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A CLASS OF Z
d SHIFTS OF FINITE TYPE WHICH FACTORS

ONTO LOWER ENTROPY FULL SHIFTS

ANGELA DESAI

(Communicated by Jane M. Hawkins)

Abstract. We prove that if a Z
d shift of finite type with entropy greater than

log N satisfies the corner gluing mixing condition of Johnson and Madden, then
it must factor onto the full N-shift.

1. Introduction

A basic question in symbolic dynamics is the question of when one shift space
can factor onto another. There are well-known results addressing this question for
Z shifts of finite type (SFTs). In particular, any Z SFT with entropy at least log N
factors onto the full N -shift.

The situation is more complicated for d > 1. Often, we must impose further
requirements, such as mixing conditions, to achieve similar results. Robinson and
Sahin [RS] extended Krieger’s universal model results to d > 1 for SFTs with
the uniform filling property. Lightwood [L1, L2] extended the Krieger Embedding
Theorem [Kr] to Z

d subshifts with d > 1 for a class of SFTs called square-filling-
mixing.

Introducing a new mixing condition called corner gluing, Johnson and Madden
[JM] proved that any Z

d corner gluing SFT with entropy greater than log N has a
finite extension which factors onto the full N -shift. They then posed the question
of whether the extension is necessary. We prove that it is not.

Theorem 1.1. Let X be a corner gluing Z
d SFT, and suppose h(X) > log N .

Then there exists a factor map ϕ : X → X[N ].

2. Definitions and notation

Let A = {0, 1, ..., N}, and let X[N ] = AZ
d

, d ∈ N. Give A the discrete topology,
and then give X[N ] the product topology. A point x ∈ X[N ] can be viewed as
an infinite d-dimensional array of symbols: for w ∈ Z

d, let xw be the symbol in
location w.

For each v ∈ Z
d, define a shift map σv : x �→ y by yw = xv+w, and let σ be

the Z
d action {σv}v∈Zd . The system (X[N ], σ) is the full Z

d N-shift. For R ⊂ Z
d,

a configuration on R is some M ∈ AR. For x ∈ X[N ], denote the configuration
occurring at R by xR.
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If X is a closed, shift-invariant subset of X[N ], then (X, σ|X) is called a Z
d shift

space, or subshift. Let AX be the symbol set of X. A configuration M ∈ AR is
allowed in X if there is some x ∈ X such that xR = M. Then we say that M
occurs in x.

The most important subshifts are the shifts of finite type. A Z
d subshift X

is a shift of finite type (SFT) if it can be defined by forbidding a finite set of
configurations F = {F1, F2, ..., Fm} occurring in (AX)Z

d

. X is a one-step shift of
finite type if a point x ∈ (AX)Z

d

is allowed in X whenever x{m,n} is not in F for
all m,n ∈ Z

d with ‖m − n‖ = 1, where ‖ · ‖ is the Euclidean norm on R
d. Every

SFT may be recoded to be a one-step shift of finite type. We will assume below
that all shifts of finite type are one-step.

Let c = (1, 1, ..., 1) ∈ Z
d. Let Λ(n) = {v = (v1, ..., vd) ∈ Z

d : 0 ≤ vi < n},
the square of length n with lower left corner at the origin. Let Λ(2n − 1) = {v =
(v1, ..., vd) ∈ Z

d : −n < vi < n}, the square of length 2n − 1 centered at the origin.
An n-block is a configuration on Λ(n). Let Bn(X) be the set of n-blocks allowed in
X. Let B(X) =

⋃
n Bn(X).

If X and Y are subshifts, then a map φ : X → Y is a block code if for x ∈
X, φ(x)v depends on some finite block configuration occurring in x, centered at
v for all v ∈ Z

d. That is, if there is a map Φ : B2n−1(X) → AY such that
φ(x)v = Φ(xΛ(2n−1)+v) for all v ∈ Z

d. The block codes from X to Y are exactly
the continuous, shift-commuting maps. If φ is one-to-one, then it is called an
embedding. If φ is onto, it is called a factor code, or a factor map. If φ is both
one-to-one and onto, then it is a conjugacy. A subshift X is a sofic shift if there
exists an SFT Y and a factor code π : Y → X.

The topological entropy of a d-dimensional subshift X is defined to be

h(X) = lim
n→∞

1
nd

log |Bn(X)|.

3. Proof of Theorem 1.1

For k = (k1, k2, ..., kd) ∈ N
d, let Rk = {(a1, a2, ..., ad) ∈ Z

d : 0 ≤ ai < ki for
1 ≤ i ≤ d}.

