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INEQUALITIES BETWEEN RANKS AND CRANKS

KATHRIN BRINGMANN AND KARL MAHLBURG

(Communicated by Ken Ono)

Abstract. Higher moments of the partition rank and crank statistics have
been studied for their connections to combinatorial objects such as Durfee
symbols, as well as for their connections to harmonic Maass forms. This paper
proves the first several cases of (and strengthens) a conjecture due to Garvan,
which states that the moments of the crank function are always larger than the
moments of the rank function. Furthermore, asymptotic estimates for these
differences are also proven.

1. Introduction and statement of results

The deceptively simple combinatorial generating functions found in the theory of
partitions have seen a great deal of interest in recent years, as they lie directly in the
intersection of basic hypergeometric series and automorphic forms. This has allowed
the use of techniques taken from combinatorics, q-series, and complex analysis, and
has led to a number of important results about harmonic Maass forms and mock
theta functions [8, 10, 11, 12]. Many of these modern results share a common
ancestor in Ramanujan’s original observations on the arithmetic of the partition
function p(n) [17, 18]. Most famously, the three “Ramanujan congruences” state
that if � ∈ {5, 7, 11}, then p(�n + δ�) ≡ 0 (mod �) for all n ≥ 0, where 24δ� ≡ 1
(mod �).

Hoping to understand the Ramanujan congruences from a combinatorial per-
spective, Dyson defined the partition rank function to be the largest part minus
the number of parts [14]. Atkin and Swinnerton-Dyer [7] later proved that Dyson’s
rank provides a combinatorial explanation of the congruences modulo 5 and 7,
but not the congruence modulo 11, leading Dyson to conjecture the existence of a
more satisfactory statistic. Subsequently, Andrews and Garvan found the partition
crank, which successfully dissects all three congruences simultaneously (see [4] for
the precise combinatorial definition).

In order to better understand these two statistics, we will use analytic methods
on the generating functions for the crank and rank. Let M(m, n) (resp. N (m, n))
denote the number of partitions of n with crank (resp. rank) m. Ignoring a minor
error in the definition of M(m, n) when n = 1, the two-parameter generating
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functions may be written as [4, 7]

C(x; q) :=
∑
m∈Z

n≥0

M(m, n)xmqn =
∏
n≥1

1 − qn

(1 − xqn)(1 − x−1qn)

=
1 − x

(q)∞

∑
n∈Z

(−1)nqn(n+1)/2

1 − xqn
,

R(x; q) :=
∑
m∈Z

n≥0

N (m, n)xmqn =
∑
n≥0

qn2

(xq; q)n(x−1q; q)n

=
1 − x

(q)∞

∑
n∈Z

(−1)nqn(3n+1)/2

1 − xqn
.

Remark. Although the final expressions for C(x; q) and R(x; q) appear quite similar,
their analytic behavior is markedly different. For example, if x �= 1 is a fixed root
of unity, then C(x; q) is (essentially) a meromorphic modular form [16], whereas
R(x; q) is (essentially) the holomorphic part of a harmonic Maass form [12]. It is
therefore somewhat surprising that we are able to compare the coefficients M(m, n)
and N (m, n) with the precision described below.

In addition to the crank and rank statistics, we are also interested in their
weighted moments. In particular, for even integers k, define the k-th rank (resp.
crank) moments as

Mk(n) :=
∑
m∈Z

mk M(m, n),

Nk(n) :=
∑
m∈Z

mk N (m, n).

Both the crank and rank moments vanish when k is odd due to the symmetries of
the statistics [6].

A number of recent works highlight the importance of these moments within
the theory of partitions and congruences; for example, studies of the smallest parts
partition function spt(n) [2] and Durfee symbols [3, 10] relied heavily on the intrinsic
combinatorial connections to crank and rank moments. Our main focus in this note
is unpublished observations of Garvan regarding the relative size of the crank and
rank moments.

Conjecture (Garvan). Let k ≥ 2 be an even integer.
(1) For all n ≥ 2, we have Mk(n) > Nk(n).
(2) As n → ∞, we have Mk(n) ∼ Nk(n).

