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BILINEAR SUMS WITH EXPONENTIAL FUNCTIONS

IGOR E. SHPARLINSKI

(Communicated by Wen-Ching Winnie Li)

Abstract. Let g �= 0,±1 be a fixed integer. Given two sequences of complex
numbers (ϕm)∞m=1 and (ψn)∞n=1 and two sufficiently large integers M and N ,

we estimate the exponential sums∑
p≤M

gcd(ag,p)=1

∑
1≤n≤N

ϕpψnep (agn) , a ∈ Z,

where the outer summation is taken over all primes p ≤ M with gcd(ag, p) = 1.

1. Introduction

Let us fix an integer g �= 0,±1. Various questions concerning the distribution of
residues of the exponential function gx in residue rings when x takes consecutive
integer values and also when it runs through some general and special sequences
(such as smooth or prime numbers) have always been intensively studied; see [1,
2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17] and the references therein. For example,
for g = 2 they have a natural interpretation as results about the distribution of
Mersenne numbers in residue classes; see [1, 4, 11, 12]. They are also related to
various questions about the distribution g-ary digits of rational fractions; see [13,
14]. Furthermore, these results also have various applications to such areas as
cryptography and pseudorandom number generators; see [16, 18]. Most of the
applications are based on estimates of corresponding exponential sums.

More precisely, for an integer m ≥ 1 and a complex z, we define

em(z) = exp(2πiz/m).

Several estimates have recently been obtained for exponential sums∑
1≤�≤N

ep

(
ag�

)
, a ∈ Z,

over primes � ≤ N ; see [1, 4]. Furthermore, in [11, 12] more general sums
K∑

k=1

ep (agsk) , a ∈ Z,
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have been estimated on average over p ≤ M , for arbitrary sequences of integers S =
(sk)∞k=1, provided that S is sufficiently dense. In particular, if M ≤ K(log K)2+ε

for some fixed ε > 0, then the result of M. Z. Garaev [11] applies to arbitrary
sequences S with 0 ≤ sk ≤ k15/14+o(1); however, for shorter sums it loses its power
even if the sequence S is very dense.

Here we consider more general exponential sums and in particular extend the
results [11, 12] to a different range of parameters. Roughly speaking, the results
of [11, 12] require less averaging but apply to longer sums, while we need more
averaging but instead treat shorter (and more general) sums.

More precisely, given two sequences of complex numbers Φ = (ϕm)∞m=1 and
Ψ = (ψn)∞n=1 we consider the bilinear sums

(1)
∑
p≤M

gcd(ag,p)=1

∑
1≤n≤N

ϕpψnep (agn) , a ∈ Z,

where the outer summation is taken over all primes p ≤ M with gcd(ag, p) = 1.
Note that we do not request that a �= 0 since for a = 0 the summation range is
empty.

Our method is different from that of M. Z. Garaev [11] and in fact originates
from [3].

Throughout the paper, the implied constants in the symbols ‘O’ and ‘�’ may
depend only on g and two more integer parameters r and s (we recall that A � B
is equivalent to A = O(B)). We use the letters �, p and q exclusively to denote
prime numbers, while m and n always denote positive integers.

2. Main result

In the case when some information is available about the growth of the elements
of the sequence Φ = (ϕm)∞m=1 (say if |ϕm| ≤ 1, 1 ≤ m ≤ M), which is almost always
the case, it is easy to see that instead of the sums (1) it is enough to estimate the
sums

Sa(M, N ; Ψ) =
∑
p≤M

gcd(ag,p)=1

∣∣∣∣∣∣
∑

1≤n≤N

ψnep (agn)

∣∣∣∣∣∣ , a ∈ Z.

Theorem 1. For any integers r, s ≥ 1 such that

Nr+2 ≥ M2,

the following bound holds uniformly over all a ∈ Z:

Sa(M, N ; Ψ) � F
(
M1−1/2r(s+2)N1/2+1/2rs + M1+1/(s+2)

)
,

where

F =
√ ∑

1≤n≤N

|ψn|2.

Proof. Clearly for some complex numbers ϕm with |ϕm| = 1 for 1 ≤ m ≤ M , we
have

Sa(M, N ; Ψ) =
∑
p≤M

gcd(ag,p)=1

ϕp

∑
1≤n≤N

ψnep (agn) .
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So, changing the order of summation we obtain

|Sa(M, N ; Ψ)| ≤
∑

1≤n≤N

|ψn|

∣∣∣∣∣∣∣∣
∑
p≤M

gcd(ag,p)=1

ϕpep (agn)

∣∣∣∣∣∣∣∣
.

