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THE SCATTERING MATRIX
FOR THE HILBERT MODULAR GROUP

RIAD MASRI

(Communicated by Ken Ono)

Abstract. In this paper, we compute the scattering matrix for the Hilbert
modular group over any number field K. We then compute the determinant

of the scattering matrix and show it is a ratio of completed Dedekind zeta
functions associated to the Hilbert class field of K. This generalizes work of
Efrat and Sarnak in the imaginary quadratic case.

1. Introduction and statements of results

Let X be a non-compact, finite volume quotient of a rank one symmetric space
G/K by a discrete subgroup Γ < G. The eigenvalues λ corresponding to cuspidal
eigenfunctions of the Laplacian ∆ in L2(X) form a discrete set. Let N(T ) count
the number of eigenvalues λ ≤ T . In order to prove Weyl’s law for N(T ), one must
estimate the contribution of the continuous spectrum in the Selberg trace formula,
which involves the logarithmic derivative of the determinant of a scattering matrix
Φ(s) (see [Sa]). In particular, if one can prove that φ(s) = det(Φ(s)) is a ratio of
entire functions of order one, standard methods from analytic number theory can
be used to deduce Weyl’s law. While this can be accomplished using representation-
theoretic methods (see [R]), it is often useful to have an explicit formula for φ(s),
and for this purpose classical methods work best.

In this paper, we compute the scattering matrix and determinant for the Hilbert
modular group over any number field. In order to state our results, we fix the
following notation. Let K be a number field of degree N = r1 + 2r2 over Q.
Let Q2

K be the symmetric space of positive 2-forms Q over K, which consists of
(r1+r2)-tuples Q = (Q(1), . . . , Q(r1+r2)) of positive definite 2×2 matrices such that
the first r1 are real symmetric and the second r2 are complex Hermitian. Define
the quotient X = SL2(OK)\SQ2

K , where SQ2
K is the determinant one subspace of

Q2
K . It is well known that there is a bijection between the cusp classes [xi] of X and

the ideal classes [ai] of K. Let cl(OK) be the ideal class group and h = #cl(OK)
be the class number of K. There is an Eisenstein series E[xi](Q, s) corresponding
to each cusp class [xi] which satisfies a functional equation under the involution
(Q, s) �→ (Q−1, 1 − s). Therefore, the vector Eisenstein series

−→
E (Q, s) =

(
E[x1] (Q, s) , . . . , E[xh] (Q, s)

)t
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satisfies a functional equation of the form
−→
E (Q, s) = Φ(s) · −→E

(
Q−1, 1 − s

)
for some h × h matrix Φ(s). The scattering matrix is defined to be Φ(s), and the
scattering determinant is defined to be φ(s) = det(Φ(s)).

Let

G(s) =
(
2−r2d

1
2
Kπ−N

2

)s

Γ
(s

2

)r1

Γ(s)r2 ,

where dK is the absolute value of the discriminant of K. Let

||Q|| =
N∏

j=1

∣∣∣det(Q(j))
∣∣∣

be the norm of the determinant of Q, where Q(r1+r2+j) := Q(r1+j) for j = 1, . . . , r2,
and define the h × h diagonal matrix

D(Q) =

⎛⎜⎝||Q||
. . .

||Q||

⎞⎟⎠ .

Let

ζ[a−1
i aj ]

(s) =
∑

(0) �=b∈[a−1
i aj ]

NK/Q(b)−s, Re(s) > 1,

be the (i, j)-th entry of the h× h matrix
(
ζ[a−1

i aj ]
(s)

)
of ideal class Dedekind zeta

functions. Finally, let P be the h × h permutation matrix corresponding to the
involution of cl(OK) given by a → a∗.

In the following theorem, we give an explicit formula for the scattering matrix
Φ(s) in the functional equation satisfied by

−→
E (Q, s).

Theorem 1.1. The vector Eisenstein series
−→
E (Q, s) satisfies the functional equa-

tion
−→
E (Q, s) = Φ(s) · −→E

(
Q−1, 1 − s

)
,

where the h × h scattering matrix Φ(s) is given by

Φ(s) =
G(2(1 − s))

G(2s)

√
D(Q−1) ·

(
ζ[a−1

i aj ]
(2s)

)−1

· P ·
(
ζ[a−1

i aj ]
(2(1 − s))

)
.

Using that P2 = Ih, we obtain from Theorem 1.1 the following functional equa-
tion for Φ(s).

Corollary 1.2. The scattering matrix Φ(s) satisfies the functional equation

Φ(s)Φ(1 − s) = D(Q−1).

In the following theorem, we give an explicit formula for the scattering determi-
nant φ(s) = det(Φ(s)).

