PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 8, August 2009, Pages 2613–2621 S 0002-9939(09)09381-2 Article electronically published on March 25, 2009

A CLASS OF \mathbb{Z}^d SHIFTS OF FINITE TYPE WHICH FACTORS ONTO LOWER ENTROPY FULL SHIFTS

ANGELA DESAI

(Communicated by Jane M. Hawkins)

ABSTRACT. We prove that if a \mathbb{Z}^d shift of finite type with entropy greater than $\log N$ satisfies the corner gluing mixing condition of Johnson and Madden, then it must factor onto the full N-shift.

1. Introduction

A basic question in symbolic dynamics is the question of when one shift space can factor onto another. There are well-known results addressing this question for \mathbb{Z} shifts of finite type (SFTs). In particular, any \mathbb{Z} SFT with entropy at least $\log N$ factors onto the full N-shift.

The situation is more complicated for d>1. Often, we must impose further requirements, such as mixing conditions, to achieve similar results. Robinson and Sahin [RS] extended Krieger's universal model results to d>1 for SFTs with the uniform filling property. Lightwood [L1, L2] extended the Krieger Embedding Theorem [Kr] to \mathbb{Z}^d subshifts with d>1 for a class of SFTs called square-filling-mixing.

Introducing a new mixing condition called corner gluing, Johnson and Madden [JM] proved that any \mathbb{Z}^d corner gluing SFT with entropy greater than $\log N$ has a finite extension which factors onto the full N-shift. They then posed the question of whether the extension is necessary. We prove that it is not.

Theorem 1.1. Let X be a corner gluing \mathbb{Z}^d SFT, and suppose $h(X) > \log N$. Then there exists a factor map $\varphi: X \to X_{[N]}$.

2. Definitions and notation

Let $\mathcal{A} = \{0, 1, ..., N\}$, and let $X_{[N]} = \mathcal{A}^{\mathbb{Z}^d}$, $d \in \mathbb{N}$. Give \mathcal{A} the discrete topology, and then give $X_{[N]}$ the product topology. A point $x \in X_{[N]}$ can be viewed as an infinite d-dimensional array of symbols: for $\mathbf{w} \in \mathbb{Z}^d$, let $x_{\mathbf{w}}$ be the symbol in location \mathbf{w}

For each $\mathbf{v} \in \mathbb{Z}^d$, define a shift map $\sigma_{\mathbf{v}} : x \mapsto y$ by $y_{\mathbf{w}} = x_{\mathbf{v}+\mathbf{w}}$, and let σ be the \mathbb{Z}^d action $\{\sigma_{\mathbf{v}}\}_{\mathbf{v} \in \mathbb{Z}^d}$. The system $(X_{[N]}, \sigma)$ is the full \mathbb{Z}^d N-shift. For $R \subset \mathbb{Z}^d$, a configuration on R is some $\mathcal{M} \in \mathcal{A}^R$. For $x \in X_{[N]}$, denote the configuration occurring at R by x_R .

Received by the editors March 28, 2007, and, in revised form, September 22, 2007. 2000 Mathematics Subject Classification. Primary 37B10; Secondary 37B40. Key words and phrases. Shift of finite type, entropy.

If X is a closed, shift-invariant subset of $X_{[N]}$, then $(X, \sigma|_X)$ is called a \mathbb{Z}^d shift space, or subshift. Let \mathcal{A}_X be the symbol set of X. A configuration $\mathcal{M} \in \mathcal{A}^R$ is allowed in X if there is some $x \in X$ such that $x_R = \mathcal{M}$. Then we say that \mathcal{M} occurs in x.

The most important subshifts are the shifts of finite type. A \mathbb{Z}^d subshift X is a *shift of finite type* (SFT) if it can be defined by forbidding a finite set of configurations $\mathcal{F} = \{F_1, F_2, ..., F_m\}$ occurring in $(\mathcal{A}_X)^{\mathbb{Z}^d}$. X is a *one-step shift of finite type* if a point $x \in (\mathcal{A}_X)^{\mathbb{Z}^d}$ is allowed in X whenever $x_{\{\mathbf{m},\mathbf{n}\}}$ is not in \mathcal{F} for all $\mathbf{m}, \mathbf{n} \in \mathbb{Z}^d$ with $\|\mathbf{m} - \mathbf{n}\| = 1$, where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^d . Every SFT may be recoded to be a one-step shift of finite type. We will assume below that all shifts of finite type are one-step.

