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RELAXED COMMUTANT LIFTING:
EXISTENCE OF A UNIQUE SOLUTION

S. TER HORST

(Communicated by Marius Junge)

Abstract. In this paper we present necessary and sufficient conditions for
the existence of a unique solution to the relaxed commutant lifting problem.
The obtained conditions are more complicated than those for the classical

commutant lifting setting, and earlier obtained sufficient conditions turn out
not to be necessary conditions. It is also shown that these conditions simplify
in certain special cases.

Introduction

In this paper we resolve an open problem concerning relaxed commutant lifting.
The relaxed commutant lifting problem was introduced in [5], extending the classical
commutant lifting theory of B. Sz.-Nagy and C. Foias [14] and its predecessor by
D. Sarason [17]. As mentioned in [5], relaxed commutant lifting covers the generali-
zations of the commutant lifting setting by Treil and Volberg [18] and the weighted
version in [1]. In [5] it was shown that a particular (central) solution always exists.
Representations of all solutions have been given in [7, 13, 8, 12]. In the present
paper we provide necessary and sufficient conditions under which the so-called
central solution is the only solution to the relaxed commutant lifting problem.

The data for the relaxed commutant lifting problem is a set {A, T ′, U ′, R, Q}
consisting of five Hilbert space operators: the operator A is a contraction mapping
H into H′, the operator U ′ on K′ is a minimal isometric lifting of the contraction
T ′ on H′; i.e., U ′ is an isometry on K′, with H′ ⊂ K′ being cyclic for U ′ and
ΠH′U ′ = T ′ΠH′ , and R and Q are operators from H0 to H, satisfying

(1) T ′AR = AQ and R∗R ≤ Q∗Q.

Here we follow the convention that for a subspace V of a Hilbert space W the symbol
ΠV stands for the orthogonal projection from W onto V viewed as an operator from
W onto V . Given this data set the relaxed commutant lifting problem is to find a
(all) contraction(s) B from H to K′ such that

(2) ΠH′B = A and U ′BR = BQ.

A contraction B from H into K′ that satisfies (2) is called a contractive interpolant
for {A, T ′, U ′, R, Q}.
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An essential role in the solution to the relaxed commutant lifting problem is
played by the so-called underlying contraction ω (see [5]), which is defined by

(3) ω : F = DAQH0 →
[

DT ′

DA

]
, ωDAQ =

[
DT ′AR
DAR

]
.

Here, as usual, given a contraction N , we write DN for the defect operator and DN

for the defect space of N ; that is, DN is the positive square root of I − N∗N and
DN is the closure of the range of DN . The first component of ω, mapping F into
DT ′ , is denoted by ω1, and the second component of ω, mapping F into DA, by ω2.

The classical commutant lifting setting appears when R is the identity operator
on H, and thus H0 = H, and Q is an isometry. It is well known that in the classical
commutant lifting setting there exists a unique contractive interpolant if and only
if DAQH0 = DA or ω is unitary; cf. the first paragraph after Theorem VI.2.1 in
[4].

For relaxed commutant lifting these conditions are sufficient but not necessary;
see Example 2.2 below. The following theorem provides conditions for the relaxed
commutant lifting setting that are both necessary and sufficient.

Theorem 0.1. There exists a unique contractive interpolant for the relaxed com-
mutant lifting problem with data set {A, T ′, U ′, R, Q} if and only if the underlying
contraction ω satisfies one of the following conditions:

(i) DAQH0 = DA,
(ii) the operator ω1(ΠFω2)n is a co-isometry for n = 0, 1, 2, . . . .

Condition (i) was already obtained as a sufficient condition; see Theorem 3.1 in
[5]. Two other sufficient conditions were obtained earlier; both are covered by (ii):
namely, the trivial condition T ′ is an isometry (DT ′ = {0}) (Proposition 6.6 in [7]),
and the condition that ω is a co-isometry (Section 4.1 in [11]). In [13] necessary
and sufficient conditions are given for the case R∗R = Q∗Q. The equivalence of the
conditions in [13] to those in Theorem 0.1 for the case R∗R = Q∗Q is explained in
Section 3.