Theorem 1.3. Let m be the order of the group cl(OK)[2] of 2-torsion in cl(OK).
Then

φ(s) = (−1)
h−m

2
∣∣∣∣Q−1

∣∣∣∣h
2 ξH(2(1 − s))

ξH(2s)
,
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where ξH(s) = G(s)hζH(s) is the completed Dedekind zeta function of the Hilbert
class field H of K.

Remark 1.4. In [ES], Efrat and Sarnak computed the scattering matrix and de-
terminant for PSL2(OD)\H3, where H3 is hyperbolic three-space and PSL2(OD) is
the Bianchi group corresponding to the imaginary quadratic field K = Q(

√
−D),

D �= 1, 3. Theorem 1.3 generalizes [ES, Theorem 1] to arbitrary number fields.
Note that the Eisenstein series

−→
E (w, s) studied in [ES] is scaled so that the critical

line is Re(s) = 1 and normalized so that the fundamental domain has volume one.
In Proposition 2.7, we give the precise relationship between

−→
E (Q, s) and

−→
E (w, s).

Remark 1.5. It can be shown using genus theory that if K is imaginary quadratic,
then m = 2t−1, where t is the number of prime divisors of dK (see [H, Theo-
rem 132]).

Finally, in the following theorem we give an explicit formula for the trace of Φ(s)
at s = 1

2 .

Theorem 1.6. With notation as above,

Tr(Φ(
1
2
)) =

∣∣∣∣Q−1
∣∣∣∣ 1

2 (m − 2) .

Remark 1.7. Theorem 1.6 has the following application. Suppose that K is imag-
inary quadratic and Q is in SQ2

K . Let β :=
√

2/d
1
4
K and define the normalized

Eisenstein series
Ẽ[xi](Q, s) := 2βsE[xi](Q, s/2).

The dimension of the vector space V = span{Ẽ[xi](Q, 1) : i = 1, . . . , h} appears in
the Selberg trace formula and the Lax-Phillips-Sarnak scattering theory for auto-
morphic functions (see [LP, PS]). Using properties of the scattering matrix for the
normalized vector Eisenstein series, one can show that

dim(V ) =
h + Tr(Φ( 1

2 ))
2

.

It follows from Theorem 1.6 with
∣∣∣∣Q−1

∣∣∣∣ = 1 that dim(V ) = h+m
2 − 1.

To compute the scattering matrix, one typically uses the Fourier expansions of
the Eisenstein series in the various cusps. In work closely related to ours, Sorensen
[So] computed the scattering matrix for SL2(OK)\(H2)r1 × (H3)r2 where K is any
number field by defining the analog of the Eisenstein series

−→
E (w, s) for this quotient

and using the Fourier expansions of the Eisenstein series in the various cusps. In
contrast, to compute Φ(s) we relate

−→
E (Q, s) to a vector Epstein zeta function

−→
Z 2(Q, s) = (Z2(Q, [a1], s), . . . , Z2(Q, [ah], s))t ,

and then establish a functional equation for
−→
Z 2(Q, s). This is very similar to the

approach taken by Efrat and Sarnak in [ES].

2. SL(2)-Eisenstein series

In this section we define the Eisenstein series to be studied in this paper (see
also [Si, T]).
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Definition 2.1. Let n be a positive integer. The symmetric space Qn
K of positive

n-forms over K consists of (r1 + r2)-tuples Q = (Q(1), . . . , Q(r1+r2)) of positive
definite n × n matrices such that the first r1 are real symmetric and the second r2

are complex Hermitian. The determinant one subspace SQn
K consists of Q in Qn

K

such that det(Q(j)) = 1 for j = 1, . . . , r1 + r2.

The group GLn(K) acts on Qn
K by

Q[A] =
(
A(1)

t
Q(1)A(1), . . . , A(r1+r2)

t
Q(r1+r2)A(r1+r2)

)
, A ∈ GLn(K),

where A(j) means that the j-th embedding of K is applied to each entry of A.
The projective line P1(K) = K ∪ {∞} consists of the cusps for the fundamental

domain of the quotient SL2(OK)\SQ2
K . The group SL2(OK) acts on P1(K) by

linear fractional transformations, and this induces an equivalence relation on P1(K).
The proof of the following fact can be found in [Si].

Proposition 2.2. The action of SL2(OK) on P1(K) divides P1(K) into h cusp
classes.

