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ABSTRACT. This paper illustrates the general technique established in 1984
by Hoover and Keisler for extending certain types of results from atomless
Loeb measure spaces to measure spaces that we shall call “nowhere countably
generated”. The Hoover-Keisler technique is applied here to further extend
the authors’ 2006 generalization of a theorem of Dvoretzky, Wald and Wol-
fowitz on the purification of measure-valued maps. The authors’ 2006 result
was first extended to these more general spaces by K. Podczeck in 2007; he
used new results in functional analysis produced for that purpose. This paper
demonstrates that, in general, such extensions follow from the Hoover-Keisler
technique. Moreover, adaptations of counterexamples from earlier papers show
that the extension obtained here holds only for nowhere countably generated
spaces.

1. INTRODUCTION

In 1975 [6], the first author showed how to modify a measure formed from infin-
itesimal weights in a nonstandard model to obtain a standard real-valued measure.
The simplest examples start with uniform infinitesimal weights on hyperfinite sets,
that is, sets that have the formal properties of finite sets. Since the publication of
[6], various results not valid for any Lebesgue space have been established in the lit-
erature using the construction from [6], now called the Loeb measure construction;
see [2], [7] and [] for some recent references for these kind of results. This paper
illustrates the general technique established in 1984 [3] by Hoover and Keisler for
extending such results from atomless Loeb measure spaces to measure spaces that
we shall call “nowhere countably generated”.

An example of a result that does not hold for any Lebesgue space is the au-
thors’ 2006 [7] generalization of a theorem of Dvoretzky, Wald and Wolfowitz [1]
Theorem 4]. In [7], the authors showed that when given a measurable mapping f
from a nonatomic Loeb probability space (£,.4, A) to the space of Borel probability
measures on a compact metric space A, there then exists a measurable mapping
g from (9, A, \) to A such that f and g yield the same values for the integrals
associated with a countable class of functions on €2 x A. The map g is called a “pu-
rification” of the measure-valued map f. The original paper of Dvoretzky, Wald
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and Wolfowitz used a general nonatomic probability space (2,.4,\) and therefore
needed the target space A to be finite.

The authors’ restriction in [7] on the measure space (£2,.4,\) was replaced by
Konrad Podczeck in 2007 [9] with the more liberal restriction that for any set of
positive measure in A, the relative o-algebra of measurable subsets (modulo sets
of measure 0) cannot be countably generated. We shall call such a space nowhere
countably generated, replacing Podczeck’s term “superatomless”.

Podczeck’s extension of the author’s result used new results in functional analysis
produced for that purpose. This note demonstrates that, in general, such extensions
follow from a technique established in 1984 [3] by D. N. Hoover and H. J. Keisler. (In
[3], the property of a space being “saturated” was formulated and shown (implicitly)
to be equivalent to a space being nowhere countably generated; see Fajardo-Keisler
[2, Theorem 3B.7, page 47] for an explicit equivalence result.)

Our demonstration here of the Hoover-Keisler technique shows that with the
choice of appropriate mappings, results such as the purification result in [7] can
easily be validated for nowhere countably generated measure spaces once they have
been established for Loeb measure spaces, or even just such a space formed on
a hyperfinite set. This generalization technique is analogous to the extension of
certain results established for the Lebesgue unit interval to more general atomless
spaces. Just as the Lebesgue unit interval forms the prototype and simplest such
space, hyperfinite Loeb counting spaces play a similar role in the class of nowhere
countably generated measure spaces.

Konrad Podczeck shows in [9] that purification results for a compact metric tar-
get space A can only hold for nowhere countably generated spaces. By the method
used in the proof of Theorem 3.7 of [4], this fact also follows from counterexamples
in our earlier papers when adapted using appropriate mappings for that purpose.