To see that this theorem covers the classical result it suffices to show that con-
dition (ii) in the classical commutant lifting setting implies that ω is unitary; the
sufficiency of the conditions follows from the last remark in the previous paragraph.
Note that in the classical case R∗R = Q∗Q, which implies that the underlying con-
traction ω is an isometry; see [5]. Moreover, since R is the identity operator, the
range of ω2 is dense in DA. So if condition (ii) holds, then in particular ω1 is a
co-isometry, and, as ω is an isometry and ω2F = DA, the contraction ω2 is also a
co-isometry. This implies that ω is a co-isometry and thus unitary.

In order to prove Theorem 0.1 it is more convenient to work with the equiva-
lent interpolation problem of [9]. To state the latter problem we first need some
preliminaries. Let U and Y be Hilbert spaces. We write H2(U ,Y) for the set of
all operator-valued functions H on the unit disc D of C whose values are operators
from U into Y and such that the formula

(4) (ΓHu)(λ) = H(λ)u (u ∈ U , λ ∈ D)

defines an operator ΓH from U into the Hardy space H2(Y). The set H2(U ,Y) is
a Banach space under the norm ‖H‖ = ‖ΓH‖, where ‖ΓH‖ denotes the operator
norm of ΓH . We write H2

ball(U ,Y) for the unit ball of H2(U ,Y).
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With these definitions the interpolation problem of [9] can be formulated as
follows: given a contraction

(5) ω =
[

ω1

ω2

]
: F →

[
Y
U

]
, where F is a subspace of U ,

describe a (all) function(s) H in H2
ball(U ,Y) such that

(6) ω1 + λH(λ)ω2 = H(λ)|F (λ ∈ D).

A function H in H2
ball(U ,Y) satisfying (6) is called a solution to the H2 interpolation

problem defined by (the contraction) ω, or just a solution when the contraction ω
in question is clear from the context.

Notice that the underlying contraction ω in (3) is of the form (5). By making
an appropriate choice for the data set, we find that each contraction ω of the form
(5) appears as the underlying contraction for the corresponding relaxed commu-
tant lifting problem. Moreover, given a data set {A, T ′, U ′, R, Q} with underlying
contraction ω, there is a one-to-one map between the solutions H of the H2 interpo-
lation problem defined by ω and the contractive interpolants B for {A, T ′, U ′, R, Q};
this map is given by

H �→ B =
[

A
ΓHDA

]
,

provided the minimal isometric lifting U ′ is the Sz.-Nagy-Schäffer isometric lifting
on H′ ⊕ H2(DT ′), which we may assume without loss of generality. In this sense
the two problems are equivalent; see [9] for details.

The following theorem is the analog of Theorem 0.1 for the H2 interpolation
setting.

Theorem 0.2. Let ω be a contraction of the form (5). Then there exists a unique
solution to the H2 interpolation problem defined by ω if and only if one of the
following conditions is met:

(i) F = U ,
(ii) the operator ω1(ΠFω2)n is a co-isometry for n = 0, 1, 2, . . . .

We prove Theorem 0.2 in Section 2. Theorem 0.1 follows directly from Theo-
rem 0.2 and the equivalence between the two problems, as explained above.

A solution to the H2 interpolation problem defined by ω always exists. Indeed,
it is not difficult to verify that the function Hc on D given by

(7) Hc(λ) = ω1ΠF(IU − λω2ΠF )−1 (λ ∈ D)

is in H2
ball(U ,Y) and satisfies (6). This particular solution Hc is referred to as the

central solution and corresponds to the central solution for the relaxed commutant
lifting problem obtained in [5].

The operators ω1(ΠFω2)n in condition (ii) are closely related to the Taylor coef-
ficients of the central solution Hc. Indeed, the nth Taylor coefficient of Hc is equal
to ω1ΠF (ω2ΠF )n = ω1(ΠFω2)nΠF , and thus condition (ii) holds if and only if the
Taylor coefficients of Hc are co-isometric. Now let ΓHc

be the contraction from U
into H2(Y) associated with Hc via (4). The fact that ΓHc

is contractive implies that
ΓHc

is a co-isometry if and only if the Taylor coefficients of Hc are co-isometries.
In other words, condition (ii) in Theorem 0.2 is equivalent to:

(ii)′ the operator ΓHc
is a co-isometry.

