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THE ERDŐS-KAC THEOREM FOR POLYNOMIALS
OF SEVERAL VARIABLES

MAOSHENG XIONG

(Communicated by Wen-Ching Winnie Li)

Abstract. We prove two versions of the Erdős-Kac type theorem for polyno-
mials of several variables on some varieties arising from translation and affine
linear transformation.

1. Introduction

For a positive integer n, let ω(n) be the number of distinct prime divisors of n.
The remarkable theorem of Erdős and Kac ([7]) asserts that, for any γ ∈ R,

lim
X→∞

1
X

#
{

1 ≤ n ≤ X :
ω(n) − log log n√

log log n
≤ γ

}
= G(γ),

where
G(γ) :=

1√
2π

∫ γ

−∞
e−

t2
2 dt

is the Gaussian distribution function.
Erdős and Kac proved this theorem by a probabilistic idea, building upon the

work of Hardy and Ramanujan ([10]) and Turán ([21]) on the normal order of ω(n).
Since then there has been a very rich literature on various aspects of the Erdős-
Kac theorem (see, for example, [1, 9, 11, 13, 14, 15, 16, 17, 19, 20]). Interested
readers can refer to Granville and Soundararajan’s paper [8] for the most recent
account and Elliot’s monograph [6] for a comprehensive treatment of the subject.
In particular, Halberstam in [9] proved that

(1.1) lim
X→∞

1
X

#

{
n : 1 ≤ n ≤ X,

ω(g(n)) − A(n)√
B(n)

≤ γ

}
= G(γ),

where g(x) ∈ Z[x] is an irreducible polynomial,

A(n) =
∑
p<n

r(p)
p

, B(n) =
∑
p<n

r(p)2

p
,

and r(p) is the number of solutions of g(m) ≡ 0 (mod p), 0 ≤ m < p.
In a recent paper ([3]) Bourgain, Gamburd and Sarnak showed among other

things that a large family of polynomials is “factor finite”; that is, the subset at
which the polynomial has a bounded number of prime factors is Zariski dense in the
orbit obtained by translation and affine linear transformation. By adapting their
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proofs and applying a criterion of Liu ([15]), in this paper we obtain two versions
of the Erdős-Kac type theorem for polynomials of several variables.

To state the first result, we need some notation.
For an additive subgroup Λ ⊂ Zn of rank k (1 ≤ k ≤ n), explicitly given

by Λ = Ze1

⊕
· · ·

⊕
Zek for Q-linearly independent vectors e1, . . . , ek ∈ Zn, we

denote by V = Zcl(Λ) the Zariski closure of Λ in the affine space An over Q. For
any b ∈ Zn, denote Ob = Λ + b and for any L > 0, denote

Ob(L) = {y1e1 + · · · + ykek + b ∈ Ob : |yi| ≤ L, yi ∈ Z, 1 ≤ i ≤ k} .

Theorem 1. Let Λ be as above. Suppose each of the polynomials f1, . . . , ft ∈
Z[x1, . . . , xn] generates a distinct prime ideal in the coordinate ring Q̄[V ]. Let
f = f1 · · · ft. Then for any b ∈ Zn and for any γ ∈ R, we have

lim
L→∞

1
#Ob(L)

#
{

x ∈ Ob(L) :
ω(f(x)) − t log log L√

t log log L
≤ γ

}
= G(γ) .

When k = n = 1, Theorem 1 coincides with (1.1) in the special case that
g(x) ∈ Z[x] is absolutely irreducible. As another example we may choose Λ = Z2

and fi(x, y) = xi − y for 1 ≤ i ≤ t. One sees that this choice of Λ and fi’s satisfies
all the above conditions.

To state the second result, we use the following notation.
Let Λ ⊂ GL(n, Z) be a free subgroup generated by the d elements A1, . . . , Ad.

Suppose the Zariski closure G = Zcl(Λ) is isomorphic to SL2 over Q. Given a
matrix b ∈ Matm×n(Z), Λ acts on b by right multiplication. Suppose StabΛ(b) is
trivial and the G orbit V = b · G is Zariski closed and hence defines a variety over
Q. Assume dim V > 0. Denote Ob = b · Λ. We turn Ob into a 2d-regular tree by
joining the vertex x ∈ Ob with the vertices x ·A1, x ·A−1

1 , . . . , x ·Ad, x ·A−1
d . (This

is indeed a tree because Λ is free on the generators and StabΛ(b) is trivial.) For
x, y ∈ Ob, let v(x, y) denote the distance in the tree from x to y. For any L > 0,
we denote

Ob(L) = {x ∈ Ob : v(x, b) ≤ log L} .

Theorem 2. Let Λ, b be as above. Suppose each of the polynomials f1, . . . , ft ∈
Z[x1, . . . , xmn] generates a distinct prime ideal in the coordinate ring Q̄[V ], and let
f = f1 · · · ft. Then for any γ ∈ R, we have

lim
L→∞

1
#Ob(L)

#
{

x ∈ Ob(L) :
ω(f(x)) − t log log L√

t log log L
≤ γ

}
= G(γ) .

As an example we may choose b to be the 2 by 2 identity matrix, fi(x1, x2, x3, x4)
= xi

1 − x4 for each 1 ≤ i ≤ t and the subgroup Λ ⊂ SL(2, Z) to be generated by
two elements:

Λ =
〈[

1 2
0 1

]
,

[
1 0
2 1

]〉
.