Remark. The case k = 2 follows from work of Andrews [2], who showed directly
from the generating functions that the smallest parts partition function satisfies

spt(n) =
1
2

(M2(n) − N2(n)) > 0.

Remark. Garvan’s conjecture can be interpreted as stating that the distribution of
the crank statistic is slightly “wider” than that of the rank, but not significantly
so. This is unexpected, as there is little about the combinatorial definitions of the
crank and rank that suggest any close relations.
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We believe that a much stronger statement holds, and adopt the following nota-
tion for the difference between the crank and rank moments:

(1.1) Dk(n) := Mk(n) − Nk(n).

Conjecture 1.1. Suppose that k ≥ 2 is even.
(1) As n → ∞,

Mk(n) ∼ Nk(n) ∼ αk · n k
2 p(n),

where αk ∈ Q≥0.
(2) Garvan’s inequality holds for all n, and as n → ∞,

Dk(n) ∼ βk n
(k−1)

2 · p(n),

where βk ∈
√

6
π Q is positive.

In this paper, we prove asymptotic formulae that confirm the plausibility of the
conjecture.

Theorem 1.2. For even k ≥ 2, there exist rational constants αk, α′
k such that

Mk(n) ∼ αk · n k
2 p(n),

Nk(n) ∼ α′
k · n k

2 p(n).

It is difficult to write down general formulas for αk and α′
k, which is the chief

obstacle in proving the conjecture for all k. However, we calculate these constants
explicitly in order to (essentially) prove the first two cases of the conjecture.

Theorem 1.3. If k = 2, 4, then Conjecture 1.1 holds for sufficiently large n.

Remark. It should be possible to extend the inequalities from part (2) of Garvan’s
conjecture to all n using known methods, although the estimates required are rather
technical (see [8] for a related example and [11] for a more general setting).

The bulk of the paper is in Section 2, where we prove Theorem 1.3 (Theorem 1.2
will follow as a corollary of the arguments used in the proof). Section 3 follows
with some concluding remarks about partition combinatorics.

2. Rank-crank relations and proofs

We begin with the case k = 2 and determine the asymptotic behavior of D2(n),
providing the exact values for the constants from Conjecture 1.1.

Theorem 2.1. As n → ∞,

M2(n) ∼ N2(n) ∼ 2n p(n).

Moreover, as n → ∞,

D2(n) ∼ 2
(24n − 1)

1
4

I 1
2
(y) ∼ 2

√
6n

π
p(n),

where In denotes the (modified) Bessel function of order n and

yn :=
π
√

24n − 1
6

.
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Proof. Works of Dyson [15] and Andrews [2] show, respectively, that

M2(n) = 2np(n),(2.1)
N2(n) = 2η2(n),(2.2)

where η2(n) is the number of 2-marked Durfee symbols of n. Moreover, as n → ∞
(see [1] Chapter 5),

(2.3) p(n) ∼ 2π

(24n − 1)
3
4
I 3

2
(yn).

Furthermore, we obtain from [9]

η2(n) ∼ − 3
2(24n − 1)

1
4
I 1

2
(yn) +

π(24n − 1)
1
4

12
I− 1

2
(yn) +

π

12(24n − 1)
3
4
I 3

2
(yn).

This gives

D2(n) ∼ 2π

(24n − 1)
3
4

(
(24n − 1)

12
I 3

2
(yn) − (24n − 1)

12
I− 1

2
(yn)

)
+

3
(24n − 1)

1
4
I 1

2
(yn).

We now use the general Bessel function relation (see [5] for this and other basic
facts)

(2.4) Ia+1(y) − Ia−1(y) = −2a

y
Ia(y),

which specializes to

(2.5) I 3
2
(yn) − I− 1

2
(yn) = −y−1

n I 1
2
(yn)

when a = 1/2. We will also repeatedly use the fact that

(2.6) Ia(y) ∼ ey

√
2πy

.

This yields the asymptotic

D2(n) ∼ 2
(24n − 1)

1
4
I 1

2
(yn),

and since (2.3) and (2.6) show that this difference is smaller than the asymptotic
for M2(n) in (2.1), we have also proved that

N2(n) ∼ M2(n).