In particular, we have the following corollary.
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Corollary 0.3. Let ω be a contraction of the form (5), and assume that F �= U .
Then Hc is the only solution if and only if ΓHc

is a co-isometry.

This paper consists of three sections, not counting the present introduction.
The first section contains preliminary material on a Redheffer representation of
all solutions. In Section 2 we prove Theorem 0.2, give an example and show how
condition (ii) in Theorem 0.2 simplifies when additional conditions are imposed
upon ω. In the final section we revisit the original relaxed commutant lifting setting
and specify Theorem 0.1 for some metric constrained interpolation problems.

We conclude the introduction with some words on the notation and terminology
used in this paper. Throughout calligraphic letters denote Hilbert spaces. We write
dim(U) for the dimension of U . The Hilbert space direct sum of U and Y is denoted
by

U ⊕ Y or
[

U
Y

]
.

By definition, a subspace is a closed linear manifold, and the closure of a linear
subset E of U is denoted by E . If M is a subspace of U , then U 	M stands for the
orthogonal complement of M in U . We write M1∨M2 for the closure of the linear
span of the subspaces M1 and M2 of U . The term operator stands for a bounded
linear transformation acting between Hilbert spaces. We say that a contraction A
is a strict contraction if ‖A‖ < 1 or, equivalently, when the defect operator DA

is invertible. An operator C from U into Y is said to be left invertible whenever
there exists an operator D from Y to U with DC = IU (the identity operator on
U). In this case D is called a left inverse of C. We say that a subspace M of U
is cyclic for an operator T on U if the smallest subspace of U that contains TnM
for each nonnegative integer n is U itself. Finally, a Schur class function is an
operator-valued function on the unit disc D whose values are contractions. The set
of Schur class functions whose values are operators from U into Y is denoted by
S(U ,Y) and is referred to as the Schur class associated with U and Y .

1. A Redheffer representation of all solutions

Let ω be a contraction of the form (5). In this section we review some facts con-
cerning the Redheffer representation of [11, Section 5.1] that describe all solutions
to the H2 interpolation problem defined by ω.

Set G = U 	 F , and define operator-valued functions Φ1,1, Φ1,2, Φ2,1 and Φ2,2

on D by

(8)

Φ1,1(λ) = λΠG(IU − λω2ΠF)−1ΠUDω∗ ,

Φ1,2(λ) = ΠG(IU − λω2ΠF)−1,

Φ2,1(λ) = ΠYDω∗ + λω1ΠF(IU − λω2ΠF )−1ΠUDω∗ ,

Φ2,2(λ) = ω1ΠF(IU − λω2ΠF )−1

for λ ∈ D. Using the equivalence between relaxed commutant lifting and the H2

interpolation problem defined by ω, as described in [9], we find that Theorem 5.1.1
from [11] provides the following Redheffer representation of all solutions.

Theorem 1.1. Let ω be a contraction of the form (5), and let Φ1,1, Φ1,2, Φ2,1 and
Φ2,2 be the functions given by (8). Then

Φ1,1 ∈ S(Dω∗ ,G), Φ1,2 ∈ H2
ball(U ,G), Φ2,1 ∈ S(Dω∗ ,Y), Φ2,2 ∈ H2

ball(U ,Y),
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and for any V ∈ S(G,Dω∗) the function H given by

(9) H(λ) = Φ2,2(λ) + Φ2,1(λ)V (λ)(I − Φ1,1(λ)V (λ))−1Φ1,2(λ) (λ ∈ D)

is a solution to the H2 interpolation problem defined by ω. Moreover, all solutions
are obtained in this way.

A representation of the form (9) is referred to as a Redheffer representation and
the functions Φ1,1, Φ1,2, Φ2,1 and Φ2,2 as the corresponding Redheffer coefficients.

Since Φ1,1 is a Schur class function with Φ1,1(0) = 0, it follows that Φ1,1(λ) =
λΥ(λ) for some Schur class function Υ in S(Dω∗ ,G) and for each λ ∈ D; see
Lemma 2.4.1 in [11]. Thus Φ1,1(λ) is a strict contraction for each λ ∈ D, and
the inverse in (9) is properly defined.

