n} / 2$ for infinitely many $n \in \mathbb{N}$.

We first consider the case (2). We denote by \mathcal{C}_{n} the set of all connected components of the set $B_{n, 2}$. The proof of the following claim is easy, so we omit the proof.

Claim 3.4. For any $C \in \mathcal{C}_{n}$, there exists $g \in G_{\infty}$ such that

$$
C=g\left\{\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{R}^{k} \mid x_{i} \geq a_{n} \text { for each } i\right\}
$$

Claim 3.5. There exists $C_{n} \in \mathcal{C}_{n}$ such that $\nu_{n, k}\left(C_{n}\right) \geq m_{n} / 6$.
Proof. If $\nu_{n, k}(C)<m_{n} / 6$ for all $C \in \mathcal{C}_{n}$, then there exists $\mathcal{C}_{n}^{\prime} \subseteq \mathcal{C}_{n}$ such that

$$
\frac{m_{n}}{6} \leq \nu_{n, k}\left(\bigcup_{C^{\prime} \in \mathcal{C}_{n}^{\prime}} C^{\prime}\right)<\frac{m_{n}}{3}
$$

since $\nu_{n, k}\left(B_{n, 2}\right) \geq m_{n} / 2$. Putting $\mathcal{C}_{n}^{\prime \prime}:=\mathcal{C}_{n} \backslash \mathcal{C}_{n}^{\prime}$, by Claim 3.4 we therefore obtain

$$
2^{1 / q} a_{n} \leq d_{\ell} \ell^{q}\left(\bigcup_{C^{\prime} \in \mathcal{C}_{n}^{\prime}} C^{\prime}, \bigcup_{C^{\prime \prime} \in \mathcal{C}_{n}^{\prime \prime}} C^{\prime \prime}\right) \leq \operatorname{Sep}\left(\nu_{n, k} ; \frac{m_{n}}{6}, \frac{m_{n}}{6}\right)<a_{n}
$$

which is a contradiction. This completes the proof of the claim.
Claim 3.6. Putting $D_{n}:=A_{k} \cap\left(C_{n}\right)_{\operatorname{Sep}\left(\nu_{n, k} ; m_{n} / 6, \kappa / 2\right)}$, we have $\nu_{n, k}\left(D_{n}\right) \geq m_{n}-\kappa / 2$.
Proof. Take any $\delta>0$. Supposing that $\nu_{n, k}\left(\left(D_{n}\right)_{\delta}\right)<m_{n}-\kappa / 2$, by Claim 3.5, we get

$$
\operatorname{Sep}\left(\nu_{n, k} ; \frac{m_{n}}{6}, \frac{\kappa}{2}\right)<d_{\ell^{q}}\left(C_{n}, A_{k} \backslash\left(D_{n}\right)_{\delta}\right) \leq \operatorname{Sep}\left(\nu_{n, k} ; \frac{m_{n}}{6}, \frac{\kappa}{2}\right)
$$

which is a contradiction. This proves that $\nu_{n, k}\left(\left(D_{n}\right)_{\delta}\right) \geq m_{n}-\kappa$ for any $\delta>0$. Tending δ to zero, we obtain the claim.

By using Claim 3.4, there exists $g_{n} \in G_{\infty}$ such that

$$
C_{n}=g_{n}\left\{\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{R}^{k} \mid x_{i} \geq a_{n} \text { for each } i\right\}
$$