Let $\mathbf{c} = (1, 1, ..., 1) \in \mathbb{Z}^d$. Let $\Lambda(n) = \{\mathbf{v} = (v_1, ..., v_d) \in \mathbb{Z}^d : 0 \leq v_i < n\}$, the square of length n with lower left corner at the origin. Let $\overline{\Lambda}(2n-1) = \{\mathbf{v} = (v_1, ..., v_d) \in \mathbb{Z}^d : -n < v_i < n\}$, the square of length 2n-1 centered at the origin. An n-block is a configuration on $\Lambda(n)$. Let $B_n(X)$ be the set of n-blocks allowed in X. Let $B(X) = \bigcup_n B_n(X)$.

If X and Y are subshifts, then a map $\phi: X \to Y$ is a block code if for $x \in X$, $\phi(x)_{\mathbf{v}}$ depends on some finite block configuration occurring in x, centered at \mathbf{v} for all $\mathbf{v} \in \mathbb{Z}^{\mathbf{d}}$. That is, if there is a map $\Phi: B_{2n-1}(X) \to \mathcal{A}_Y$ such that $\phi(x)_{\mathbf{v}} = \Phi(x_{\overline{\Lambda}(2n-1)+\mathbf{v}})$ for all $\mathbf{v} \in \mathbb{Z}^{\mathbf{d}}$. The block codes from X to Y are exactly the continuous, shift-commuting maps. If ϕ is one-to-one, then it is called an embedding. If ϕ is onto, it is called a factor code, or a factor map. If ϕ is both one-to-one and onto, then it is a conjugacy. A subshift X is a sofic shift if there exists an SFT Y and a factor code $\pi: Y \to X$.

The topological entropy of a d-dimensional subshift X is defined to be

$$h(X) = \lim_{n \to \infty} \frac{1}{n^d} \log |B_n(X)|.$$

3. Proof of Theorem 1.1

For $\mathbf{k} = (k_1, k_2, ..., k_d) \in \mathbb{N}^d$, let $R_{\mathbf{k}} = \{(a_1, a_2, ..., a_d) \in \mathbb{Z}^d : 0 \le a_i < k_i \text{ for } 1 \le i \le d\}$.

Definition 3.1 ([JM]). A \mathbb{Z}^d SFT X is corner gluing if there exists a gluing constant g > 0 such that given any two finite subsets $E_1, E_2 \subset \mathbb{Z}^d$ as defined below and any two allowable configurations C_1 and C_2 on these subsets, there exists a point $x \in X$ with $x_{E_1} = C_1$ and $x_{E_2} = C_2$. Here $E_1 = R_{\mathbf{k}} + (\mathbf{k}' - \mathbf{k})$ for some $\mathbf{k} \in \mathbb{N}^d$ and some $\mathbf{k}' \in \mathbb{N}^d$ with $\mathbf{k}' > \mathbf{k} + g\mathbf{c}$, and $E_2 = R_{\mathbf{k}'} \setminus R_{\mathbf{k}+g\mathbf{c}}$ (see Figure 1 for the case where d = 2).

We can also think about this in terms of creating a larger rectangular configuration on $R_{\mathbf{k}'}$ containing \mathcal{C}_1 and \mathcal{C}_2 and some uncontrolled gluing symbols between them. Then we say we are gluing \mathcal{C}_1 to \mathcal{C}_2 . We refer to the configurations used to glue them together as gluing strips.

In the proof of Theorem 1.1, we will need to make use of the following result:

Theorem 3.2 ([D]). Let X be an SFT with h(X) > 0. Then there exists a family of SFT subsystems of X whose entropies are dense in [0, h(X)].