By taking V ∈ S(G,Dω∗) to be the zero function, we see that the function Φ2,2

is a solution. In fact, Φ2,2 is precisely the central solution Hc in (7).
The map V �→ H given by the Redheffer representation (9) is in general not

one-to-one. It can happen that different V ’s yield the same solution H. However,
this nonuniqueness in the representation can be made explicit; see [8, 11] for details.

In order to derive more properties of the Redheffer coefficients we require some
results from linear system theory. The terminology used here corresponds to that
in [4]. A co-isometric system is a quadruple {A, B, C, D}, consisting of operators
A on a Hilbert space X , B from V to X , C from X to W and D mapping V into
W such that the operator matrix

(10)
[

A B
C D

]
:
[

X
V

]
→

[
X
W

]
is a co-isometry. Since A is contractive, we can define functions F and W on D by

F (λ) = D + λC(I − λA)−1B and W (λ) = C(I − λA)−1 (λ ∈ D).

We refer to F and W as the transfer function and observability function associated
with {A, B, C, D}, respectively. From the fact that (10) is a co-isometry it follows
that F ∈ S(V ,W) and W ∈ H2

ball(X ,W). In particular, F defines, in the usual way,
a contractive multiplication operator MF from H2(V) to H2(W), and W defines a
contraction ΓW from X into H2(W) via (4).

Theorem 1.2. Let {A, B, C, D} be a co-isometric system with transfer function
F ∈ S(V ,W) and observability function W ∈ H2

ball(X ,W). Then

(11)
[
MF ΓW

]
:
[

H2(V)
X

]
→ H2(W)

is a co-isometry.

Proof. By Parrott’s lemma [15] there exist operators C̃ and D̃ such that[
A B
C1 D1

]
=

⎡
⎣ A B

C D

C̃ D̃

⎤
⎦ :

[
X
U

]
→

⎡
⎣ X

Y
Ỹ

⎤
⎦

is unitary; that is, {A, B, C1, D1} is a unitary system in the terminology of [4]. The
transfer function F1 and observability function W1 associated with {A, B, C1, D1}
then admit a decomposition of the form

F1(λ) =
[

F (λ)
F̃ (λ)

]
and W1(λ) =

[
W (λ)
W̃ (λ)

]
,
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with F̃ ∈ S(U , Ỹ) and W̃ ∈ H2
ball(X , Ỹ), and it follows from Theorem III.10.4 in

[4], identifying H2(Y ⊕ Ỹ) with H2(Y) ⊕ H2(Ỹ), that[
MF1 ΓW1

]
=

[
MF ΓW

MF̃ Γ
W̃

]
is a co-isometry. Hence (11) is a co-isometry. �

Since Φ1,1 and Φ2,1 are Schur class functions, they define contractive multipli-
cation operators MΦ1,1 from H2(Dω∗) into H2(G) and MΦ2,1 from H2(Dω∗) into
H2(Y), respectively. Moreover, Theorem 1.1 implies that we can define contrac-
tions ΓΦ1,2 from U into H2(G) and ΓΦ2,2 from U into H2(Y) associated with Φ1,2,
respectively Φ2,2, via (4).

Now let the system {A, B, C, D} be given by[
A B
C D

]
=

⎡
⎣ ω1ΠF ΠUDω∗

ω2ΠF ΠYDω∗

ΠG 0

⎤
⎦ :

[
U

Dω∗

]
→

⎡
⎣ U

Y
G

⎤
⎦ .

It follows from Douglas’ factorization lemma [2] that {A, B, C, D} is a co-isometric
system. Applying Theorem 1.2 to this system and using that we can identify
H2(Y ⊕ G) with H2(Y) ⊕ H2(G), we obtain the following result.

Theorem 1.3. Let ω be a contraction of the form (5), let MΦ1,1 and MΦ2,1 be the
multiplication operators defined by Φ1,1 and Φ2,1 in (8), respectively, and let ΓΦ1,2

and ΓΦ2,2 be the operators associated with Φ1,2 and Φ2,2 in (8) via (4), respectively.
Then the operator

(12)
[

MΦ1,1 ΓΦ1,2

MΦ2,1 ΓΦ2,2

]
:
[

H2(Dω∗)
U

]
→

[
H2(G)
H2(Y)

]
is a co-isometry.

From the fact that the coefficient matrix (12) is a co-isometry we immediately
obtain the following corollary.