2. THE RESULTS

Given a Polish space Z (i.e., a complete, separable, metrizable space), we will use
M(Z) to denote the space of Borel probability measures on Z with the topology
of weak convergence. Let (€Q,.4,)\) be an atomless probability space. Given a
measurable mapping h from (£2,A) to Z, we write Ah ! for the Borel probability
measure on Z taking the value A (h’l[B]) at each Borel set B C Z; this measure
is also called the distribution of h. Any Borel probability measure v on Z is the
distribution of some measurable mapping h from (2,4, \).

Following [3], we say that a probability space (2, .4, \) is saturated if given any
two Polish spaces X and Y, any 7 € M(X xY') (with marginal probability measure
7x on X), and any measurable mapping ® from ({,.4) to X with distribution
Tx, there is a measurable mapping ¥ from (2,.4) to Y such that the measurable
mapping (®, ¥) from (2, 4) to X x Y has distribution 7. It is easy to see that a
saturated probability space must be atomless. It is shown in [3] that (2,4, ) is
saturated if and only if for any S € A with A(S) > 0, the restriction of A to the
measurable subsets of S cannot be countably generated; we say that (£2,.4,)\) is
nowhere countably generated.

Let A be a compact metric space with the Borel o-algebra B. For any mapping
f from © to M(A), the A-measurability of f with respect to the topology on M(A)
is equivalent to the A-measurability of f(-)(B) for each B € B. The space C(A) of
continuous real-valued functions on A is supplied with the sup-norm topology. For
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any v € M(A), supp~ is the support of v, i.e., the complement of the union of all
open y-null subsets of A.

Let F be the collection of all functions ¢ from 2 x A to R such that (1) ¢(-, a)
is A-measurable on 2 for each a € A, (2) ¢(w, -) is continuous on A for each w € €,
and (3) for each ¢ € F there is a nonnegative, A-integrable function oy on
with [¢(w,a)] < ay(w) for all (w,a) € 2 x A. In what follows, we shall call a set
countable if it is finite or countably infinite.

Lemma 2.1. Any ¢ € F can be viewed as a measurable mapping from Q to C(A),
so ||¢(w, )| is a A-integrable function of w.

Proof. Since C(A) is separable, we need show only that for ¢ € C'(A) and € > 0,
S = {w € 0 supyeq l(w,a) — pla)] < e} € A
Let {a; : i € I} be a countable dense set in A. For each i € I,
Sii={w € Q: [Y(w,a:) —p(ai)| <e} € A,

s0 S =\;erSi € A O

iel
Theorem 2.2. Assume (2, A, \) is saturated. Let J be a countable set, and 1);,
j € J, a countable subcollection of F. Given an A-measurable mapping f from Q to
M(A), there is an A-measurable mapping g from Q to A such that for each j € J,

(2.1) (//%wa# /%wg DA).

Proof. By Lemma 1] each 1; can be viewed as a measurable mapping from Q
to C(A). Define a measurable mapping F' from Q to M(A) x C(A)” by letting
F(w) = (f(), {5(@) }es):

Let (T,7,P) be an atomless Loeb probability space. Since random variables
on an atomless probability space can represent all distributions (see, for example,
Chapter 1 of [2]), there is a measurable mapping G from T to M(A) x C(A)” such
that F and G have the same distribution on M(A) x C(A)”. The mapping G has
the form G(t) = (f'(t),{¢;(t)};cs), where f’ is a 7-measurable mapping from T’
to M(A), and for each j € J, ¢; is a 7-measurable mapping from T to C(A) with
the same distribution as 1);, so ||¢;(t,-)|| is a P-integrable function of ¢.

It now follows from Theorem 2.2 in [7] that there is a 7-measurable mapping ¢’
from T to A such that for each j € J,

(2.2) //@tadf /(;Sth ))dP(t).

Since (€2, A, \) is saturated, there is an A-measurable mapping ¢ from  to A
such that (F,g) and (G, ¢’) have the same distribution, which we denote by 7, on
[M(A) x C(A)’] x A. Fix any j € J. Let 7} be the marginal measure of 7 on
the product of M(A) with the j-th factor of C(A)”, and let 77 be the marginal
measure of 7 on the product of the j-th factor of C(A)” with A. Note that 7} is
the joint distribution of (f,1);) as well as of (f’, ¢;), and 7'j2 is the joint distribution
of (¥, 9) as well as of (¢;,9).

