PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 8, August 2009, Pages 2809–2812 S 0002-9939(09)09657-9 Article electronically published on March 16, 2009

ADDENDUM: LACK OF UNIFORMLY EXPONENTIAL STABILIZATION FOR ISOMETRIC C_0 -SEMIGROUPS UNDER COMPACT PERTURBATION OF THE GENERATORS IN BANACH SPACES

LI-XIN LIU AND FAMING GUO

(Communicated by Marius Junge)

Let X be an infinite-dimensional Banach space, $\{S(t)\}_{t\geq 0}$ be a C_0 -semigroup with the generator (A, D(A)) on X, K be a compact operator on X, and $\{S_K(t)\}_{t\geq 0}$ be the C_0 -semigroup generated by (A + K, D(A)).

In [3] we discussed the non-exponential stabilization for isometric C_0 -semigroups under compact perturbation, but a slip has occurred in the proof of Theorem 3. More precisely, we have used the isometricity of the adjoint semigroup $\{S^*(t)\}_{t\geq 0}$ while the isometricity of the C_0 -semigroup $\{S(t)\}_{t\geq 0}$ is assumed. However, there are some isometric C_0 -semigroups whose adjoint semigroups are not isometric; for a concrete example, we refer to [1] and [2]. Therefore, the statement of Theorem 3 in [3] must be changed as follows.

Theorem 1. Let $\{S(t)\}_{t\geq 0}$ be an isometric C_0 -semigroup on an infinite-dimensional reflexive Banach space X. Then, the C_0 -semigroup $\{S_K(t)\}_{t\geq 0}$ cannot be uniformly exponentially stable.

Proof. Let $U := \{x \in X : ||x|| \le 1\}$ be the unit ball in X. Since X is an infinite-dimensional Banach space, then U is not a compact set in X. Thus, there exist $\epsilon_0 > 0$ and $y_j \in U, j = 1, 2, ...$, such that

$$||y_i - y_j|| \ge \epsilon_0 > 0$$

for all $i \neq j$.

For the compactness of operator K, we deduce that K^* is compact and $R(K^*)$, the range of operator K^* , is separable, and consequently, $\{S^*(\tau)K^*x^*: x^* \in X^*\}$ is separable for each $\tau \geq 0$. Letting Q^+ be the set of non-negative rational numbers, we have that Q^+ is denumerable, and hence

$$\bigcup_{\tau \in Q^+} \{ S^*(\tau) K^* x^* : \ x^* \in X^* \}$$

is also separable. Therefore, $V^* := span\{S^*(\tau)K^*x^* : x^* \in X^*, \tau \geq 0\}$ is separable, or equivalently, there exists a countable subset $\{v_1^*, v_2^*, ..., v_m^*, ...\}$ which is dense in V^* . From the uniform boundedness of $\{y_k\}_{k=1}^{\infty}$ and the diagonal method, there is a subsequence $\{y_{j_n}\}_{n=1}^{\infty}$ of $\{y_j\}_{j=1}^{\infty}$ such that $\{(v_m^*(y_{j_n})\}_{n=1}^{\infty}$ is convergent

Received by the editors September 14, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A50, 47A55.

The original paper appeared in Proc. Amer. Math. Soc. 135(2007), 1881-1887.

for any v_m^* . Therefore, from $||y_{j_n}|| \leq 1$ and the denseness of $\{v_m^*\}_{m=1}^{\infty}$ in V^* , it follows that $\{x^*(y_{j_n})\}_{n=1}^{\infty}$ is convergent for any $x^* \in \overline{V^*}$.

Defining a map $f_0: \overline{V^*} \to C$ by

$$f_0(x^*) := \lim_{n \to \infty} x^*(y_{j_n})$$

for $x^* \in \overline{V^*}$, we can easily see that f_0 is a continuous and linear functional on $\overline{V^*}$. From the Hahn-Banach Theorem and the reflexivity of X, there exists a bounded linear functional $f \in X^{**}(=X)$ such that

$$f|_{\overline{V^*}} = f_0$$
 and $||f|| = ||f_0||$.