Since $a_{n} \geq \operatorname{Sep}\left(\nu_{n, k}, m_{n} / 6, \kappa / 2\right)$, we observe that
$D_{n} \subseteq A_{k} \cap g_{n}\left(\left\{\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{R}^{k} \mid x_{i} \geq a_{n} \text { for each } i\right\}\right)_{a_{n}}$

$$
=A_{k} \cap g_{n}\left(\bigcup_{j=1}^{k}\left\{\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{R}^{k} \mid x_{j} \geq 0 \text { and } x_{i} \geq a_{n} \text { for each } i \neq j\right\}\right.
$$

$$
\cup \bigcup_{j=k+1}^{\infty}\left\{\left(x_{1}, \cdots, x_{k}, 0, \cdots, 0, x_{j}, 0,0, \cdots\right) \in \mathbb{R}^{\infty}| | x_{j} \mid \leq a_{n}\right.
$$

$$
\text { and } \left.\left.x_{i} \geq a_{n} \text { for each } i=1, \cdots, k\right\}\right)
$$

$\subseteq g_{n} \mathbb{R}^{k}$.
Hence D_{n} is isometrically embedded into the ℓ^{q}-space ($\mathbb{R}^{k}, d \ell^{q}$). Combining Lemma 2.7 and Claim 3.6, we therefore obtain

$$
\begin{aligned}
\operatorname{diam}\left(\nu_{n, k}, m_{n}-\kappa\right) & \leq \operatorname{diam}\left(\left.\nu_{n, k}\right|_{D_{n}}, m_{n}-\kappa\right) \\
& \leq \operatorname{diam}\left(\left.\nu_{n, k}\right|_{D_{n}}, \nu_{n, k}\left(D_{n}\right)-\frac{\kappa}{2}\right) \\
& \leq k^{1 / q} \operatorname{Sep}\left(\left.\nu_{n, k}\right|_{D_{n}} ; \frac{\kappa}{4 k}, \frac{\kappa}{4 k}\right) \\
& \leq k^{1 / q} \operatorname{Sep}\left(\nu_{n, k} ; \frac{\kappa}{4 k}, \frac{\kappa}{4 k}\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

This implies (3.2).
We next consider the case (1). Putting $b_{n}:=a_{n}+\operatorname{Sep}\left(\nu_{n, k} ; m_{n} / 2, \kappa / 2\right)$, as in the proof of Claim 3.6, we get

$$
\nu_{n, k}\left(\left(A_{k-1}\right)_{b_{n}} \cap A_{k}\right)=\nu_{n, k}\left(\left(B_{n, 1}\right)_{\operatorname{Sep}\left(\nu_{n, k} ; m_{n} / 2, \kappa / 2\right)} \cap A_{k}\right) \geq m_{n}-\frac{\kappa}{2} .
$$

Note that there exists a Borel measurable map $f_{n}:\left(A_{k-1}\right)_{b_{n}} \cap A_{k} \rightarrow A_{k-1}$ such that

$$
\begin{equation*}
d \ell^{q}\left(x, f_{n}(x)\right)=\min \left\{d_{\ell^{q}}(x, y) \mid y \in A_{k-1}\right\} \leq b_{n} \tag{3.4}
\end{equation*}
$$

for any $x \in\left(A_{k-1}\right)_{b_{n}} \cap A_{k}$. Put $\left.\nu_{n, k-1}:=\left(f_{n}\right)_{*}\left(\left.\nu_{n, k}\right|_{\left(A_{k-1}\right)}\right)_{b_{n}} \cap A_{k}\right)$. An easy calculation proves that

$$
\operatorname{Sep}\left(\nu_{n, k-1} ; \kappa_{1}, \kappa_{2}\right) \leq \operatorname{Sep}\left(\nu_{n, k} ; \kappa_{1}, \kappa_{2}\right)+2 b_{n}
$$

for any $\kappa_{1}, \kappa_{2}>0$. By this and the property (3.2) for $\nu_{n, k}$, the measures $\nu_{n, k-1}$ on A_{k-1} satisfy that

$$
\lim _{n \rightarrow \infty} \operatorname{Sep}\left(\nu_{n, k-1} ; \kappa_{1}, \kappa_{2}\right)=0
$$

for any $\kappa_{1}, \kappa_{2}>0$. By the assumption of the induction, we therefore get