Consider the real-valued mapping H! on M(A) x C(A) defined by setting
H'(v,u) = [, udv for each v € M(A) and u € C(A). This function is jointly
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continuous on M(A) x C(A). Since 7} is the joint distribution of (f,;), the left
side of equation [2.]]) equals

/Hl (@))dA(w) = / H (v, u)dr.
M(A)XC(A) !

On the other hand, since Tj is the joint distribution of (v, g), it follows from the
joint continuity of the mapping H?(u,a) = u(a) on C(A) x A that the right side of
equation (2] equals

[ @i = [ mua
Q C(A)x A

Similarly the left and right sides of equation (22)) equal fM(A)xC(A) H' (v,u)dr}
and fC( ayxaH 2(u,a)d7'j2 respectively. Hence, Equation (ZI]) follows from Equa-

tion (2:2). O

Corollary 2.3. Given the saturated probability space (2, A, \), for each k in a
countable set K, let ux be a finite signed measure on (2, A) that is absolutely
continuous with respect to X. For each j in a countable set J, let 1; be an element
of F. If f is an A-measurable mapping from Q to M(A), then there is an A-
measurable mapping g from Q to A such that g(w) € supp f(w) for A-almost all
w e Q, and for all k € K, 5 € J, B € B, and all bounded Borel measurable
functions 6 on A,

1) waj(an)f( )(da d)‘ fgwj w 9 ))d)\(w)a

2) Jq f( dﬂk( ) = 1 ( 1[3]),

3) Jo fA )(da)dpr(w) = [, 0(g9(w))dpr(w).
Proof. The corollary follows from Theorem 2.2 in the same way that Corollary 2.4
of [7] follows from Theorem 2.2 of [7]. O

Remark 2.4. Suppose (€, .A4,)) is atomless but not saturated. Then, as noted,
there is a set S € A such that A\(S) > 0 and A° = {B € A: B C S} is countably
generated. We follow the method used in the proof of Theorem 3.7 of [4] to generate
a counterexample. Let P be the probability measure on (S,.4%) rescaled from
A. There is a measurable mapping h from S to [0,1] such that h induces an
isomorphism between the corresponding measure algebras of (S, A%, P) and the
Lebesgue unit interval ([0,1],C, ). Let B denote the Borel subsets of [—1,1]. Let
f be an A-measurable mapping from Q to M([—1,1]) by setting f(w) = G(h(w))
for w € S and f(w) = §p for w ¢ S, where G(z) = (6, + I_4)/2, = € [0,1], as
in Example 2 of [10] and J, is the unit mass at . We claim that there is no A-
measurable mapping g from  to [—1,1] such that g(w) € supp f(w) for A-almost
all w € 2, and

VB € B, /Q F@)(B)AW) = Ag~ [B].

Suppose such a ¢ exists. Then, g(w) = 0 for w ¢ S. Then, for any B € B,
fs f(w)(B)dP(w) = Pg~'[B]. There is a Borel measurable mapping ¢ from [0, 1]
o [—1,1] such that g = ¢(h), which means that ¢(z) € supp G(z) for p-almost
all x € [0,1], and for any B € B, fo 1 (z)(B)du = p¢~1 [B]; this is contrary to
what is shown in Example 2 of [I0]. By using a Borel bijection, we can modify this
example to work for any uncountable compact metric space A instead of [—1, 1].
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This means that the results in Theorem and Corollary [Z.3 hold for an atomless
probability space (£2,.4, A) and an uncountable compact metric space A if and only
if the probability space is saturated.