Corollary 1.4. Let ω be a contraction of the form (5), and let Φ2,1 and Φ2,2 be
the functions given by (8). Then ΓΦ2,2 is a co-isometry if and only if Φ2,1(λ) = 0
for each λ ∈ D.

2. Existence of a unique solution

In this section we prove Theorem 0.2 and give an example that shows that the
earlier obtained sufficient condition “F = U , Y = {0} or ω is a co-isometry” is not
a necessary condition. We conclude the section with a proposition that shows how
condition (ii) in Theorem 0.2 simplifies in two special cases.

It will be convenient to first prove the following lemma.

Lemma 2.1. Let A ∈ S(W ,V), and let B and C be operator-valued analytic func-
tions on D whose values are operators from U to V and from W to Y, respectively.
Then

(13) C(λ)V (IV − A(λ)V )−1B(λ) = 0 (λ ∈ D)

for any strict contraction V from V to W if and only if

(14) B(λ) = 0 (λ ∈ D) or C(λ) = 0 (λ ∈ D).
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Proof. The sufficiency of (14) is obvious. So assume that (13) holds for any strict
contraction V from V to W , and assume in addition that B is not the zero function.
Then there exist a u ∈ U and λ0 ∈ D such that u �= 0 and B(λ0)u �= 0. By the
continuity of B there exists a ρ > 0 such that B(λ)u �= 0 for all λ in the open disc
∆(λ0, ρ) = {λ ∈ D | |λ − λ0| < ρ} ⊂ D.

Now fix a λ ∈ ∆(λ0, ρ) and an h ∈ W . Let δ > 0 be small enough so that

‖B(λ)u + δA(λ)h‖ > δ‖h‖.

Then we can define a strict contraction V from V to W by V (B(λ)u+δA(λ)h) = δh
and V k = 0 for each k ∈ G perpendicular to the vector B(λ)u + δA(λ)h. So

δ(I − V A(λ))h = V B(λ)u,

and thus
V (I − A(λ)V )−1B(λ)u = (I − V A(λ))−1V B(λ)u = δh.

Then
C(λ)h = δ−1C(λ)V (I − A(λ)V )−1B(λ)u = 0.

Since h is an arbitrary vector in W , we have C(λ) = 0 for each λ in the open disc
∆(λ0, ρ). But C is analytic on D; thus C(λ) = 0 for each λ ∈ D. �

Proof of Theorem 0.2. If there is just one solution, this unique solution must be
the central solution Hc in (7) (or Φ2.2 in the Redheffer representation (9)). It thus
follows that there is a unique solution if and only if the second summand in (9) is
the zero function for each V ∈ S(G,Dω∗), that is, if and only if

(15) Φ2,1(λ)V (λ)(I − Φ1,1(λ)V (λ))−1Φ1,2(λ) = 0 (λ ∈ D, V ∈ S(G,Dω∗)).

It follows from Lemma 2.1 that (15) is equivalent to

(16) Φ1,2(λ) = 0 (λ ∈ D) or Φ2,1(λ) = 0 (λ ∈ D).

The definition of Φ1,2 shows that Φ1,2(λ) = 0 for all λ ∈ D if and only if G = {0},
or equivalently, F = U . Next, from Corollary 1.4 and the remark in the paragraph
preceding Corollary 0.3 we see that the second condition in (16) is equivalent to
condition (ii) in Theorem 0.2. This completes the proof. �

Example 2.2. Let Y = C and U = �2+; that is, U is the Hilbert space of square
summable unilateral sequences of complex numbers. Set F = S�2+, where S denotes
the unilateral forward shift on �2+. Now define

ω =
[

ω1

ω2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · ·
0 0 0 · · ·
0 1 0 · · ·

0 0 1
. . .

...
...

. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

: F →
[

C

�2+

]
.

Then F �= �2+ = U , ω is not a co-isometry and Y = C �= {0}. However, we do have

ω1(ΠFω2)n =
[

0 · · · 0 1 0 0 · · ·
]

: F → C for n = 0, 1, 2, . . . ,

where the number 1 is situated in the nth position. In particular, ω1(ΠFω2)n is a
co-isometry for each nonnegative integer n. So by Theorem 0.2 the central solution
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Hc is the only solution to the H2 interpolation problem defined by ω. It is now
easy to see that Hc is given by

Hc(λ) =
[

0 1 λ λ2 λ3 . . .
]

(λ ∈ D).