Let {x1, . . . , xh} ↔ {a1, . . . , ah} denote the cusp, ideal class correspondence.
Write xi = pi/si for some pi, si ∈ OK , and assume without loss of generality that
x1 = ∞ = 1/0. In the proof of Proposition 2.2, the cusp xi corresponds to the
integral ideal ai = (pi, si). One can choose (not necessarily uniquely) p̃i, s̃i ∈ a

−1
i

such that pis̃i − sip̃i = 1. Form the corresponding the matrix

Ai =
(

pi p̃i

si s̃i

)
∈ SL2(K).

Let UK be the group of units in K. The proof of the following fact can also be
found in [Si].

Proposition 2.3. The stabilizer of the cusp xi can be expressed as

Γxi
=

{
Ai

(
u z
0 u−1

)
A−1

i : z ∈ a
−2
i , u ∈ UK

}
.

Each Q in Q2
K has a unique vector Iwasawa decomposition whose j-th component

is given by

Q(j) =
(

1 0
q(j) 1

)(
v(j) 0
0 w(j)

) (
1 q(j)

0 1

)
,

where v(j), w(j) > 0 for j = 1, . . . , r1 + r2, and

q(j) ∈ Vj =

{
R if j = 1, . . . , r1,

C if j = r1 + 1, . . . , r1 + r2.

Let v(Q) = (v(1), . . . , v(r1+r2)) be the v-coordinate of the vector Iwasawa decompo-
sition, and

N(v(Q)) =
r1+r2∏
j=1

(
v(j)

)Nj

be the norm of v(Q), where

Nj =

{
1 if j = 1, . . . , r1,

2 if j = r1 + 1, . . . , r1 + r2.
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Definition 2.4. The Eisenstein series corresponding to the cusp xi is defined by

E[xi] (Q, s) = NK/Q(ai)2s
∑

γ∈Γxi
\SL2(OK)

N (v (Q [γAi]))
−s

, Re(s) > 1.

Remark 2.5. We will show in the proof of Proposition 2.7 that E[xi](Q, s) depends
only on the cusp class [xi].

We now form the vector Eisenstein series from the Eisenstein series corresponding
to the cusp classes.

Definition 2.6. The vector Eisenstein series is defined by
−→
E (Q, s) =

(
E[x1] (Q, s) , . . . , E[xh] (Q, s)

)t
.

In the remaining part of this section we make precise the relationship between
the Eisenstein series

−→
E (Q, s) and the Eisenstein series

−→
E (w, s) studied by Efrat

and Sarnak in [ES].
Fix an embedding of K = Q(

√
−D) into C. Then ΓD = PSL2(OD) is a discrete

subgroup of Isom+(H3) = PSL2(C) such that XD = ΓD\H3 is a non-compact, finite
volume arithmetic orbifold. There is an identification of H3 with the quaternionic
upper half-plane

Hc = {w = x1 + ix2 + jy + kt : z = x1 + ix2 ∈ C, y > 0, t = 0}.
The group PSL2(C) acts on Hc by linear fractional transformations. Let x1 =
∞, x2, . . . , xh be a complete set of cusps for the fundamental domain F of XD

and let Γxi
be the stabilizer of the cusp xi. Assume that D �= 1, 3, so that ΓD is

torsion-free. One can choose (not necessarily uniquely) σi ∈ PSL2(C) such that
σi(xi) = ∞ and

σiΓxi
σ−1

i =
{(

1 l
0 1

)
: l ∈ Li

}
,

where Li is a lattice in C whose fundamental domain has volume one.
For w in Hc let

w(i) = σiw = (y(σiw), z(σiw)).

Then the Eisenstein series associated to the cusp xi is defined by

Ei(w, s) =
∑

γ∈Γxi
\ΓD

y(i)(γw)s, Re(s) > 2,

and the corresponding vector Eisenstein series is defined by
−→
E (w, s) = (E1(w, s), . . . , Eh(w, s))t.

The quaternions H are the elements of the division ring

H = R ⊕ Ri ⊕ Rj ⊕ Rk,

where ij = k = −ji, jk = i = −kj, ki = j = −ik, and i2 = j2 = k2 = −1. The
norm of a quaternion

w = x1 + ix2 + jy + kt ∈ H

is defined by

N(w) = x2
1 + x2

2 + y2 + t2.
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Let ai be the integral ideal corresponding to the cusp xi. Define the Eisenstein
series

Ẽi(w, s) = αs
i

∑
(c,d)∈ai×ai

(c,d)=ai

(
y

N(cw + d)

)s

, w ∈ H3, Re(s) > 2,

where αi = NK/Q(ai)
√

2/d
1
4
K is a normalizing factor chosen so that F has volume

one. Efrat and Sarnak [ES, Proposition 2.3] proved that Ẽi(w, s) = Ei(w, s).