Definition 3.1 ([JM]). A Z
d SFT X is corner gluing if there exists a gluing con-

stant g > 0 such that given any two finite subsets E1, E2 ⊂ Z
d as defined below and

any two allowable configurations C1 and C2 on these subsets, there exists a point
x ∈ X with xE1 = C1 and xE2 = C2. Here E1 = Rk + (k′ −k) for some k ∈ N

d and
some k′ ∈ N

d with k′ > k + gc, and E2 = Rk′\Rk+gc (see Figure 1 for the case
where d = 2).

We can also think about this in terms of creating a larger rectangular configu-
ration on Rk′ containing C1 and C2 and some uncontrolled gluing symbols between
them. Then we say we are gluing C1 to C2. We refer to the configurations used to
glue them together as gluing strips.

In the proof of Theorem 1.1, we will need to make use of the following result:

Theorem 3.2 ([D]). Let X be an SFT with h(X) > 0. Then there exists a family
of SFT subsystems of X whose entropies are dense in [0, h(X)].

We also need the following lemma, which constructs a marker square M that is
aperiodic for low periods. For R ⊂ Z

d and v ∈ Z
d \ {0}, a configuration C on R
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Figure 1. Corner gluing

is said to be v-periodic if for every pair w,w + v ∈ R we have Cw = Cw+v. For
simplicity, throughout this section we will give arguments only for the case where
d = 2. The proofs for d �= 2 are similar.

Lemma 3.3. Let X be a corner gluing Z
d SFT with h(X) > 0, and let g be the

gluing constant. Then for f, c ∈ N, if F ∈ Bf (X), then there exists a square
configuration M ∈ B(X) as in Figure 2, such that M is not v-periodic whenever
‖v‖∞ < c.

F F

F F

Figure 2. Marker square M

Proof. First we will construct a rectangular configuration Q such that Q is not
v-periodic whenever ‖v‖∞ < c. Choose some Q0 ∈ Bc(X). Consider the v ∈ Z

2

such that ‖v‖∞ < c and Q0 is v-periodic. Enumerate these as v1,v2, ...,vp.
Let i ≥ 1. Assume that Qi−1 ∈ Bl(X), for some l ∈ N, is not vj-periodic for

j ≤ i − 1 and occurs with lower left corner at the origin. Let vi = (a, b). By
symmetry, we may assume a ≥ 0. The block Qi−1 will be the corner of the block
Qi, as pictured in Figure 3, according to the following cases: (i) a, b > 0, (ii)
a = 0, b > 0, (iii) a > 0, b = 0, and (iv) a > 0, b < 0.

Consider case (i). Choose k ∈ N large enough that ka, kb > l + g and suppose
α is the symbol occurring at the lower left corner of Qi−1. Since h(X) > 0, there
is some β ∈ AX with β �= α. Extend Qi−1 to an L-shape shown by the dashed
lines in Figure 3(i), then glue the symbol β in at position kvi. Extend the resulting
rectangle to a square Qi. Qi is not vi-periodic because vi-periodicity would imply
α = β. As Qi has Qi−1 as a subblock, it is not vj-periodic for j < i − 1 either.
For the remaining three cases the argument is the same (see Figure 3 (ii),(iii),(iv)).
The construction of Qi is the same, based on the corresponding figures. End this
process with Q = Qp. Then Q will not be v-periodic for ‖v‖∞ < c.
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Figure 3. Construction of Qi

F

(i)

F

Q

(ii)

Figure 4. Construction of M , step 1

Now construct the marker square M as follows. Extend F to an L-shaped
configuration as in Figure 4(i). Then glue in Q as in Figure 4(ii), where the shaded
region is the gluing region of width g necessary in the definition of corner gluing.

Extend this configuration to another L-shaped configuration, represented in Fig-
ure 5(i) with dashed lines. Choose some rectangle extension of F of the form seen
in Figure 5(ii). Glue this rectangle to the L-shaped configuration to form a config-
uration as in Figure 5(iii).

Next, extend this rectangle to another L-shape as in Figure 6(i), and choose some
rectangle as in Figure 6(ii) with an F at the right and left ends. Note that such
a configuration is allowed because there is a point which contains it in Figure 6(i).
Glue these configurations together to form the square in Figure 6(iii). Take M to
be the subblock with an F at each corner. �

With this lemma, we are ready to prove Theorem 1.1, using methods similar to
those used by Johnson and Madden in [JM].

Proof of Theorem 1.1. By Theorem 3.2, there is a proper subsystem Y of finite
type in X with h(Y ) > log N . Choose some square configuration F ∈ B(X) that
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Figure 5. Construction of M , step 2

F FQ

F F

Q

F F

F F

(i)

(ii)

(iii)

Figure 6. Construction of M , step 3

is forbidden in Y , and call its side length f . Construct a square configuration M
using F as in Lemma 3.3 for c = 2(f + g). Denote the side length of M by m.



2618 ANGELA DESAI

M G M G
(ii)

(i)

Figure 7. Gluing M and G

Given the marker square M and any rectangular configuration G allowed in Y
of height m and arbitrary length, first extend M to an L-shaped configuration as
in Figure 7(i). Then glue this configuration to G to get the new configuration seen
in Figure 7(ii).