$$
\lim _{n \rightarrow \infty} \operatorname{diam}\left(\nu_{n, k-1}, \nu_{n, k-1}\left(A_{k-1}\right)-\frac{\kappa}{2}\right)=0
$$

for any $\kappa>0$. By using (3.4), we finally obtain

$$
\begin{aligned}
\operatorname{diam}\left(\nu_{n, k}, m_{n}-\kappa\right) & \leq \operatorname{diam}\left(\nu_{n, k-1}, m_{n}-\kappa\right)+2 b_{n} \\
& \leq \operatorname{diam}\left(\nu_{n, k-1}, \nu_{n, k-1}\left(A_{k-1}\right)-\kappa / 2\right)+2 b_{n} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

This completes the proof of the lemma.
Proof of Theorem [1.1. Lemma 2.8 directly implies the sufficiency of Theorem 1.1 We shall prove the converse. Let $\left\{f_{n}: X_{n} \rightarrow\left(B_{\ell p}^{\infty}, d_{\ell q}\right)\right\}_{n=1}^{\infty}$ be any sequence of 1-Lipschitz maps. Given an arbitrary $\varepsilon>0$, we shall prove that

$$
\operatorname{diam}\left(\left(f_{n}\right)_{*}\left(\mu_{X_{n}}\right), m_{X_{n}}-\kappa\right) \leq 2 \varepsilon
$$

for any $\kappa>0$ and any sufficiently large $n \in \mathbb{N}$. Put $k:=k(\varepsilon)$ and $\nu_{n, k}:=$ $\left(F_{\infty, \varepsilon} \circ f_{n}\right)_{*}\left(\mu_{X_{n}}\right)$. Since

$$
\operatorname{diam}\left(\left(f_{n}\right)_{*}\left(\mu_{X_{n}}\right), m_{X_{n}}-\kappa\right) \leq \operatorname{diam}\left(\nu_{n, k}, m_{X_{n}}-\kappa\right)+\varepsilon
$$

by (3.1), it suffices to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{diam}\left(\nu_{n, k}, m_{X_{n}}-\kappa\right)=0 . \tag{3.5}
\end{equation*}
$$

Since Lemma 2.2 together with Corollary 2.6 and Lemma 3.2 implies that

$$
\operatorname{Sep}\left(\nu_{n, k} ; \kappa_{1}, \kappa_{2}\right) \leq\left(1+k(\varepsilon)^{1 / q}\right) \operatorname{Sep}\left(X_{n} ; \kappa_{1}, \kappa_{2}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

for any $\kappa_{1}, \kappa_{2}>0$, by virtue of Lemma 3.3, we obtain (3.5). This completes the proof.

4. CASE OF $1 \leq q \leq p \leq+\infty$

For an mm-space X, we define the concentration function $\alpha_{X}:(0,+\infty) \rightarrow \mathbb{R}$ as the supremum of $\mu_{X}\left(X \backslash A_{+r}\right)$, where A runs over all Borel subsets of X with $\mu_{X}(A) \geq m_{X} / 2$ and A_{+r} is an open r-neighborhood of A.

Lemma 4.1 (cf. [3, Corollary 2.6]). A sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of mm-spaces is a Lévy family if and only if $\lim _{n \rightarrow \infty} \alpha_{X_{n}}(r)=0$ for any $r>0$.

Let $p \geq 1$. We shall consider the ℓ_{p}^{n}-sphere $\mathbb{S}_{\ell^{p}}^{n}:=\left\{\left.\left(x_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}\left|\sum_{i=1}^{\infty}\right| x_{i}\right|^{p}=\right.$ $1\}$. We denote by $\mu_{n, p}$ the cone measure and by $\nu_{n, p}$ the surface measure on $\mathbb{S}_{\ell p}^{n}$ normalized as $\mu_{n, p}\left(\mathbb{S}_{\ell p}^{n}\right)=\nu_{n, p}\left(\mathbb{S}_{\not p p}^{n}\right)=1$. In other words, for any Borel subset $A \subseteq \mathbb{S}_{\ell p}^{n}$, we put

$$
\mu_{n, p}(A):=\frac{1}{\mathcal{L}\left(B_{\ell^{p}}^{n}\right)} \cdot \mathcal{L}(\{t x \mid x \in A \text { and } 0 \leq t \leq 1\}),
$$

where \mathcal{L} is the Lebesgue measure on \mathbb{R}^{n}.