Proposition 2.3. Let ω be a contraction of the form (5). If either ω1 is a strict
contraction or dim(U) < ∞, then condition (ii) in Theorem 0.2 is equivalent to
Y = {0}.

Proof. Clearly Y = {0} implies that ω1(ΠFω2)n from F into {0} is a co-isometry.
If ω1 is a strict contraction, then ω1 can only be a co-isometry if Y = {0}. Hence
in that case condition (ii) in Theorem 0.2 reduces to Y = {0}.

Next, assume that dim(U) < ∞. We already proved that Y = {0} implies
condition (ii) in Theorem 0.2. Now assume that condition (ii) in Theorem 0.2
holds. Set Fn = (ω∗

2Π∗
F)nω∗

1Y for n = 0, 1, 2, . . .. Since ω1(ΠFω2)n is a co-isometry,
dim(Fn) = dim(Y). Moreover, ω1 maps F0 isometrically onto Y and ω2 maps
Fn+1 isometrically onto Fn. Hence the subspaces F0,F1, . . . of F are mutually
orthogonal and all of the same dimension as Y . This is in contradiction with the
fact that F ⊂ U is finite dimensional, unless Y = {0}. �

3. Relaxed commutant lifting

In this section we return to the relaxed commutant lifting setting. We consider
two special cases and explain the relation of Theorem 0.1 with a result of [13].

The suboptimal case. For most of the metric constrained interpolation problems
that fit into the commutant lifting setting there is an interesting special case known
as the suboptimal case; cf. [6] for the Nehari problem. On the level of commutant
lifting this corresponds to the operator A being a strict contraction, in which case
a more explicit description of all solutions can be obtained (Section XIV.7 in [3],
Section VI.6 in [4]). To achieve a similar result in the relaxed commutant lifting
setting it is in addition assumed that R has a left inverse; see [12]. In that case we
have the following result.

Corollary 3.1. Let {A, T ′, U ′, R, Q} be a data set with A a strict contraction and R
left invertible. Then there exists a unique contractive interpolant for {A, T ′, U ′, R,
Q} if and only if QH0 = H or T ′ is an isometry.

Proof. Note that A being a strict contraction corresponds to DA being invertible
on H. The second condition in (1) implies that Q has a left inverse whenever R has
a left inverse. So the conditions on the data set imply that both DAQ and DAR
have left inverses, and thus

ω2 = DAR(Q∗D2
AQ)−1Q∗DA|F

has a left inverse as well. The latter implies that ω1 is a strict contraction, and thus,
by Proposition 2.3 condition (ii) in Theorem 0.1 reduces to DT ′ = {0}; that is, T ′

is an isometry. Since DA is invertible, it follows that condition (i) in Theorem 0.1
is equivalent to QH0 = H. �
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Relaxations of metric constrained interpolation problems. As a motiva-
tion for the relaxed commutant lifting problem, in [5] a number of classical metric
constrained interpolation problems, including Nevanlinna-Pick and Sarason inter-
polation, were provided with a relaxed version. The common ingredient in these
problems is that in the relaxed commutant lifting setting R and Q are of the form

(17) R =

⎡
⎢⎢⎢⎢⎢⎢⎣

IV 0 · · · 0

0 IV
. . .

...
...

. . . . . . 0
0 · · · 0 IV
0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
IV 0 · · · 0

0
. . . . . .

...
...

. . . IV 0
0 · · · 0 IV

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where V is a given Hilbert space. In particular, if dim(V) < ∞, then dim(H) =
dim(Vn) = dim(V)n < ∞, and thus dim(DA) < ∞. So it follows from Proposi-
tion 2.3 that in this case, condition (ii) of Theorem 0.1 reduces to DT ′ = {0}; i.e.,
T ′ is an isometry.

A typical result for the relaxed interpolation problems of [5] is that in the special
case V = C there exists a unique contractive interpolant whenever the operator A
has norm one. We show here that this is the case for each relaxed commutant lifting
problem with R and Q of the form (17) and V = C. First we prove the following
lemma.