We also need the following lemma, which constructs a marker square M that is aperiodic for low periods. For $R \subset \mathbb{Z}^d$ and $\mathbf{v} \in \mathbb{Z}^d \setminus \{0\}$, a configuration \mathcal{C} on R

FIGURE 1. Corner gluing

is said to be **v**-periodic if for every pair $\mathbf{w}, \mathbf{w} + \mathbf{v} \in R$ we have $C_{\mathbf{w}} = C_{\mathbf{w}+\mathbf{v}}$. For simplicity, throughout this section we will give arguments only for the case where d = 2. The proofs for $d \neq 2$ are similar.

Lemma 3.3. Let X be a corner gluing \mathbb{Z}^d SFT with h(X) > 0, and let g be the gluing constant. Then for $f, c \in \mathbb{N}$, if $F \in B_f(X)$, then there exists a square configuration $M \in B(X)$ as in Figure 2, such that M is not \mathbf{v} -periodic whenever $\|\mathbf{v}\|_{\infty} < c$.

FIGURE 2. Marker square M

Proof. First we will construct a rectangular configuration Q such that Q is not \mathbf{v} -periodic whenever $\|\mathbf{v}\|_{\infty} < c$. Choose some $Q_0 \in B_c(X)$. Consider the $\mathbf{v} \in \mathbb{Z}^2$ such that $\|\mathbf{v}\|_{\infty} < c$ and Q_0 is \mathbf{v} -periodic. Enumerate these as $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_p}$.

Let $i \geq 1$. Assume that $Q_{i-1} \in B_l(X)$, for some $l \in \mathbb{N}$, is not $\mathbf{v_j}$ -periodic for $j \leq i-1$ and occurs with lower left corner at the origin. Let $\mathbf{v_i} = (a,b)$. By symmetry, we may assume $a \geq 0$. The block Q_{i-1} will be the corner of the block Q_i , as pictured in Figure 3, according to the following cases: (i) a, b > 0, (ii) a = 0, b > 0, (iii) a > 0, b = 0, and (iv) a > 0, b < 0.

Consider case (i). Choose $k \in \mathbb{N}$ large enough that ka, kb > l + g and suppose α is the symbol occurring at the lower left corner of Q_{i-1} . Since h(X) > 0, there is some $\beta \in \mathcal{A}_X$ with $\beta \neq \alpha$. Extend Q_{i-1} to an L-shape shown by the dashed lines in Figure 3(i), then glue the symbol β in at position $k\mathbf{v_i}$. Extend the resulting rectangle to a square Q_i . Q_i is not $\mathbf{v_i}$ -periodic because $\mathbf{v_i}$ -periodicity would imply $\alpha = \beta$. As Q_i has Q_{i-1} as a subblock, it is not $\mathbf{v_j}$ -periodic for j < i-1 either. For the remaining three cases the argument is the same (see Figure 3 (ii),(iii),(iv)). The construction of Q_i is the same, based on the corresponding figures. End this process with $Q = Q_p$. Then Q will not be \mathbf{v} -periodic for $\|\mathbf{v}\|_{\infty} < c$.

FIGURE 3. Construction of Q_i

FIGURE 4. Construction of M, step 1

Now construct the marker square M as follows. Extend F to an L-shaped configuration as in Figure 4(i). Then glue in Q as in Figure 4(ii), where the shaded region is the gluing region of width g necessary in the definition of corner gluing.

Extend this configuration to another L-shaped configuration, represented in Figure 5(i) with dashed lines. Choose some rectangle extension of F of the form seen in Figure 5(ii). Glue this rectangle to the L-shaped configuration to form a configuration as in Figure 5(iii).

Next, extend this rectangle to another L-shape as in Figure 6(i), and choose some rectangle as in Figure 6(ii) with an F at the right and left ends. Note that such a configuration is allowed because there is a point which contains it in Figure 6(i). Glue these configurations together to form the square in Figure 6(iii). Take M to be the subblock with an F at each corner.

With this lemma, we are ready to prove Theorem 1.1, using methods similar to those used by Johnson and Madden in [JM].

Proof of Theorem 1.1. By Theorem 3.2, there is a proper subsystem Y of finite type in X with $h(Y) > \log N$. Choose some square configuration $F \in B(X)$ that

 \mathbb{Z}^d SUBSHIFTS 2617

Figure 5. Construction of M, step 2

Figure 6. Construction of M, step 3

is forbidden in Y, and call its side length f. Construct a square configuration M using F as in Lemma 3.3 for c=2(f+g). Denote the side length of M by m.

