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ON SEQUENCES (anξ)n≥1 CONVERGING MODULO 1

YANN BUGEAUD

(Communicated by Ken Ono)

Abstract. We prove that, for any sequence of positive real numbers (gn)n≥1

satisfying gn ≥ 1 for n ≥ 1 and limn→+∞ gn = +∞, for any real number θ
in [0, 1] and any irrational real number ξ, there exists an increasing sequence
of positive integers (an)n≥1 satisfying an ≤ ngn for n ≥ 1 and such that
the sequence of fractional parts ({anξ})n≥1 tends to θ as n tends to infinity.
This result is best possible in the sense that the condition limn→+∞ gn = +∞
cannot be weakened, as recently proved by Dubickas.

For an increasing sequence a = (an)n≥1 of positive integers, let Ea denote the set
of irrational real numbers ξ such that the sequence ({anξ})n≥1 is not everywhere
dense in [0, 1). Here and throughout the present paper, {x} stands for the fractional
part of the real number x. Weyl [4] established in 1916 that Ea has Lebesgue
measure zero. No refined general metrical result can be proved since, on the one
hand, Ea is empty when a is the sequence of all positive integers or of all integers
of the form 2k3� (with k, � ≥ 0) and, on the other hand, Ea has full Hausdorff
dimension if there exists some τ greater than 1 for which an+1 ≥ τan for n ≥ 1.
We refer to [1, 3] for references and further results.

In a recent paper, Dubickas [1] investigated how slowly such a sequence a can
increase for which the set Ea is not empty. More precisely, for any real quadratic
number α, he constructed a very slowly increasing sequence a such that the sequence
of fractional parts ({anα})n≥1 tends to 0. His proof is quite intricate and makes use
of recurrence sequences related to some algebraic integer in the quadratic number
field generated by α. In his paper Dubickas asked whether, a transcendental real
number (or a real algebraic number of degree at least 3) ξ being given, there exists a
slowly increasing sequence of positive integers (an)n≥1 such that limn→+∞ {anξ} =
0.

In the present paper, we give a positive answer to (a strong form of) his question.

Theorem 1. Let ξ be an irrational real number. Let S be a finite, non-empty set
of distinct real numbers in [0, 1]. Let (gn)n≥1 be a sequence of real numbers such
that gn ≥ 1 for n ≥ 1 and limn→+∞ gn = +∞. Then there exists an increasing
sequence of positive integers (an)n≥1 satisfying an ≤ ngn for n ≥ 1 and such that
the set of limit points of the sequence of fractional parts ({anξ})n≥1 is equal to S.
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The theorem extends Theorems 1 and 5 of [1]. Our proof is much simpler; it
uses only basic results from the theory of continued fractions and the fact that the
sequence (tξ)t≥1 is dense modulo 1 when ξ is irrational.

The theorem is best possible in the sense that its conclusion fails if (gn)n≥1

does not tend to infinity. Namely, Theorem 2 of Dubickas [1] asserts that, for any
irrational real number ξ and any increasing sequence (an)n≥1 satisfying

lim inf
n→+∞

an/n < +∞,

the sequence of fractional parts ({anξ})n≥1 has infinitely many limit points.

Proof of the theorem. Let (pk/qk)k≥1 be the sequence of convergents to ξ and set

εk := {qkξ}, k ≥ 1.

Classical results on continued fraction expansions (see, e.g., [2]) imply that

0 < ε2k+2 < ε2k < 1/3, k ≥ 1.

Since ξ is irrational, the sequence (tξ)t≥1 is dense modulo 1. This fact (see, e.g.,
[4]) will be implicitly used at several places below.

As explained in [1], we can assume that g1, g2, . . . are integers and that (gn)n≥1

is non-decreasing. Set n1 = q2. For k ≥ 2, let nk be the smallest index � such
that � > nk−1 and g� ≥ q2k + 1. Note that the sequence (nk)k≥1 may increase very
rapidly.