By the works of G. Schechtman and J. Zinn [27, Theorems 3.1 and 4.1] and R. Latała and J. O. Wojtaszczyk [15, Theorem 5.31], we obtain

$$
\begin{equation*}
\alpha_{\left(\mathbb{S}_{\ell}, d_{\ell^{2}}, \mu_{n, p}\right)}(r) \leq C \exp \left(-c n r^{\min \{2, p\}}\right) \tag{4.1}
\end{equation*}
$$

This inequality for $p \geq 2$ is also mentioned by A. Naor in [23, Introduction] (see also [15, Proposition 5.21]).
Lemma 4.2. Let $1 \leq q \leq p \leq+\infty$. Then, we have

$$
\alpha_{\left(\mathbb{S}_{\ell p}^{n}, d_{\ell}, \mu_{n, p}\right)}(r) \leq C \exp \left(-c n^{1+(1 / 2-1 / q) \min \{2, p\}} r^{\min \{2, p\}}\right) \text { if } q<2
$$

and

$$
\alpha_{\left(\mathbb{S}_{\ell p}^{n}, d_{\ell q}, \mu_{n, p}\right)}(r) \leq C \exp \left(-c n r^{\min \{2, p\}}\right) \text { if } q \geq 2
$$

Proof. If $q<2$, by $d_{\ell}(x, y) \leq n^{1 / q-1 / 2} d \ell^{2}(x, y)$, we then have

$$
\begin{aligned}
\alpha_{\left(\mathbb{S}_{\ell p}^{n}, d_{\ell} q, \mu_{n, p}\right)}(r) & \leq \alpha_{\left(\mathbb{S}_{\ell p}^{n}, d_{\ell}, \mu_{n, p}\right)}\left(n^{1 / 2-1 / q} r\right) \\
& \leq C \exp \left(-c n^{1+(1 / 2-1 / q) \min \{2, p\}} r^{\min \{2, p\}}\right)
\end{aligned}
$$

If $q \geq 2$, by $d_{\ell}(x, y) \leq d_{\ell^{2}}(x, y)$, we then obtain

$$
\alpha_{\left(\mathbb{S}_{\ell^{p}}^{n}, d_{\ell} q, \mu_{n, p}\right)}(r) \leq \alpha_{\left(\mathbb{S}_{\ell^{p}}^{n}, d_{\ell^{2}}, \mu_{n, p}\right)}(r) \leq C \exp \left(-c n r^{\min \{2, p\}}\right)
$$

This completes the proof.
Corollary 4.3. The sequences $\left\{\left(\mathbb{S}_{\ell^{p}}^{n}, d_{\ell^{q}}, \mu_{n, p}\right)\right\}_{n=1}^{\infty}$ and $\left\{\left(\mathbb{S}_{\ell^{p}}^{n}, d_{\ell^{q}}, \nu_{n, p}\right)\right\}_{n=1}^{\infty}$ are both Lévy families for $(p, q) \in \mathbb{N} \times \mathbb{N} \backslash\{(k, 1) \mid k \geq 2\}$.

Proof. Since $1+(1 / 2-1 / q) \min \{2, p\}>0$, by Lemmas 4.1 and 4.2, the sequence $\left\{\left(\mathbb{S}_{\ell^{p}}^{n}, d_{\ell^{q}}, \mu_{n, p}\right)\right\}_{n=1}^{\infty}$ is a Lévy family. By virtue of [23. Theorem 6], the sequence $\left.\left\{\mathbb{S}_{\ell^{p}}^{n}, d \ell^{q}, \nu_{n, p}\right)\right\}_{n=1}^{\infty}$ is also a Lévy family. This completes the proof.