Remark 2.5. One of the aims of [4] is to apply the saturation property itself to
prove some results on saturated probability spaces directly without going through
Loeb spaces. This is also possible in the context of [7] and this note. In fact,
nonstandard analysis is only used in the proof of Lemma 2.1 of [7] using Loeb
spaces. That result, however, follows directly from the saturation property with
the following proof. Let {g,, n € N} be a sequence of measurable mappings from
a saturated probability space (£2,.4, ) to A such that for each j € J, the sequence
Jo ¥j(w, gn(w))dA(w) converges. We claim that there is an .A-measurable mapping
g from Q to A such that for each j € J,

(2.3) lim /w] (w, gn(w))dA (w /w] (w, g(w))dA(w).

n—oo

For each n, define a measurable mapping G™ from 2 to A x C(A)” by letting
G"(w) = (gn(w),{1j(w)}jes); let p™ be the distribution of G™ on A x C(A)”.
Since A is compact, some subsequence of {p", n € N} weakly converges to a
measure p on A x C(A)”; without loss of generality, we assume the whole sequence
weakly converges to p. By the saturation property, there is a measurable mapping
g from Q to A such that the distribution of (g, {t;};ecs) is p. Let pj (p;) be the
marginal measure of p" (p) on the product of A with the j-th factor of C(A)”’.
Then, {p?, n € N} weakly converges to p;. It follows from the joint continuity of
the mapping H?(u,a) = u(a) on C(A) x A that

lim H2(u,a)dp? = / H?(u,a)dp;,
n=oo Jo(a)xA C(A)x A

which implies equation ([Z3]). The rest of the results in [7] follow with exactly the

same standard measure-theoretic arguments as in [7]. Thus, all the results in [7] on

Loeb spaces generalize to saturated probability spaces without using nonstandard

analysis.

Remark 2.6. In a private communication, Jerry Keisler has suggested another ap-
proach for the proof of Theorem here (and thus Theorem 2.2 in [7] as well).
His approach is based on another general principle in [3]: If a property is approxi-
mately true in every atomless probability space, then the property is true in every
saturated space. Thus, Theorem for a compact metric target space A can be
proved from the classical result in [I], which is valid for a finite target space, by
using approximations and saturation.

Here is a sketch of the approach. An A-measurable mapping h from 2 to M(A)
is said to be simple if A has finite range and each element of the range of h is
supported by a finite subset of A. Then, an A-measurable mapping f from € to
M(A) can be approximated by a sequence {f,}52; of simple functions from € to
M(A). An A-measurable 6 from €2 to C(A) is simple if 8 has finite range. Each 1;
can be approximated by a sequence {9, }52; of simple functions from Q to C'(A4).
By the classical result in [I] valid for a finite target space, for each n there is an
A-measurable function g,, from  to A with finite range such that for each j < n,

(2.4) / / Bin (@, @) () (@)d / By (@, n (@) AN ).
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Recall from the proof of Theorem that F' is a measurable mapping from €2 to
M(A) x C(A)” such that F(w) = (f(w), {¢j(w)};es). For each n, define a measur-
able mapping F,, from Q to M(A)xC(A)” by letting F,,(w) = (fn(w), {tjn(w)}jecr)-
The approximation property, the compactness of A and the saturation property of
(©, A, A) imply that there is an A-measurable function g from 2 to A such that a
subsequence of {(F},, gn)}52 ;1 converges to (F, g) in distribution. By using a limiting
argument for Equation (Z4]) and a similar argument as in the proof of Theorem 2:2]
one can check that Equation (2] will be satisfied by g.

The proof sketched in this remark uses the main result in [I] to prove The-
orem 2.2. On the other hand, the main result in [I] is given a new proof as a
corollary of Theorem 2.2 as it is presented in [7].

Remark 2.7. For some recent applications to game theory of the classical result of
Dvoretzky-Wald-Wolfowitz in [I, Theorem 4|, see [5]. Finally, we note that with
the choice of appropriate mappings, the results in [8] should also extend to nowhere
countably generated measure spaces using the technique employed here.
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