M G

G

M

M

MG

GG

(ii)

(i)

Figure 8. Configurations (i) L and (ii) C

Continue this process to construct a configuration L of the form seen in Fig-
ure 8(i). The blocks labeled G can be filled in with any configuration of the appro-
priate size allowed in Y (we think of these as ‘good’ blocks), and the shaded regions
are the necessary gluing strips (which may depend on the choice of G-blocks). By
the inside corner of L, we mean the upper right corner of the block M in the lower
left corner of L.

Glue a block of the type in Figure 8(ii) to L to get a legal block D of the type
in Figure 9; C, the complement of L in D, will be called a follower of L. We do
not control the symbols in the gluing strips, but all G-configurations of the correct
size will appear in follower blocks for some choice of gluing strip configuration.
Let l be the side length of the central block G in D, and J = l + 2g + m; then
C ∈ BJ(X). Each L has at least |Bl(Y )| followers and because h(Y ) > log N , we
have |Bl(Y )| > NJ2

for large enough l. For each L, partition its followers into NJ2

nonempty sets, P (L)1, P (L)2, ..., P (L)NJ2 , depending only on the follower’s central
G-block.

Claim. Let x ∈ X. If blocks D and D′ of the form in Figure 9 occur at different
places in x, then their follower portions, C and C′, do not overlap.

Proof of claim. Without loss of generality, assume D occurs with lower left corner
at the origin, and D′ occurs with lower left corner at v. Suppose C and C′ do
overlap. We know that v is not such that ‖v‖∞ < c, as that would contradict the
lack of small periodicity of M assured by Lemma 3.3. But the lower left corner M
of D′ cannot overlap too much with any other M in D either, and we are assuming
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Figure 9. Configuration D

that C and C′ overlap. Therefore ‖v‖∞ ≤ J − c. Now since M was constructed
with an F at each corner and c = 2(f + g), at least one subblock F of D′ must
occur entirely in a ‘good’ block G of D. However these blocks were chosen from the
blocks allowed in Y and so cannot contain F as a subblock. Thus C and C′ cannot
overlap. �

Consider the J-blocks of X[N ]. Enumerate them as E1, E2, ..., ENJ2 . Now we are
ready to construct a factor map ϕ : X → X[N ]. We will define ϕ so that it essentially
maps blocks from P (L)i to Ei for each configuration L and i = 1, 2, ..., NJ2

.
We make this precise as follows. For x ∈ X, suppose a configuration D as in

Figure 9 occurs in xΛ(2J−1)+v−Jc, the (2J − 1)-block centered at v, and xv is in
the follower portion of D. By the claim, xv occurs in the follower portion of no
other such block D′. Therefore, there exist unique u,w ∈ Z

2 such that v = u + w,
where L has its inside corner at u, and 0 < wi ≤ J for i = 1, 2. If xv occurs in
C ∈ P (L)j , then we define ϕ(x)v to be the symbol from coordinate w of Ej . If xv

is not in a follower, then ϕ(x)v = 0.

E

EEE

E

(0,0)

(0,1)

(k,k)

(1,0) (k,0)

E(0,k)

Figure 10. E ∈ BkJ (X[N ])

Claim. ϕ is onto.

Proof of claim. Let E ∈ BkJ(X[N ]) be as in Figure 10. Choose a configuration R
of the form shown in Figure 11(i) whose height and width are both kJ +m+g. We
will glue configurations to R that will result in a square configuration which maps
to E. Consider the configuration L in the lower left corner of R.
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Figure 11. Configurations (i) R and (ii) B ∈ BkJ(X)

If E(0,0) = Ei, then choose a configuration B(0,0) ∈ P (L)i as in Figure 8(ii) to
glue to L. This new block B(0,0) together with R forms two new L-configurations
as shown in 11(ii). One will be above B(0,0) and one will be to the right of it.
Glue in followers of each L from the partition elements corresponding to E(1,0) and
E(0,1). Continuing in this manner, complete a block B ∈ BkJ(X) that maps to E
under the block map. �

Johnson and Madden give the following example of a Z
2 SFT X, defined by

the matrices below, that is corner gluing with h(X) > log 2 [JM]. Johnson and
Madden’s theorem tells us only that X is the finite-to-one factor of an SFT that
factors onto the full shift, and they ask whether X itself can factor onto X[2].
Theorem 1.1 tells us that it does.

Ah =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 0

⎞
⎟⎟⎠ Av =

⎛
⎜⎜⎝

1 1 1 1
1 0 1 0
1 0 0 1
1 0 0 0

⎞
⎟⎟⎠

It is still not known whether every Z
d SFT with h(X) > log N factors onto the

full N -shift.
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