FIGURE 7. Gluing M and G

Given the marker square M and any rectangular configuration G allowed in Y of height m and arbitrary length, first extend M to an L-shaped configuration as in Figure 7(i). Then glue this configuration to G to get the new configuration seen in Figure 7(ii).

FIGURE 8. Configurations (i) \mathcal{L} and (ii) \mathcal{C}

Continue this process to construct a configuration \mathcal{L} of the form seen in Figure 8(i). The blocks labeled G can be filled in with any configuration of the appropriate size allowed in Y (we think of these as 'good' blocks), and the shaded regions are the necessary gluing strips (which may depend on the choice of G-blocks). By the *inside corner* of \mathcal{L} , we mean the upper right corner of the block M in the lower left corner of \mathcal{L} .

Glue a block of the type in Figure 8(ii) to \mathcal{L} to get a legal block \mathcal{D} of the type in Figure 9; \mathcal{C} , the complement of \mathcal{L} in \mathcal{D} , will be called a follower of \mathcal{L} . We do not control the symbols in the gluing strips, but all G-configurations of the correct size will appear in follower blocks for some choice of gluing strip configuration. Let l be the side length of the central block G in \mathcal{D} , and J = l + 2g + m; then $\mathcal{C} \in B_J(X)$. Each \mathcal{L} has at least $|B_l(Y)|$ followers and because $h(Y) > \log N$, we have $|B_l(Y)| > N^{J^2}$ for large enough l. For each \mathcal{L} , partition its followers into N^{J^2} nonempty sets, $P(\mathcal{L})_1, P(\mathcal{L})_2, ..., P(\mathcal{L})_{N^{J^2}}$, depending only on the follower's central G-block.

Claim. Let $x \in X$. If blocks \mathcal{D} and \mathcal{D}' of the form in Figure 9 occur at different places in x, then their follower portions, \mathcal{C} and \mathcal{C}' , do not overlap.

Proof of claim. Without loss of generality, assume \mathcal{D} occurs with lower left corner at the origin, and \mathcal{D}' occurs with lower left corner at \mathbf{v} . Suppose \mathcal{C} and \mathcal{C}' do overlap. We know that \mathbf{v} is not such that $\|\mathbf{v}\|_{\infty} < c$, as that would contradict the lack of small periodicity of M assured by Lemma 3.3. But the lower left corner M of \mathcal{D}' cannot overlap too much with any other M in \mathcal{D} either, and we are assuming

Figure 9. Configuration \mathcal{D}

that \mathcal{C} and \mathcal{C}' overlap. Therefore $\|\mathbf{v}\|_{\infty} \leq J - c$. Now since M was constructed with an F at each corner and c = 2(f+g), at least one subblock F of \mathcal{D}' must occur entirely in a 'good' block G of \mathcal{D} . However these blocks were chosen from the blocks allowed in Y and so cannot contain F as a subblock. Thus \mathcal{C} and \mathcal{C}' cannot overlap.

Consider the *J*-blocks of $X_{[N]}$. Enumerate them as $E_1, E_2, ..., E_{N^{J^2}}$. Now we are ready to construct a factor map $\varphi: X \to X_{[N]}$. We will define φ so that it essentially maps blocks from $P(\mathcal{L})_i$ to E_i for each configuration \mathcal{L} and $i=1,2,...,N^{J^2}$.

We make this precise as follows. For $x \in X$, suppose a configuration \mathcal{D} as in Figure 9 occurs in $x_{\Lambda(2J-1)+\mathbf{v}-J\mathbf{c}}$, the (2J-1)-block centered at \mathbf{v} , and $x_{\mathbf{v}}$ is in the follower portion of \mathcal{D} . By the claim, $x_{\mathbf{v}}$ occurs in the follower portion of no other such block \mathcal{D}' . Therefore, there exist unique $\mathbf{u}, \mathbf{w} \in \mathbb{Z}^2$ such that $\mathbf{v} = \mathbf{u} + \mathbf{w}$, where \mathcal{L} has its inside corner at \mathbf{u} , and $0 < w_i \leq J$ for i = 1, 2. If $x_{\mathbf{v}}$ occurs in $\mathcal{C} \in P(\mathcal{L})_j$, then we define $\varphi(x)_{\mathbf{v}}$ to be the symbol from coordinate \mathbf{w} of E_j . If $x_{\mathbf{v}}$ is not in a follower, then $\varphi(x)_{\mathbf{v}} = 0$.