Furthermore, we can deduce that

(1)
$$KS(\tau)y_{i_n} \longrightarrow KS(\tau)f \text{ as } n \to \infty$$

for each $\tau \geq 0$. In fact, assume that there exist $\eta > 0$, $\tau_0 > 0$ and a subsequence $\{y_{j_{n_k}}\}_{k=1}^{\infty}$ of $\{y_{j_n}\}_{n=1}^{\infty}$ such that

$$||KS(\tau_0)y_{j_{n_k}} - KS(\tau_0)f|| > \eta, \ k = 1, 2,$$

Hence, there exists $x_k^* \in X^*$ with $||x_k^*|| = 1$ such that

(2)
$$|x_k^*(KS(\tau_0)y_{j_{n_k}}) - x_k^*(KS(\tau_0)f)| > \frac{\eta}{2}, \ k = 1, 2, \dots$$

Since K^* is compact, without loss of generality, there exists $y_0^* \in X^*$ such that $K^*x_k^* \longrightarrow y_0^*$ as $k \to \infty$, and then $S^*(\tau_0)y_0^* \in \overline{V^*}$. Therefore, we deduce that

$$|x_k^*(KS(\tau_0)y_{j_{n_k}}) - x_k^*(KS(\tau_0)f)|$$

$$= |(S^*(\tau_0)K^*x_k^*)(y_{j_{n_k}}) - (S^*(\tau_0)K^*x_k^*)(f)|$$

$$\leq |(S^*(\tau_0)K^*x_k^*)(y_{j_{n_k}}) - (S^*(\tau_0)y_0^*)(y_{j_{n_k}})| + |(S^*(\tau_0)y_0^*)(y_{j_{n_k}}) - (S^*(\tau_0)y_0^*)(f_0)| + |(S^*(\tau_0)y_0^*)(f) - (S^*(\tau_0)K^*x_k^*)(f)|$$

$$\leq (1 + ||f_0||) ||K^*x_k^* - y_0^*|| + |(S^*(\tau_0)y_0^*)(y_{j_{n_k}}) - (S^*(\tau_0)y_0^*)(f_0)||$$

$$\longrightarrow 0 (k \to \infty),$$

where we have used $f|_{\overline{V^*}} = f_0$, the isometricity of $\{S^*(t)\}_{t\geq 0}$ and the reflexivity of X. There is a contradiction with (2) which shows the validity of (1).

Noting that $||y_i - y_j|| \ge \epsilon_0$ for $i \ne j$, we may assume that $||y_{j_n} - f|| > \frac{\epsilon_0}{2}$; and

letting $x_n = \frac{y_{j_n} - f}{\|y_{j_n} - f\|}$, we deduce from (1) and the definition of x_n that

(3)
$$||x_n|| = 1$$
 and $||KS(\tau)x_n|| \to 0 \ (n \to \infty)$

for each $\tau \geq 0$.

Let $f_{n,m}(\tau): [0, \infty) \mapsto X$ be defined by

$$f_{n,m}(\tau) = \begin{cases} S_K(\tau)KS(m-\tau)x_n, & \tau \in [0, m], \\ 0, & \tau \in (m, \infty); \end{cases}$$

thus, from (3), we have

$$||f_{n,m}(\tau)|| \to 0 \ (n \to \infty)$$

for m = 1, 2, ... and $\tau \in [0, \infty)$. Therefore, by the diagonal method, there exists a subsequence $\{x_{n_m}\}_{m=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ such that

$$g_m(\tau) := f_{n_m,m}(\tau) \to 0 \text{ as } m \to \infty$$

for $\tau \in [0, \infty)$.

Suppose on the contrary that $\{S_K(t)\}_{t\geq 0}$ is uniformly exponentially stable. Then there exist constants $M_K\geq 1$ and $w_K>0$ such that

$$||S_K(t)|| \leq M_K e^{-w_K t}$$

for all $t \geq 0$. Thus,

$$||g_m(\tau)|| \leq \begin{cases} M_K ||K|| e^{-w_K \tau}, & \tau \in [0, m], \\ 0, & \tau \in (m, \infty). \end{cases}$$

Hence, we conclude that

$$\lim_{m \to \infty} \int_0^\infty \|g_m(\tau)\| d\tau = \lim_{m \to \infty} \int_0^m \|S_K(\tau)KS(m-\tau)x_{n_m}\| d\tau = 0$$

by Lebesgue's dominated convergence theorem.