�

We next consider the case k = 4.

Theorem 2.2. As n → ∞,

M4(n) ∼ N4(n) ∼ 7π

120
(24n − 1)

5
4 I− 5

2
(yn) ∼ 84

5
n2p(n),

M4(n) − N4(n) ∼ 24
√

6
π

n
3
2 p(n).

Corollary 2.3. Garvan’s conjecture is true if k = 4 and n is sufficiently large.
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Proof. Atkin and Garvan’s rank-crank PDE [6] formula (5.6) gives the relation

−D4(n) =
2
3
(−3n − 1)M2(n) +

5
3
M4(n) + (−12n + 1)N2(n)(2.7)

= −D2(n) +
1
3
M2(n) + 12nD2(n) − 14nM2(n) +

5
3
M4(n).

We have written the terms in this way because the crank moments can be explic-
itly written in terms of modular forms, and we (recursively) have bounds for the
lower difference function D2(n). Since we aim to show that D4(n) ∼ ∗n3/2p(n),
Theorem 2.2 allows us to ignore all terms of the form ∗D2(n) and ∗M2(n). Among
the other terms, the only one that requires additional work is the final summand.
From [6], formula (4.7), we know that

(2.8)
5
3

∑
n

M4(n)qn =
10
3

P
(
Φ3 + 6Φ2

1

)
,

where P (q) :=
∏∞

n=1(1− qn)−1 is the partition generating function, and for j odd,

Φj(q) :=
∞∑

n=1

σj(n) qn,

with σj being the jth divisor sum. These functions can be written in terms of the
classical Eisenstein series

En(τ ) := 1 − 2n

Bn
Φn−1(q),

where n is even and Bn is the nth Bernoulli number.
We next use the Hardy-Littlewood circle method [1] to determine the asymptotic

growth coming from (2.8). Let q := e−2πz, Re(z) > 0, q1 := e−
2π
z . Then we have

the transformation law

Ek(q) = (iz)−kEk(q1) if k > 2,(2.9)

E2(q) = (iz)−2E2(q1) +
6
πz

.

In general, if we wish to estimate the coefficients in an expression of the form

(2.10)
∑

n

a(n)qn = c P (q)g(q1)z−k + . . . ,

where c is a constant and g(q) has a holomorphic q-series expansion

g(q) = 1 +
∑
n>0

a(n)qn,

then the asymptotic contribution to a(n) due to the term displayed in (2.10) is

(2.11) c · 2π(24n − 1)
k
2−

3
4 I 3

2−k(yn).

This can be seen in the asymptotic formulas of [9]. Again, since our asymptotic
aim is n3/2p(n), (2.11) implies that we may ignore all terms with weight k < 3. We
first consider

10
3

P (q)Φ3(q) =
10
3

P (q)
240

(E4(q) − 1) =
P (q)
72

(
z−4E4(q1) − 1

)
.

By the above considerations, this term contributes
π

36
(24n − 1)

5
4 I− 5

2
(yn).



2572 KATHRIN BRINGMANN AND KARL MAHLBURG

We next consider

20P (q)Φ2
1(q) = 20

P (q)
242

(1 − E2(q))
2 =

5
144

P (q)
(

1 + z−2E2(q1) −
6
πz

)2

.

The asymptotic contribution from this is
5

144

(
2π(24n − 1)

5
4 I− 5

2
(yn) − 24(24n − 1)

3
2 I− 3

4
(yn)

)
.

Thus the first and second terms in the asymptotic expansion of M4(n) are given
by the following (the first gives the constants from the statement of the theorem):

5
3
M4(n) ∼ 5

3

(
7π

120
(24n − 1)

5
4 I− 5

2
(yn) − 1

2
(24n − 1)

3
4 I− 3

2
(yn)

)
.

This gives

−D4(n) ∼ 24n

(24n − 1)
1
4
I 1

2
(yn) − 56πn2

(24n − 1)
3
4
I 3

2
(yn) +

7π

72
(24n − 1)

5
4 I− 5

2
(yn)

− 5
6
(24n − 1)

3
4 I− 3

2
(yn).