Proposition 4.4. Let $1 \leq q \leq p \leq+\infty$ and let μ be one of the two measures $\mu_{n, p}$ and $\nu_{n, p}$. Then, for any κ with $0<\kappa<1 / 2$, we have

$$
\operatorname{ObsDiam}_{\left(B_{\ell^{p}}^{\infty}, d_{\ell} q\right.}\left(\left(\mathbb{S}_{\ell^{p}}^{n}, d \ell^{q}, \mu\right) ;-\kappa\right) \geq 2
$$

Proof. Let $A \subseteq \mathbb{S}_{\ell^{p}}^{n}$ be a Borel subset such that $\mu(A) \geq 1-\kappa$. Since $\mu(A)=$ $\mu(-A)>1 / 2$, we have $\mu(A \cap(-A))>0$. Hence, there exists $x \in A$ such that $-x \in A$. Since $\operatorname{diam} A \geq d \ell^{q}(x,-x) \geq d \ell^{p}(x,-x)=2$, we obtain $\operatorname{diam}(\mu, 1-\kappa)=$ 2. Since the inclusion map from the space $\left(\mathbb{S}_{\ell^{p}}^{n}, d \ell^{q}\right)$ to the space $\left(B_{\ell^{p}}^{\infty}, d \ell^{q}\right)$ is 1-Lipschitz, we obtain the conclusion. This completes the proof.

Combining Corollary 4.3 with Proposition 4.4 we obtain an example of a Lévy family which does not satisfy (1.1) in the case of $(p, q) \in\{(k, l) \in \mathbb{N} \times \mathbb{N} \mid l \leq$ $k\} \backslash\{(k, 1) \mid k \geq 2\}$.

Acknowledgements

The author would like to express his thanks to Professor Takashi Shioya for his valuable suggestions and assistance during the preparation of this paper. The author thanks Professor Masaki Tsukamoto for describing his interesting work [28]. The author also thanks Professor A. Naor for his useful comments. Without them, this work would never have been completed.