Proposition 2.7. Let K be imaginary quadratic. Then

2βsE[xi]

(
Qw,

s

2

)
= Ẽi(w, s), w ∈ H3, Re(s) > 2,

where β =
√

2/d
1
4
K , and

Qw :=

(
y + |z|2

y
z
y

z
y y−1

)
∈ SQ2

K

(here w = z + jy and z = x1 + ix2).

Proof. There is a sequence of maps

H3 → SL2(C)/SU(2) → SQ2
K

given by

w �→ gSU(2) �→ ggt,

where

g =

(√
y z√

y

0
√

y−1

)
and

Qw := ggt =

(
y + |z|2

y
z
y

z
y y−1

)
.

By a straightforward calculation one can show that v(Q[γAi]) = Q[a], where
a = (c, d) is the first column of γAi. As γ runs over a complete set of representatives
of Γxi

\SL2(OK), the columns a run over a complete set of generators of ai which
are non-associate modulo UK (recall that a is associate to a′ modulo UK if and
only if there exists a unit ε such that a = εa′). It follows that

E[xi](Q, s) = NK/Q(ai)2s
∑

a∈a
2
i /UK

(c,d)=ai

r1+r2∏
j=1

Q(j)[a(j)]−Njs, Re(s) > 1.

Note that the argument in the preceding paragraph shows that E[xi](Q, s) de-
pends only on the cusp class [xi].

For K imaginary quadratic, the Eisenstein series can be expressed as

E[xi](Q, s) = NK/Q(ai)2s
∑

a∈a
2
i /UK

(c,d)=ai

Q[a]−2s,

where we have used that the non-trivial embedding of K is complex conjugation.
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Let Q = Qw. Then

Qw[a] = (c, d) ·
(

y + |z|2
y

z
y

z
y y−1

)
·
(

c

d

)

= |c|2
(

y +
|z|2

y

)
+ cd

z

y
+ cd

z

y
+

|d|2

y

=
1
y

(
|c|2 N(w) + 2Re(cdz) + |d|2

)
.

We claim that

N(cw + d) = |c|2 N(w) + 2Re(cdz) + |d|2 ,

and thus

Q−1
w [a] =

y

N(cw + d)
.

Combining these calculations yields

E[xi]

(
Qw,

s

2

)
=

NK/Q(ai)s

|UK |
∑

(c,d)∈ai×ai

(c,d)=ai

(
y

N(cw + d)

)s

.

Write NK/Q(ai) = αi/β, and observe that since D �= 1, 3, #UK = 2. Then

E[xi]

(
Qw,

s

2

)
=

αs
i

2βs

∑
(c,d)∈ai×ai

(c,d)=ai

(
y

N(cw + d)

)s

=
1

2βs
Ẽi(w, s),

or equivalently,

2βsE[xi]

(
Qw,

s

2

)
= Ẽi(w, s).

It remains to prove the claim. Write c = c1 + ic2 and d = d1 + id2. Then

cw + d = (c1 + ic2)(x1 + ix2 + jy) + (d1 + id2)

= (c1x1 − c2x2 + d1) + i(c1x2 + c2x1 + d2) + j(c1y) + k(c2y),

where we have used that i2 = −1 and ij = k in H. Therefore, after expanding, we
find that

N(cw + d) = (c1x1 − c2x2 + d1)2 + (c1x2 + c2x1 + d2)2 + (c1y)2 + (c2y)2

= (c2
1 + c2

2)(x
2
1 + x2

2 + y2) + (d2
1 + d2

2)

+ 2(c1d1x1 + c2d2x1 + c1d2x2 − c2d1x2)

= |c|2 N(w) + |d|2 + 2(c1d1x1 + c2d2x1 + c1d2x2 − c2d1x2).

Finally,

c̄dz̄ = c1d1x1 + c2d2x1 + c1d2x2 − c2d1x2 + i(c1d2x1 − c1d1x2 − c2d1x1 − c2d2x2),

so that

Re(cdz) = c1d1x1 + c2d2x1 + c1d2x2 − c2d1x2.

�
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3. The vector Epstein zeta function

Let R(an) be a complete set of non-zero, non-associate elements of an.

Definition 3.1. The ideal class Epstein zeta function associated to a positive n-
form Q in Qn

K is defined by

Zn(Q, [a], s) = NK/Q(a)2s
∑

a∈R(an)

∏
ν∈S∞

Q(ν)[a(ν)]−Nνs, Re(s) >
n

2
,

where S∞ is a collection of r1 + r2 infinite places of K and Nν = Nj at the
appropriate places ν.

Remark 3.2. The factor NK/Q(a)2s insures that Zn(Q, [a], s) depends only on the
ideal class [a].