Now, using the Cauchy inequality, we obtain

(2) |Sa(M, N ; Ψ)| ≤ FU1/2,

where

U =
∑

1≤n≤N

∣∣∣∣∣∣∣∣
∑
p≤M

gcd(ag,p)=1

ϕpep (agn)

∣∣∣∣∣∣∣∣

2

=
∑

p,q≤M
gcd(ag,pq)=1

ϕpϕq

∑
1≤n≤N

ep (agn) eq (−agn) .

Let M be the set of integers m ≤ M2 which are products of two distinct primes
p < q ≤ M with gcd(ag, pq) = 1. Furthermore, for every m = pq ∈ M we define
am = a(q − p); thus

ep (agn) eq (−agn) = em (amgn) .

We also remark that
gcd(am, m) = 1

for every m ∈ M.
Estimating the contribution to U from at most the diagonal terms with p = q

trivial as MN , we derive

(3) U ≤ MN + 2V,

where

(4) V =
∑

m∈M

∣∣∣∣∣∣
∑

1≤n≤N

em (amgn)

∣∣∣∣∣∣ .

We now remark that for any integer h ≥ 0 we have

(5)
∑

1≤n≤N

em (amgn) =
∑

1≤n≤N

em

(
amgn+h

)
+ O(h).

Let H > 0 be an arbitrary integer, to be chosen later. Then, we see from (5)
that

(6) V =
W

H
+ O (H#M) =

W

H
+ O

(
HM2

)
,

where

W =
∑

m∈M

H∑
h=1

∣∣∣∣∣∣
∑

1≤n≤N

em

(
amgn+h

)∣∣∣∣∣∣ .
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By the Hölder inequality, it follows that for any integer r ≥ 1 we have

W r ≤ Hr−1(#M)r−1
∑

m∈M

H∑
h=1

∣∣∣∣∣∣
∑

1≤n≤N

em

(
amgn+h

)∣∣∣∣∣∣
r

= Hr−1(#M)r−1
∑

m∈M

H∑
h=1

ϑm,h

⎛
⎝ ∑

1≤n≤N

em

(
amgn+h

)⎞⎠
r

for some complex numbers ϑm,h with |ϑm,h| = 1.
Now, let Rm,k(K, λ) denote the number of solutions of the congruence

k∑
i=1

gwi ≡ λ (mod m), 1 ≤ w1, . . . , wk ≤ K.

Then ⎛
⎝ ∑

1≤n≤N

em

(
amgn+h

)⎞⎠
r

=
p−1∑
λ=0

Rm,r(N, λ)em(amλgh).

Therefore, after changing the order of summation (and also using the trivial bound
#M ≤ M2, we derive that

W r ≤ Hr−1M2(r−1)
∑

m∈M

m−1∑
λ=0

Rm,r(N, λ)
H∑

h=1

ϑm,hem(amλgh).

For an integer s ≥ 1, we write

Rm,r(N, λ) =
(
Rm,r(N, λ)2

)1/2s
Rm,r(N, λ)(s−1)/s.

Using the Hölder inequality for a sum of products of three terms, we have

W 2rs ≤ H2(r−1)sM4(r−1)s
∑

m∈M

m−1∑
λ=0

Rm,r(N, λ)2

×
( ∑

m∈M

m−1∑
λ=0

Rm,r(N, λ)

)2s−2

×
∑

m∈M

m−1∑
λ=0

∣∣∣∣∣
H∑

h=1

ϑm,hem

(
amλgh

)∣∣∣∣∣
2s

.

Clearly, ∑
m∈M

m−1∑
λ=0

Rm,r(N, λ) ≤ #MNr ≤ M2Nr

and ∑
m∈M

m−1∑
λ=0

Rm,r(N, λ)2 =
∑

m∈M
Tm,r(N),

where Tm,k(K) denotes the number of solutions of the congruence

Gk (w1, . . . , w2k) ≡ 0 (mod m), 1 ≤ w1, . . . , w2k ≤ K,
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where

Gk (w1, . . . , w2k) =
2k∑
i=1

(−1)igwi .

Thus,

W 2rs ≤ H2(r−1)sM4(rs−1)N2r(s−1)
∑

m∈M
Tm,r(N)

×
∑

m∈M

m−1∑
λ=0

∣∣∣∣∣
H∑

h=1

ϑm,hem(amλgh)

∣∣∣∣∣
2s

.