We proceed now to construct inductively an auxiliary integer sequence (mk)k≥2

and a sequence (an)n≥1 with the required property.
Let j be the integer such that q2j ≥ n2 > q2j−2. Observe that j ≥ 2 and set

m2 = q2j . Define
an = n, n = 1, . . . , m2,

and observe that

{m2ξ} = {am2ξ} ≤ ε2, am2 ≤ m2q4 ≤ m2(gm2 − 1), gm2 ≥ gn2 ≥ q4 + 1.

Let us proceed with the induction step. Set ε0 = 1. Let k ≥ 2 be an integer and
assume that mk and amk

have been constructed such that

{amk
ξ} ≤ ε2k−2, amk

≤ mk(gmk
− 1), gmk

≥ gnk
≥ q2k + 1.

Set b0 = amk
and let b1 < b2 < . . . be the (infinite) increasing sequence of all

integers t satisfying t > amk
and {tξ} ≤ ε2k−2. Observe that if the integer t

satisfies {tξ} ≤ ε2k−2, then

{(t + q2k)ξ} = {tξ} + ε2k < 2ε2k−2

and we have either
{(t + q2k)ξ} ≤ ε2k−2

or
{(t + q2k − q2k−2)ξ} ≤ ε2k−2.

From this, we deduce that

bj+1 ≤ bj + q2k, for j ≥ 0,

and
bj ≤ mk(gmk

− 1) + jq2k ≤ (mk + j)(gmk+j − 1), for j ≥ 0.
Let mk+1 be the smallest integer � satisfying � ≥ max{mk + 1, nk+1} and

{b�−mk
ξ} ≤ ε2k.
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This integer is well defined since the sequence (tξ)t≥1 is dense modulo 1. Setting

amk+j = bj , j = 1, . . . , mk+1 − mk,

we thus have

{anξ} ≤ ε2k−2, an ≤ n(gn − 1), n = mk + 1, . . . , mk+1,

and

{amk+1ξ} ≤ ε2k, gmk+1 ≥ gnk+1 ≥ q2k+2 + 1.

This completes the inductive set.
To summarize, we have constructed inductively an increasing sequence (an)n≥1

of positive integers satisfying

an = n, for n = 1, . . . , m2 − 1,

an ≤ n(gn − 1), for n ≥ m2,

and

lim
n→+∞

{anξ} = 0.

This proves the theorem when S = {0}.
Assume now that S �= {0}. For θ in (0, 1], let (d(θ)

n )n≥1 be an increasing sequence
of non-negative integers such that d

(θ)
1 = 0, limn→+∞ {d(θ)

n ξ} = θ and {d(θ)
n ξ} < θ,

for n ≥ 1. Also let (d(0)
n )n≥1 be an increasing sequence of positive integers such

that limn→+∞ {d(0)
n ξ} = 0. Assume that S = {θ1, . . . , θr} for some positive integer

r, and denote by (dn)n≥1 the increasing sequence of integers obtained by taking
the union of the r sequences (d(θ1)

n )n≥1, . . . , (d
(θr)
n )n≥1. For every d in (dn)n≥1, let

f(d) denote an integer i such that d belongs to the sequence (d(θi)
n )n≥1. Note that

this integer is uniquely determined when d is sufficiently large.
Let n0 be an integer such that n0 ≥ m2 and {anξ} < θ for every non-zero θ in S

and for every n ≥ n0. Let (cn)n≥n0 be a non-decreasing sequence of integers from
{d1, d2, d3, . . .} such that limn→+∞ cn = +∞,

cn ≤ n, |θf(cn) − {cnξ}| > {anξ}, for n ≥ n0,

and, for every i = 1, . . . , r, the set Ni := {n ≥ n0 : f(cn) = i} is infinite.
Setting bn = an for n = 1, . . . , n0 −1 and bn = an + cn for n ≥ n0, we check that

bn ≤ ngn, for n ≥ 1,

and that, for every i = 1, . . . , r, we have

lim
Ni�n→+∞

{bnξ} = θi.

In particular, the set of limit points of ({bnξ})n≥1 is equal to the set S. This ends
the proof of the theorem. �
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