Remark 3.3. The zeta function Zn(Q, [a], s) has been studied extensively by A. Ter-
ras (see [T]).

We will establish the following functional equation for Zn(Q, [a], s).

Theorem 3.4. Let A = 2−r2d
1
2
Kπ−N

2 and

F (Q, [a], s) = A2sΓ(s)r1Γ(2s)r2Zn(Q, [a], s).

Then F (Q, [a], s) is analytic on C except for simple poles at s = 0, n
2 , and

F (Q, [a], s) =
∣∣∣∣Q−1

∣∣∣∣ 1
2 F

(
Q−1, [a∗],

n

2
− s

)
.

One forms the vector Epstein zeta function of Q from the ideal class zeta func-
tions.

Definition 3.5. The vector Epstein zeta function of Q is defined by
−→
Z n(Q, s) = (Zn(Q, [a1], s), . . . , Zn(Q, [ah], s))t

.

Using Theorem 3.4, we obtain the following functional equation for
−→
Zn(Q, s).

Theorem 3.6. The vector Epstein zeta function
−→
Z n(Q, s) satisfies the functional

equation

−→
Zn(Q, s) =

G
(
2

(
n
2 − s

))
G(2s)

√
D(Q−1) · P · −→Z n

(
Q−1,

n

2
− s

)
.(3.1)

4. A Theta transformation formula

We will need the following theta transformation formula in the proof of Theo-
rem 3.4.

Proposition 4.1. Let t(1), . . . , t(N) be positive real numbers with t(r1+r2+j) =
t(r1+j) for j = 1, . . . , r2. Then∑

a∈an

exp (−πTr (Q[a]t)) =
1

||Q||
1
2 ||t||

n
2 d

n
2
a

∑
a′∈(a∗)n

exp
(
−πTr

(
Q−1[a′]t−1

))
,

where

Tr (Q[a]t) =
N∑

j=1

Q(j)[a(j)]t(j).
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Proof. Let K ⊗Q R be the N -dimensional real Minkowski space. Then the function

g(x) := exp (−πTr(Q[x]t)) , x ∈ (K ⊗Q R)n,

is in the Schwartz class S((K ⊗Q R)n).
The ideal an is a lattice of full rank in (K ⊗Q R)n. Choose a Haar measure µH

on (K ⊗Q R)n such that µH ((K ⊗Q R)n /an) = 1.
From the preceding observations, g(x) is ((K ⊗Q R)n , an)-admissible in the sense

of [W], so that by Poisson summation,∑
a∈an

g(a) =
∑

a′∈(an)∗

ĝ(a′),

where the Fourier transform is defined by

ĝ(z) =
∫

(K⊗QR)n

g(x)e−2πiTr(zT x)dµH(x).

Let {α1, . . . , αN} be a basis for a over Z. Then a =
⊕N

j=1 Zαj and K ⊗Q R =⊕N
j=1 Rαj . It follows that the map

⊕N
j=1 Rαj →

⊕r1+r2
j=1 Vj defined by

x =
N∑

j=1

xjαj �→

⎛⎝ N∑
j=1

xjα
(1)
j , . . . ,

N∑
j=1

xjα
(r1+r2)
j

⎞⎠ = y(4.1)

is an isomorphism.
Let da be the absolute value of the discriminant of a. It can be shown that the

absolute value of the determinant of the Jacobian∣∣∣∣∣∂
(
y(1), . . . , y(r1), Re(y(r1+1)), Im(y(r1+1)), . . . , Re(y(r1+r2)), Im(y(r1+r2))

)
∂ (x1, . . . , xN )

∣∣∣∣∣
= 2−r2d

1
2
a .

Thus we find that under the transformation (4.1), the Haar measure becomes

dµH(x) = (2n)r2d
−n

2
a

r1+r2∏
j=1

dy(j),

where dy(j) is Lebesque measure on V n
j . Furthermore, observe that the trace can

be expressed as

Tr(Q[x]t) =
r1+r2∑
j=1

NjQ
(j)[x(j)]t(j).

By combining these facts, we find that the Fourier transform can be written as

ĝ(z) = d
−n

2
a

r1∏
j=1

∫
Rn

exp
(
−πQ(j)[y(j)]t(j)

)
e
−2πiTr

(
z(j)T

y(j)
)
dy(j)

×
r2∏

j=r1+1

∫
Cn

exp
(
−2πQ(j)[y(j)]t(j)

)
e
−2πiTr

(
z(j)T

y(j)
)
2ndy(j).
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Using standard properties of the Fourier transform and the change of variables
formula, we find that∫

Rn

exp
(
−πQ(j)[y(j)]t(j)

)
e
−2πiTr

(
z(j)T

y(j)
)
dy(j) =

exp
(
−πQ(j)−1

[z(j)]t(j)
−1

)
t(j)

n
2

√∣∣det(Q(j))
∣∣

and∫
Cn

exp
(
−2πQ(j)[y(j)]t(j)

)
e
−2πiTr

(
z(j)T

y(j)
)
2ndy(j) =

exp
(
−2πQ(j)−1

[z(j)]t(j)
−1

)
t(j)

n ∣∣det(Q(j))
∣∣ .