From the bounded perturbation theorem of C_0 -semigroups, it follows that

$$S_K(t)x = S(t)x + \int_0^t S_K(\tau)KS(t-\tau)xd\tau, \ x \in X, \ t \ge 0,$$

which yields that

$$\lim_{m \to \infty} \|S(m)x_{n_m}\|$$

$$\leq \lim_{m \to \infty} \left(\|S_K(m)x_{n_m}\| + \|\int_0^m S_K(\tau)KS(m-\tau)x_{n_m}d\tau\| \right)$$

$$= 0.$$

On the other hand, $\{S(t)\}_{t\geq 0}$ is an isometric C_0 -semigroup. Then we have $||S(m)x_{n_m}|| = ||x_{n_m}|| = 1$ for all m. There is a contradiction with (4), which ends the proof of Theorem 1.

Finally, we recall the following result in Luo, Weng, and Feng [4].

Theorem 2. Let X be a reflexive Banach space, and let the adjoint semigroup $\{S^*(t)\}_{t\geq 0}$ be strongly stable. If $\{S_K(t)\}_{t\geq 0}$ is uniformly exponentially stable, then $\{S(t)\}_{t\geq 0}$ is also uniformly exponentially stable.

It is well known that a C_0 -semigroup $\{S(t)\}_{t\geq 0}$ is uniformly exponentially stable if and only if $||S(t_0)|| < 1$ for some $t_0 > 0$. Therefore, the following natural question arises: Can a C_0 -semigroup whose adjoint semigroup is isometric be uniformly exponentially stabilized by a compact operator? Actually, the following results have been proved in [3].

Theorem 3. If $\{S(t)\}_{t\geq 0}$ is a C_0 -semigroup on an infinite-dimensional Banach space X and its adjoint semigroup $\{S^*(t)\}_{t\geq 0}$ is an isometric semigroup, then the C_0 -semigroup $\{S_K(t)\}_{t\geq 0}$ cannot be uniformly exponentially stable for any compact operator K on X.

Proof. Suppose that $\{S_K(t)\}_{t\geq 0}$ is uniformly exponentially stable. Then there exist constants $M_K\geq 1$ and $w_K>0$ such that

$$||S_K(t)|| \le M_K e^{-w_K t}, \quad t \ge 0.$$

From the proof of Theorem 3 in [3], as the notation in [3], there exists a sequence $\{x_{n_m}^*\}_{m=1}^{\infty} \subset X^*$ with $\|x_{n_m}^*\| = 1$ such that

$$\lim_{m \to \infty} \int_0^m \|S_K^*(\tau) K^* S^*(m - \tau) x_{n_m}^* \| d\tau = 0.$$

From the bounded perturbation theorem of C_0 -semigroups, we deduce that

$$\lim_{m \to \infty} \|S^*(m)x_{n_m}^*\|$$

$$\leq \lim_{m \to \infty} \left(\|S_K^*(m)x_{n_m}^*\| + \|\int_0^m S_K^*(\tau)K^*S^*(m-\tau)x_{n_m}^*d\tau\| \right)$$

$$\leq \lim_{m \to \infty} \left(M_K e^{-w_K m} + \int_0^m \|S_K^*(\tau)K^*S^*(m-\tau)x_{n_m}^*\|d\tau \right)$$

$$= 0$$

There is a contradiction with the isometricity of $\{S^*(t)\}_{t>0}$.

References

- R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, 1995. MR1351248 (96i:93001)
- [2] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, 2000. MR1721989 (2000i:47075)
- [3] F. M. Guo, K. Guo, and C. L. Zhang, Lack of uniformly exponential stabilization for isometric C_0 -semigroups under compact perturbation of the generators in Banach spaces, $Proc.\ Amer.\ Math.\ Soc.\ 135(2007),\ 1881-1887.\ MR2286100\ (2007m:47096)$
- [4] Y. H. Luo, S. P. Weng, and D. X. Feng, Stability of linear systems in Banach spaces, Kexue Tongbao, 43(1998), 1676-1677 (in Chinese). MR1671371

Department of Mathematics and Physics, Panzhihua University, Panzhihua, Sichuan 617000, People's Republic of China

E-mail address: pzhliulixin@yahoo.com.cn

Department of Applied Mathematics, Chengdu University of Technology, Chengdu, Sichuan 610059, People's Republic of China

 $E ext{-}mail\ address: guofm@cdut.edu.cn}$