References

[1] K. Funano, Asymptotics of mm-spaces, doctoral thesis, in preparation.
[2] K. Funano, Central and L^{p}-concentration of 1-Lipschitz maps into \mathbb{R}-trees, to appear in J. Math. Soc. Japan.
[3] K. Funano, Concentration of maps and group action, preprint, available online at http://front.math.ucdavis.edu/0807.3210, 2008.
[4] K. Funano, Observable concentration of mm-spaces into spaces with doubling measures, Geom. Dedicata 127, 49-56, 2007. MR2338515 (2008m:53095)
[5] K. Funano, Observable concentration of mm-spaces into nonpositively curved manifolds, preprint, available online at http://front.math.ucdavis.edu/0701.5535, 2007.
[6] T. Giordano and V. Pestov, Some extremely amenable groups, C. R. Acad. Sci. Paris, Sér. I 334, No. 4, 273-278, 2002. MR1891002 (2002m:43001)
[7] T. Giordano and V. Pestov, Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu 6, no. 2, 279-315, 2007. MR2311665 (2008e:22007)
[8] E. Glasner, On minimal actions of Polish groups, Top. Appl. 85, 119-125, 1998. MR1617456 (99c:54057)
[9] A. Gournay, Width of ℓ^{p}-balls, preprint, available online at http://front.math.ucdavis. edu/0711.3081, 2007.
[10] M. Gromov and V. D. Milman, A topological application of the isoperimetric inequality, Amer. J. Math. 105, no. 4, 843-854, 1983. MR708367 (84k:28012)
[11] M. Gromov, CAT (κ)-spaces: Construction and concentration (Russian summary), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280, Geom. i Topol. 7, 100140, 299-300, 2001; translation in J. Math. Sci. (N. Y.) 119, no. 2, 178-200, 2004. MR 1879258 (2002j:53045)
[12] M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13, no. 1, 178-215, 2003. MR1978494 (2004m:53073)
[13] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates. Progress in Mathematics, 152. Birkhäuser Boston, Inc., Boston, MA, 1999. MR1699320(2000d:53065)
[14] M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom. 2, no. 4, 323-415, 1999. MR1742309 (2001j:37037)
[15] R. Latała and J. O. Wojtaszczyk, On the infimum convolution inequality, Studia Math. 189, no. 2, 147-187, 2008. MR2449135
[16] M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, RI, 2001. MR1849347 (2003k:28019)
[17] V. D. Milman, A certain property of functions defined on infinite-dimensional manifolds (Russian), Dokl. Akad. Nauk SSSR 200, 781-784, 1971. MR0309150 (46:8260)
[18] V. D. Milman, A new proof of A. Dvoretzky's theorem on cross-sections of convex bodies (Russian), Funkcional. Anal. i Priložen. 5, no. 4, 28-37, 1971. MR0293374 (45:2451)
[19] V. D. Milman, Asymptotic properties of functions of several variables that are defined on homogeneous spaces, Soviet Math. Dokl. 12, 1277-1281, 1971; translated from Dokl. Akad. Nauk SSSR 199, 1247-1250, 1971 (Russian). MR0303566 (46:2703)
[20] V. D. Milman, Diameter of a minimal invariant subset of equivariant Lipschitz actions on compact subsets of \mathbb{R}^{k}, Geometrical Aspects of Functional Analysis, Israel Seminar, 19851986. Lecture Notes in Math., 1267, 13-20. Springer, Berlin, 1987. MR907682 (89a:46148)
[21] V. D. Milman, The heritage of P. Lévy in geometrical functional analysis, Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). Astérisque No. 157-158, 273-301, 1988. MR976223 (91d:01005)
[22] V. D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov, Lecture Notes in Mathematics, 1200. Springer-Verlag, Berlin, 1986. MR856576(87m:46038)
[23] A. Naor, The surface measure and cone measure on the sphere of ℓ_{p}^{n}, Trans. Amer. Math. Soc. 359, 1045-1079, 2007. MR2262841 (2007g:60006)
[24] V. Pestov, Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon, revised edition of Dynamics of Infinite-Dimensional Groups and Ramsey-type

Phenomena [Inst. Mat. Pura. Apl. (IMPA), Rio de Janeiro, 2005; MR2164572]. University Lecture Series, 40. American Mathematical Society, Providence, RI, 2006. MR2277969 (2008c:37009)
[25] V. Pestov, Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel Journal of Mathematics 127, 317-358, 2002. Corrigendum, ibid., 145, 375-379, 2005. MR. 1900705 (2003f:43001) MR2154737 (2006b:43002)
[26] V. Pestov, The isometry groups of the Urysohn metric space as a Lévy group, Topology Appl. 154, no. 10, 2173-2184, 2007. MR2324929 (2008f:22019)
[27] G. Schechtman and J. Zinn, Concentration on the ℓ_{p}^{n} ball, Geometric aspects of functional analysis, 245-256, Lecture Notes in Math., 1745. Springer, Berlin, 2000. MR 1796723 (2002b:46014)
[28] M. Tsukamoto, Macroscopic dimension of the ℓ^{p}-ball with respect to the ℓ^{q}-norm, J. Math. Kyoto Univ. 48, 445-454, 2008. MR2436746

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
E-mail address: sa4m23@math.tohoku.ac.jp

[^0]: Received by the editors August 25, 2008.
 2000 Mathematics Subject Classification. Primary 53C21, 53C23.
 Key words and phrases. mm-space, infinite dimensional ℓ^{p}-ball, concentration of 1-Lipschitz maps, Lévy group.

 This work was partially supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