Substitute these integrals into the formula for ĝ and take products to obtain

ĝ(z) =
1

||Q||
1
2 ||t||

n
2 d

n
2
a

exp(−πTr
(
Q−1[z]t−1

)
.

The proposition follows by substituting the formula for ĝ into the right-hand side
of the Poisson summation formula. �

5. Proof of Theorem 3.4

Express the absolute value of the discriminant of a as da = NK/Q(a)2dK . By
applying the identity

Γ
(

s
2

)
as

=
∫ ∞

0

exp(−a2y)y
s
2
dy

y
, a > 0,

at the real and complex places as in the proof of the functional equation for Hecke
L-functions, we obtain the Mellin transform

F
(
Q, [a],

s

2

)
=

∫ ∞

0

· · ·
∫ ∞

0

∑
a∈R(an)

exp

(
−πd

− 1
N

a

∑
ν∈S∞

NνQ(ν)[a(ν)]yν

)
||y||

s
2

dy

y
,

where

||y|| =
∏

ν∈S∞

yNν
ν and

dy

y
=

∏
ν∈S∞

dyν

yν
.

Define the multiplicative group G =
∏

ν∈S∞
(R+

ν )∗ , and the map |·| : K∗ → G

by |α| =
(∣∣α(ν)

∣∣)
ν∈S∞

. Observe that ker |·| is the group of roots of unity and
that V = |UK | is a discrete subgroup of the norm one hypersurface G0 defined by
G0 = {y ∈ G : ||y|| = 1} < G, with compact quotient G0/V .

For y ∈ G, write y = t
1
N c uniquely by setting t = ||y|| and c = y

||y||
1
N

. We thus

obtain the decomposition G = G0 × (R+)∗ .
Let d∗c be the unique Haar measure on the multiplicative group G0 such that

the canonical Haar measure dy/y on G becomes dy
y = d∗c× dt

t . We can now express
the Mellin transform as

F
(
Q, [a],

s

2

)
=

∫ ∞

0

∫
G0

∑
a∈R(an)

exp

(
−πt

1
N d

− 1
N

a

∑
ν∈S∞

NνQ(ν)[a(ν)]cν

)
d∗ct

s
2
dt

t
.
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Choose a fundamental domain E for the action of the group |UK |2 = {|ε|2 : ε ∈
UK} on G0 which decomposes the norm one hypersurface into the disjoint union

G0 =
⋃̇

η∈|UK |
η2E.

Then ∫
G0

∑
a∈R(an)

exp

(
−πt

1
N d

− 1
N

a

∑
ν∈S∞

NνQ(ν)[a(ν)]cν

)
d∗c

=
∫

E

1
wK

∑
a∈an\{0}

exp

(
−πt

1
N d

− 1
N

a

∑
ν∈S∞

NνQ(ν)[a(ν)]cν

)
d∗c,(5.1)

where wK is the number of roots of unity in K.
Substitute (5.1) in the Mellin transform to obtain

F
(
Q, [a],

s

2

)
=

∫ ∞

0

∫
E

1
wK

[
Θn

(
Q, a, t

1
N d

− 1
N

a c
)
− 1

]
d∗ct

s
2
dt

t
,

where

Θn

(
Q, a, t

1
N d

− 1
N

a c
)

=
∑
a∈an

exp

(
−πt

1
N d

− 1
N

a

∑
ν∈S∞

NνQ(ν)[a(ν)]cν

)
.