Lemma 3.2. Let {A, T ′, U ′, R, Q} be a data set for the relaxed commutant lifting
problem, and set G = DA	F . Then DAG is perpendicular to both QH0 and KerDA.
In particular, F = DA whenever QH0 ∨ Ker DA = H.

Proof. Let g ∈ G = Ker Q∗DA ⊂ DA. Then DAg ∈ KerQ∗, or equivalently, DAg is
perpendicular to QH0. Since DA is a selfadjoint operator, it follows directly that
DAg is perpendicular to KerDA. The last statement of Lemma 3.2 holds because
DA restricted to G is one-to-one. �

Corollary 3.3. Let {A, T ′, U ′, R, Q} be a data set for the relaxed commutant lifting
problem with R and Q given by (17), V = C and DT ′ �= {0}. Then there exists a
unique contractive interpolant if and only if A has norm one.

Proof. In case the norm of A is less than one, we are in the suboptimal case de-
scribed above, while ker Q∗ �= {0} and DT ′ �= {0}. Thus there is more than one
contractive interpolant.

Now assume that ‖A‖ = 1. Since H = Cn is finite dimensional, this implies that
A has a norm-attaining vector, i.e., KerDA �= {0}. Note that Ker Q∗ = C⊕{0}n−1.
So according to Lemma 3.2 it suffices to show that there exists a norm-attaining
vector h = (h1, . . . , hn) ∈ C

n for A with h1 �= 0.
Let h = (h1, . . . , hn) �= 0 be a norm-attaining vector, but assume that h1 = 0.

Then h = Qk, with k = (h2, . . . , hn) ∈ Cn−1. We have

‖Rk‖ = ‖h‖ = ‖Ah‖ = ‖AQk‖ = ‖T ′ARk‖ ≤ ‖ARk‖ ≤ ‖Rk‖.

Thus Rk = (h2, . . . , hn, 0) is also a norm-attaining vector. It may happen that
h2 = 0, in which case we just repeat the above procedure. After at most n − 1
times we arrive at a norm-attaining vector h = (h1, . . . , hn) with h1 �= 0. �
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The Li-Timotin criterion. In [13, Proposition 6.2] for the case that R∗R = Q∗Q,
a seemingly different necessary and sufficient criterion for the existence of a unique
solution is obtained. Let {A, T ′, U ′, R, Q} be a data set and assume that R∗R =
Q∗Q and T ′ is a co-isometry. The latter assumption can be made without loss of
generality; the first implies that the underlying contraction ω is an isometry. Let
V be the partial isometry given by

V =
[

T ′ Π∗
DT ′ ω1ΠF

0 ω2ΠF

]
on

[
H′

DA

]
.

(In [13] V corresponds to an operator called ω, but we do not use that notation here
for obvious reasons.) Proposition 6.2 in [13] says that a unique solution exists if and
only if one of two conditions is met. The second condition corresponds to condition
(i) in Theorem 0.1 (cf. the proof of Corollary 4.2 in [13]). The first condition, after
some translation, can be rephrased as:

(ii)′′ V ∗nH′ ⊂ H′ ∨ ωF = {h + ωf | h ∈ H′, f ∈ F} for n = 0, 1, 2, . . . .

Writing out V ∗n we obtain that V ∗n|DT ′ = (Π∗
Fω∗

2)n−1Π∗
Fω∗

1 . Moreover, it also
follows that (ii)′′ is equivalent to:

(18) DT ′ ⊂ ωF and (Π∗
Fω∗

2)nΠ∗
Fω∗

1DT ′ ⊂ ωF for n = 0, 1, 2, . . . .

Since ω is an isometry, and thus one-to-one, the first inclusion just means that ω1

is a co-isometry. It also implies that ωF = DT ′ ⊕ Ũ with Ũ = ω2F . The additional
inclusions are thus equivalent to (Π∗

Fω∗
2)nΠ∗

Fω∗
1DT ′ ⊂ Ũ for n = 0, 1, 2, . . . . Now,

using that Π∗
Fω∗

2 |Ũ is an isometry, again because ω is an isometry, we find, recur-
sively, that the second part of (18) is equivalent to (Π∗

Fω∗
2)nΠ∗

Fω∗
1 being isometric

for n = 1, 2, . . . . Thus (ii)′′ is equivalent to condition (ii) in Theorem 0.1.
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