FIGURE 10. $E \in B_{kJ}(X_{[N]})$

Claim. φ is onto.

Proof of claim. Let $E \in B_{kJ}(X_{[N]})$ be as in Figure 10. Choose a configuration \mathcal{R} of the form shown in Figure 11(i) whose height and width are both kJ+m+g. We will glue configurations to R that will result in a square configuration which maps to E. Consider the configuration \mathcal{L} in the lower left corner of \mathcal{R} .

FIGURE 11. Configurations (i) \mathcal{R} and (ii) $B \in B_{kJ}(X)$

If $E_{(0,0)} = E_i$, then choose a configuration $B_{(0,0)} \in P(\mathcal{L})_i$ as in Figure 8(ii) to glue to \mathcal{L} . This new block $B_{(0,0)}$ together with \mathcal{R} forms two new \mathcal{L} -configurations as shown in 11(ii). One will be above $B_{(0,0)}$ and one will be to the right of it. Glue in followers of each \mathcal{L} from the partition elements corresponding to $E_{(1,0)}$ and $E_{(0,1)}$. Continuing in this manner, complete a block $B \in B_{k,J}(X)$ that maps to E under the block map.

Johnson and Madden give the following example of a \mathbb{Z}^2 SFT X, defined by the matrices below, that is corner gluing with $h(X) > \log 2$ [JM]. Johnson and Madden's theorem tells us only that X is the finite-to-one factor of an SFT that factors onto the full shift, and they ask whether X itself can factor onto $X_{[2]}$. Theorem 1.1 tells us that it does.

$$\mathbf{A_h} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \qquad \mathbf{A_v} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

It is still not known whether every \mathbb{Z}^d SFT with $h(X) > \log N$ factors onto the full N-shift.

References

- [B] M. Boyle, Lower entropy factors of sofic systems, Erg. Th. & Dyn. Sys. 3 (1983), 541-557.
 MR753922 (85m:54014)
- [D] A. Desai, Subsystem entropy for \mathbb{Z}^d sofic shifts, Indag. Math. (N.S.) 17 (2006), 353-359. MR2321105
- [DGS] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Springer Lec. Notes in Math. 527, Springer-Verlag (1976). MR0457675 (56:15879)
- [JM] A. Johnson and K. Madden, Factoring higher-dimensional shifts of finite type onto the full shift, Erg. Th. & Dyn. Syst. 25 (2005), 811-822. MR2142947 (2006c:37008)
- [Kr] W. Krieger, On the subsystems of topological Markov chains, Erg. Th. & Dyn. Syst. 2 (1982), 195-202. MR693975 (85b:28020)
- [L1] S. Lightwood, Morphisms from non-periodic Z² subshifts. I: Constructing embeddings from homomorphisms, Erg. Th. & Dyn. Syst. 23 (2003), 587-609. MR1972240 (2004a:37022)

- [L2] S. Lightwood, Morphisms from non-periodic \mathbb{Z}^2 subshifts. II: Constructing homomorphisms to square-filling mixing shifts of finite type, Erg. Th. & Dyn. Syst. **24** (2004), 1227-1260. MR2085910 (2005c:37021)
- [LM] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press (1995). MR1369092 (97a:58050)
- [M] B. Marcus, Factors and extensions of full shifts, Monatsh. Math. 88 (1979), 239-247.
 MR553733 (81g:28023)
- [RS] E. A. Robinson, Jr., and A. Şahin, Modeling ergodic, measure preserving actions on Z^d shifts of finite type, Monatsh. Math. 132 (2001), 237-253. MR1844076 (2002e:37005)

Department of Biology, Chemistry, and Mathematics, University of Montevallo, Montevallo, Alabama 35115

 $Current\ address:$ Department of Mathematics, Anne Arundel Community College, 101 College Parkway, Arnold, Maryland 21012

 $E ext{-}mail\ address: avdesai@aacc.edu}$