Now, a simple integration allows us to express the Mellin transform as

F
(
Q, [a],

s

2

)
=

∫ 1

0

∫
E

1
wK

Θn

(
Q, a, t

1
N d

− 1
N

a c
)

d∗ct
s
2
dt

t
− 2µ∗(E)

wKs
(5.2)

+
∫ ∞

1

∫
E

1
wK

[
Θn

(
Q, a, t

1
N d

− 1
N

a c
)
− 1

]
d∗ct

s
2
dt

t
,

where µ∗(E) is the measure of the pullback of E.
Let t = τ−1 and dt = −dτ/τ2 in the first integral on the right-hand side of

(5.2). Using the invariance of d∗c under the transformation c �→ c−1, the functional
equation for the theta function Θn(Q, a, z) given in Proposition 5.1, and another
simple integration, we find upon making the substitution s → 2s that

F (Q, [a], s) =
∫ ∞

1

∫
E

1
wK

[
Θn

(
Q, a, t

1
N d

− 1
N

a c
)
− 1

]
d∗cts

dt

t
− µ∗(E)

wKs

(5.3)

+
∫ ∞

1

∫
E

∣∣∣∣Q−1
∣∣∣∣ 1

2

wK

[
Θn

(
Q−1, a∗, t

1
N d

− 1
N

a∗ c
)
− 1

]
d∗ct(

n
2 −s) dt

t
−

µ∗(E)
∣∣∣∣Q−1

∣∣∣∣ 1
2

wK

(
n
2 − s

) .

From (5.3), it is clear that F (Q, [a], s) is analytic on C except for simple poles
at s = 0, n

2 . Make the substitutions s → n
2 − s, a → a∗, and Q → Q−1 in (5.3) to

complete the proof. �
In the following proposition, we establish the functional equation for the theta

function Θn(Q, a, z).
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Proposition 5.1. With notation as above we have

Θn

(
Q, a, t

1
N d

− 1
N

a c
)

=
1

t
n
2 ||Q||

1
2
Θn

(
Q−1, a∗, t−

1
N d

− 1
N

a∗ c−1
)

.

Proof. This follows from a straightforward calculation using Proposition 4.1. �

6. Proof of Theorem 1.1

We will need the following proposition (see also [T]).

Proposition 6.1. With notation as above we have
−→
Z 2(Q, s) =

(
ζ[a−1

i aj ]
(2s)

)
· −→E (Q, s).

Proof. Recall from the proof of Proposition 2.7 that

E[xi](Q, s) = NK/Q(ai)2s
∑

a∈R(a2
i )

(a1,a2)=ai

∏
ν∈S∞

Q(ν)[a(ν)]−Nνs, Re(s) > 1.

Therefore,

Z2(Q, [ai], s) = NK/Q(ai)2s
∑

a∈R(a2
i )

∏
ν∈S∞

Q(ν)[a(ν)]−Nνs

= NK/Q(ai)2s
∑
ai|b

∑
a∈R(b2)
(a1,a2)=b

∏
ν∈S∞

Q(ν)[a(ν)]−Nνs

=
∑
ai|b

NK/Q(a−1
i b)−2sNK/Q(b)2s

∑
a∈R(b2)
(a1,a2)=b

∏
ν∈S∞

Q(ν)[a(ν)]−Nνs.

To complete the proof, let c = a
−1
i b and observe that c runs through all integral

ideals in the class [a−1
i aj ]. �

We will also need the determinant of the matrix of ideal class zeta functions.
Let χ ∈ ̂cl(OK) := Hom(cl(OK), T) be a character of the ideal class group. Define
the h × h matrix M = (χi(aj)) whose (i, j)-th component χi(aj) is the complex
conjugate of the character χi evaluated at the ideal class representative aj . Further,
define the class group L–function

L(χ, s) =
∑

(0) �=a⊂OK

χ(a)NK/Q(a)−s, Re(s) > 1,

and the h × h diagonal matrix of L-functions

L(s) =

⎛⎜⎝L(χ1, s)
. . .

L(χh, s)

⎞⎟⎠ .

Proposition 6.2. With notation as above we have(
ζ[a−1

i aj ]
(s)

)
= M−1 · L(s) · M.
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Proof. Let χ ∈ ̂cl(OK). Then
h∑

i=1

χ(ai)ζ[a−1
i aj ]

(s) =
h∑

i=1

∑
b∈[a−1

i aj ]

χ(ai)NK/Q(b)−s

= χ(aj)
h∑

i=1

∑
b∈[a−1

i aj ]

χ(b−1)NK/Q(b)−s

= χ(aj)
h∑

i=1

∑
b∈[a−1

i aj ]

χ(b)NK/Q(b)−s

= χ(aj)L(χ, s).

�

From Proposition 6.2 and class field theory (see [N]),

det
(
ζ[a−1

i aj ]
(s)

)
=

∏
χ∈ ̂cl(OK)

L(χ, s) = ζH(s).(6.1)

Proof of Theorem 1.1. Let n = 2 in Theorem 3.6 and apply Proposition 6.1 to both
sides of the functional equation (3.1) to obtain(

ζ[a−1
i aj ]

(2s)
)
· −→E (Q, s)

=
G(2(1 − s))

G(2s)

√
D(Q−1) · P ·

(
ζ[a−1

i aj ]
(2(1 − s))

)
· −→E (Q−1, 1 − s).