Furthermore,

m−1∑
λ=0

∣∣∣∣∣
H∑

h=1

ϑm,hem

(
amλgh

)∣∣∣∣∣
2s

=
H∑

h1,...,h2s=1

2s∏
i=1

ϑm,hi

m−1∑
λ=0

em (λGs (h1, . . . , h2s))

≤
H∑

h1,...,h2s=1

∣∣∣∣∣
m−1∑
λ=0

em (λGs (h1, . . . , h2s))

∣∣∣∣∣
= mTm,s(H) ≤ M2Tm,s(H).

Hence,

(7) W 2rs ≤ H2(r−1)sM4rs−2N2r(s−1)
∑

m∈M
Tm,r(N)

∑
m∈M

Tm,s(H).

We note that

(8)
∑

m∈M
Tm,k(K) =

K∑
w1,...,w2k=1

∑
m∈M

m|Gk(w1,...,w2k)

1.

Clearly, any nonzero value Gk (w1, . . . , w2k) �= 0 has at most

log(2kgK)
log 2

� K

distinct prime divisors. Thus in this case there are at most O(K2) values of m ∈
M with m | Gk (w1, . . . , w2k). Thus the total contribution from such terms is
O(K2k+2).

Furthermore, by the corollary to [15, Lemma 1, Chapter 15], there are at most
2kk!Kk integer vectors (w1, . . . , w2k) with 1 ≤ w1, . . . , w2k ≤ K and such that
Gk (w1, . . . , w2k) = 0. For them we estimate the contribution from the sums over
m ∈ M trivially as M2. Therefore,

(9)
∑

m∈M
Tm,k(K) � K2k+2 + KkM2.

Consequently, inserting (9) into (7), we obtain

(10) W 2rs � H2(r−1)sM4rs−2N2r(s−1)
(
N2r+2 + NrM2

) (
H2s+2 + HsM2

)
.

We now choose
H =

⌈
M2/(s+2)

⌉
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so that H2s+2 + HsM2 � HsM2. Also, recalling that by the condition of the
theorem we also have N2r+2 + NrM2 � N2r+2, we obtain from (10)

W 2rs � H2rs−sM4rsN2rs+2

or
W � H1−1/2rM2N1+1/rs.

Substituting this estimate into (6) yields

V � H−1/2rM2N1+1/rs + HM2,

which in turn, after substituting into (3), gives

U � H−1/2rM2N1+1/rs + HM2 + MN � H−1/2rM2N1+1/rs + HM2.

Inserting this into the inequality (2) and recalling the choice of H produce the
desired estimate. �

In particular, taking Ψ to be the indicator function of a sequence of integers
S = (sk)∞k=1, we obtain:

Corollary 2. Let r, s ≥ 1 be two fixed integers. For any integers M and N with
N ≥ M2/(r+2) and any sequence of K ≥ 1 integers 1 ≤ sk ≤ N , k = 1, . . . , K, we
have ∑

p≤M
gcd(ag,p)=1

∣∣∣∣∣
K∑

k=1

ep (agsk)

∣∣∣∣∣ � K1/2M1−1/2r(s+2)N1/2+1/2rs + M1+1/(s+2)

uniformly over all a ∈ Z.

We note that Corollary 2 is nontrivial only if NA ≥ M ≥ N1+ε for some fixed
A > 1 and ε > 0. In this case, taking a sufficiently large r (to ensure that N ≥
M1/A ≥ M2/(r+2)) and then a sufficiently large s, we obtain

K1/2M1−1/2r(s+2)N1/2+1/2rs ≤ K1/2MN1/2−δ

for some δ > 0. Thus if the sequence s1, . . . , sK is dense enough (for example,
K ≥ N1−δ), then Corollary 2 yields a nontrivial estimate.

On the other hand, the results of M. Z. Garaev [11] require a little less averaging
and are nontrivial for smaller values of M ; however, they become trivial for M ≥ N .

3. Remarks and open questions

Clearly our estimates can be improved by a power of log M (as on several oc-
casions when we have used the crude estimate #M ≤ M2 instead of #M ≤
M2(log M)−2). It is also easy to see that a full analogue of Theorem 1 holds also
for the sums

∑
p≤M

gcd(g,p)=1

max
a=1,...,p−1

∣∣∣∣∣∣
∑

1≤n≤N

ψnep (agn)

∣∣∣∣∣∣ , a ∈ Z.