The terms involving I 3
2

and I− 5
2

are both larger than our claimed asymptotic, and
thus we need them to cancel. We rewrite

7π

72
(24n − 1)

5
4 I− 5

2
(yn) =

7π(24n − 1)2

72(24n − 1)
3
4
I− 5

2
(yn) ∼ 56πn2

(24n − 1)
3
4
I− 5

2
(yn).

We now use the relation (2.5) as well as the a = −3/2 case of (2.4):

I− 5
2
(y) = I− 1

2
(y) − 3

y
I− 3

2
(y).

Combining all of this gives

−D4(n) ∼ 24n

(24n − 1)
1
4
I 1

2
(yn) − 5

6
(24n − 1)

3
4 I− 3

2
(yn)

+
336n2

(24n − 1)
5
4

(
I 1

2
(yn) − 3I− 3

2
(yn)

)

∼ −24
√

6n
3
2

π
p(n).

In particular M4(n) ∼ N4(n). �

The proof of Theorem 2.2 makes it clear that Conjecture 1.1 reduces to an
identity and inequality involving Bernoulli numbers and binomial coefficients that
arises by expanding the rank-crank PDE into Eisenstein series and removing all
but the highest weight terms.

Proof of Theorem 1.2. The argument for proving the general asymptotics for Mk(n)
and Nk(n) was outlined in the preceding proof of the case k = 4. Equation (4.8) in
[6] states that

(2.12)
∑

n

Mk(n)qn = ckP (q) · Hk(q),

where Hk(q) is in the ring generated by E2, E4, E6 with rational coefficients, and
the highest-weight terms have weight k. This is the general case of the identity
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seen in (2.8); the subsequent discussion (including (2.9), (2.10), and (2.11)) implies
the correct form of the asymptotic for Mk(n).

Finally, the original form of the rank-crank PDE from [6] is not actually written
with the term Dk(n) as in (2.7), but instead contains the term Nk(n) that can
easily be expressed as a sum of terms involving p(n), Nk′(n) and M�(n) for k′ < k
and � ≤ k. An inductive argument combined with the asymptotic for Mk(n) gives
the correct asymptotic form for Nk(n). �

3. Concluding remarks

Although we have proven the full strength of Conjecture 1.1 for k = 2, 4, using
a general computational technique that should allow us to extend the result to
any fixed k, it would still be appealing to have a combinatorial proof of Garvan’s
original conjecture. There are at least two such approaches that may be fruitful.
First, recall Andrews’ definition of spt(n) as a “weighted” partition function, where
each partition of n is counted according to the multiplicity of its smallest part. The
fact that spt(n) = 1

2D2(n) suggests that higher Dk(n) might also correspond to
other weighted partition functions.

A second approach is suggested by striking data that was inspired by observa-
tions of Alex Arkhipov during an undergraduate research project supervised by the
second author. Define the crank and rank cumulation functions by

M(m, n) :=
∑

r ≤m

M(r, n),

N (m, n) :=
∑

r ≤m

N (r, n).

Note that if m > 0, then by symmetry, M(m, n) = p(n) − M(−(m + 1), n) (the
same also holds for ranks).

An interesting phenomenon occurs when the cumulation functions are compared.
In particular, if m < 0, then for all 1 ≤ n ≤ 100 (tested with MAPLE) we have

N (m, n) ≤ M(m, n) ≤ N (m + 1, n).

By symmetry, the opposite inequalities hold for m > 0. This observation may also
be stated in terms of ordered lists of partitions. Specifically, for 1 ≤ n ≤ 100,
there must be some re-ordering τn of the partitions λ of n such that |crank(λ)| −
|rank(τn(λ))| = 0 or 1, although we do not have an explicit combinatorial descrip-
tion of τn. If this continues to hold for all n, then the Cauchy-Schwarz inequality
implies that

D2(n) ≤ 2
√

np(n),
which is nearly as good as Theorem 2.1, and similar results would also hold for
higher moments. Even if the differences are not all 0 or 1, as long as they are
relatively “small” this approach still would lead to meaningful estimates.
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