Because ζH(2s) �= 0 for Re(s) > 1
2 , (6.1) implies that the matrix

(
ζ[a−1

i aj ]
(2s)

)
is

invertible for Re(s) > 1
2 . It follows that

−→
E (Q, s) =

G(2(1 − s))
G(2s)

√
D(Q−1) ·

(
ζ[a−1

i aj ]
(2s)

)−1

· P ·
(
ζ[a−1

i aj ]
(2(1 − s))

)
· −→E (Q−1, 1 − s)

for Re(s) > 1
2 . The Eisenstein series

−→
E (Q, s) has a meromorphic continuation to

C (see [La]). Theorem 1.1 follows by uniqueness of analytic continuation. �

7. The determinant of P

Proposition 7.1. Let m be the order of the group cl(OK)[2] of 2-torsion in cl(OK).
Then

det(P) = (−1)
h−m

2 .

Proof. Suppose that σ is a permutation of cl(OK) with corresponding permutation
matrix Pσ. Then det(Pσ) = (−1)l, where l is the number of transpositions in the
decomposition of σ as a product of transpositions. In terms of Pσ, l = h−|Fix(σ)|

2 ,
where we have divided by two since one transposition corresponds to an exchange
of two rows. Specializing to σ∗ : a → a∗, we see that it suffices to show that
|Fix(σ∗)| = |cl(OK)[2]| .

It is a deep theorem of Hecke that the different DK is a square in cl(OK) (see
[H, Theorem 176]). Therefore, because a∗ = (aDK)−1, we need only consider the
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permutation σg : x → x−1g2, where g is a fixed element of cl(OK). But an element
x in cl(OK) is fixed by σg if and only if x2 = g2 if and only if x = ag, where a2 = 1.
We conclude that |Fix(σg)| = |cl(OK)[2]|. �

8. Proof of Theorem 1.3

Given the formula for Φ(s) in Theorem 1.1, it suffices to compute the deter-
minants of the matrices P,

√
D(Q−1), and

(
ζ[a−1

i aj ]
(s)

)
. We have computed the

first and third of these in Proposition 7.1 and equation (6.1), respectively, and a

straightforward calculation yields det
(√

D(Q−1)
)

=
∣∣∣∣Q−1

∣∣∣∣ h
2 . �

9. Proof of Theorem 1.6

We will need the following lemma, which follows from a calculation using the
orthogonality relations for the group characters χ ∈ ̂cl(OK).

Lemma 9.1. With notation as above we have

M−1 ·

⎛⎜⎜⎜⎝
−1

1
. . .

1

⎞⎟⎟⎟⎠ · M = − 2
h

⎛⎜⎜⎜⎝
1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

⎞⎟⎟⎟⎠ + Ih.

Proof of Theorem 1.6. From Theorem 1.1 and Proposition 6.2 we find that

Tr(Φ(s)) = Tr
(

G(2(1 − s))
G(2s)

√
D(Q−1) · P ·

(
ζ[a−1

i aj ]
(2(1 − s))

)
·
(
ζ[a−1

i aj ]
(2s)

)−1
)

= Tr
(

G(2(1 − s))
G(2s)

√
D(Q−1) · P · M−1 · L(2(1 − s)) · L(2s)−1 · M

)
.

Using the Laurent expansion of the Dedekind zeta function ζK(s) at s = 1, it is
easily seen that

lim
s→ 1

2

L (χ1, 2(1 − s))
L (χ1, 2s)

= −1.

Also, observe that G(s) is holomorphic at s = 1, and for χ �= 1, L(χ, s) is holomor-
phic at s = 1. Combining these facts with Lemma 9.1 yields

Tr(Φ(
1
2
)) = lim

s→ 1
2

Tr(Φ(s))

=
∣∣∣∣Q−1

∣∣∣∣ 1
2 Tr

⎛⎜⎜⎜⎝P · M−1 ·

⎛⎜⎜⎜⎝
−1

1
. . .

1

⎞⎟⎟⎟⎠ · M

⎞⎟⎟⎟⎠

=
∣∣∣∣Q−1

∣∣∣∣ 1
2 Tr

⎛⎜⎜⎜⎝P · −2
h

⎛⎜⎜⎜⎝
1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

⎞⎟⎟⎟⎠ + P · Ih

⎞⎟⎟⎟⎠
=

∣∣∣∣Q−1
∣∣∣∣ 1

2 (Tr (P) − 2) .
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Finally, because the trace of a permutation matrix is the number of fixed points,
Tr(P) = |Fix(σ∗)| = m by Proposition 7.1. �
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