We note that an alternative way to estimate the sums Sa(M, N ; Ψ) is via using
the estimate due to J. Bourgain and M. Chang [7] directly to estimate the sum over
n in (4); see also [5, 6] for further generalisations. However, this approach leads to
less explicit estimates and also requires extending the estimates from [5, 6, 7] to
incomplete sums (it seems to be very plausible that such an extension is possible,
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though). On the other hand, a clear advantage of this approach is that it can also
be used to estimate sums of the type∑

1≤m≤M

∑
1≤n≤N

ϕmψnem (agn) , a ∈ Z,

where the summation is taken over all positive integers m ≤ M .
Finally, we remark that in [12] one can also find some bounds of multiplicative

character sums. It is possible that the methods of [11] apply to multiplicative char-
acter sums as well. However the method of this paper does not seem to generalise
to such sums. For example, obtaining good estimates on the sums∑

p≤M
gcd(ag,p)=1

∑
1≤n≤N

ϕpψn

(
gn + a

p

)
, a ∈ Z,

where (u/p) is the Legendre symbol modulo p, remains an open problem.

References

[1] W. Banks, A. Conflitti, J. B. Friedlander and I. E. Shparlinski, ‘Exponential sums over
Mersenne numbers’, Compos. Math., 140 (2004), 15–30. MR2004121 (2004j:11091)

[2] W. Banks, J. B. Friedlander, M. Z. Garaev and I. E. Shparlinski, ‘Character sums with ex-
ponential functions over smooth numbers’, Indag. Math., 17 (2006), 157–168. MR2321378
(2008e:11097)

[3] W. D. Banks, M. Z. Garaev, F. Luca and I. E. Shparlinski, ‘Uniform distribution of frac-
tional parts related to pseudoprimes’, Canad. J. Math. (to appear).

[4] J. Bourgain, ‘Estimates on exponential sums related the Diffie-Hellman distributions’,
Geom. Funct. Anal., 15 (2005), 1–34. MR2140627 (2006h:11095)

[5] J. Bourgain, ‘Exponential sum estimates over subgroups of Z
∗
q , q arbitrary’, J. Anal. Math.,

97 (2005), 317–355. MR2274981 (2007j:11103)
[6] J. Bourgain, ‘Exponential sum estimates in finite commutative rings and applications’,

J. Anal. Math., 101 (2007), 325–355. MR2346549 (2008i:11108)
[7] J. Bourgain and M. Chang, ‘Exponential sum estimates over subgroups and almost sub-

groups of Z
∗
Q, where Q is composite with few prime factors’, Geom. Funct. Anal., 16

(2006), 327–366. MR2231466 (2007d:11093)
[8] J. Bourgain and M. Z. Garaev, ‘On a variant of sum-product estimates and explicit expo-

nential sum bounds in prime fields’, Math. Proc. Cambr. Phil. Soc., 146 (2008), 1–21.
[9] J. Bourgain, A. A. Glibichuk and S. V. Konyagin, ‘Estimates for the number of sums and

products and for exponential sums in fields of prime order’, J. Lond. Math. Soc., 73 (2006),
380–398. MR2225493 (2007e:11092)

[10] M. Dewar, D. Panario and I. E. Shparlinski, ‘Distribution of exponential functions
with k-full exponent modulo a prime’, Indag. Math., 15 (2004), 497–503. MR2114933
(2005k:11166)

[11] M. Z. Garaev, ‘The large sieve inequality for the exponential sequence λ[O(n15/14+o(1))]

modulo primes’, Canad. J. Math. (to appear).
[12] M. Z. Garaev and I. E. Shparlinski, ‘The large sieve inequality with exponential functions

and the distribution of Mersenne numbers modulo primes’, Intern. Math. Res. Notices,
2005:39 (2005), 2391–2408. MR2181356 (2006i:11108)

[13] S. V. Konyagin and I. E. Shparlinski, Character sums with exponential functions and their
applications, Cambridge Univ. Press, Cambridge, 1999. MR1725241 (2000h:11089)

[14] N. M. Korobov, ‘On the distribution of digits in periodic fractions’, Matem. Sbornik ,
89(131) (1972), 654–670 (in Russian). MR0424660 (54:12619)

[15] A. G. Postnikov, Ergodic aspects of the theory of congruences and of the theory of Dio-
phantine approximations, Trudy Mat. Inst. Steklov, vol. 82, 1966 (Russian); translated by
the Amer. Math. Soc., Providence, R.I., 1967. MR0214561 (35:5410)

[16] I. E. Shparlinski, Cryptographic applications of analytic number theory, Birkhäuser Verlag,
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