Since Λ is a non-elementary subgroup of SL(2, Z) and Λ ⊂ Γ(2), it is known that
Zcl(Λ) = SL2 and Λ is a free group ([2]). One can check that the fi’s generate
distinct prime ideals in Q̄[V ] and Λ, and the fi’s and b satisfy the conditions of
Theorem 2.

This paper is organized as follows. Liu’s criterion is briefly reviewed in Section 2.
In Section 3, we use it to prove Theorem 1 by adapting the sieving process of the
proof of Theorem 1.6 in [3]. Since the proof of Theorem 2 is similar, it is sketched
in Section 4.
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2. Preliminaries

We shall need the following criterion obtained by Liu ([15]). For completeness
and for later applications we reproduce the statement with some adjustments.

Let O be an infinite set. For any L > 1, assign a finite subset O(L) ⊂ O such
that #O(L) → ∞ as L → ∞ and #O(L1/2) = o (#O(L)). Let f : O −→ Z \ {0}
be a map. Put X = X(L) = #O(L) and write, for each prime l,

1
X

# {n ∈ O(L) : f(n) is divisible by l} = λl(X) + el(X)

as a sum of the major term λl(X) and the error term el(X). For any u distinct
primes l1, l2, . . . , lu, we write

1
X

# {n ∈ O(L) : f(n) is divisible by l1l2 · · · lu} =
u∏

i=1

λli(X) + el1l2···lu(X).

To ease our notation, the dependence on X will be dropped when there is no
ambiguity.

In order to gain information on the distribution of ω(f(n)), some control on λl

and el is needed. Liu’s criterion uses the conditions below.
Suppose there exist absolute constants β, c, where 0 < β ≤ 1 and c > 0, and a

function Y = Y (X) ≤ Xβ such that the following hold:
(i) For each n ∈ O(L), the number of distinct prime divisors l of f(n) with

l > Xβ is bounded uniformly.
(ii)

∑
Y <l≤Xβ λl = o((log log X)1/2).

(iii)
∑

Y <l≤Xβ |el| = o((log log X)1/2).
(iv)

∑
l≤Y λl = c log log X + o((log log X)1/2).

(v)
∑

l≤Y λ2
l = o((log log X)1/2).

The sums in (ii)–(v) are over primes l in the given range.
(vi) For any r ∈ N and any integer u with 1 ≤ u ≤ r, we have

lim
X→∞

∑′′
|el1···lu |

(log log X)−r/2
= 0,

where for each u, the sum
∑′′ extends over all u distinct primes l1, l2, . . . , lu with

li ≤ Y .

Theorem 3 (Liu [15, Theorem 3]). If O and f : O → Z \ {0} satisfy all the above
conditions, then for γ ∈ R, we have

lim
L→∞

1
X(L)

#

{
n ∈ O(L) :

ω(f(n)) − c log log X(L)√
c log log X(L)

≤ γ

}
= G(γ) .

While the conditions of Theorem 3 may appear complicated, in our applications,
the terms λl and el can be easily identified and the conditions easily verified, as we
shall see in the proofs of Theorems 1 and 2 below.

3. Proof of Theorem 1

We denote the basis ei, 1 ≤ i ≤ k, of Λ by ei = (ai1, . . . , ain) ∈ Zn. Put

A =

⎛
⎝ a11 · · · a1n

· · ·
ak1 · · · akn

⎞
⎠ ,
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which is a matrix of rank k. For a row vector y, let |y| be the maximum modulus
of its components. Then for L large, denote

Ob(L) = {yA + b : y ∈ Zk, |y| ≤ L}.

We write X for #Ob(L) = (2[L]+1)k. To apply Theorem 3, one needs to estimate,
for each square-free integer d, the sum∑

x∈Ob(L)
f(x)≡0 (mod d)

1 =
∑
y∈Z

k

|y|≤L

f(yA+b)≡0 (mod d)

1 =
∑

y∈(Z/dZ)k

f(yA+b)≡0 (mod d)

∑
x∈Z

k

|x|≤L
xi≡yi (mod d)

1 .

Suppose d ≤ L. The inner sum can be estimated as

(2[L] + 1)k

dk
+ O

(
(2[L] + 1)k−1

dk−1

)
=

X

dk
+ O

(
X1− 1

k

dk−1

)
.

Since the affine variety V ′ = V + b is absolutely irreducible, and the polynomials
f1, . . . , ft generate distinct prime ideals in the coordinate ring Q̄[V ], one sees that
all the varieties

Wi = V ′ ∩ {fi = 0}, i = 1, 2, . . . , t,

are defined over Q, absolutely irreducible, and of dimension equal to dimV ′ − 1 =
k − 1 ≥ 0. Consider the reduction of the varieties V ′, Wi (mod p). According to
Noether’s theorem [18], for p outside a finite set S1 of primes, the reductions of V ′

and Wi, i = 1, . . . , t, yield absolutely irreducible affine varieties over Fp = Z/pZ.
Denote by V ′(Fp), V ′(Z/dZ), etc., the reduction of the varieties in the corresponding
ring. By the Lang-Weil Theorem [12] we have that for p 
∈ S1,

#V ′(Z/pZ) = pk + O
(
pk− 1

2

)
,

#Wi(Z/pZ) = pk−1 + O
(
pk− 3

2

)
.

Since the map
Ak −→ V ′

y �→ yA + b

is a bijection, one obtains∑
y∈(Z/dZ)k

f(Ay+b)≡0 (mod d)

1 =
∑

y∈V ′(Z/dZ)

f(y)≡0 (mod d)

1 = #W (Z/dZ) ,

where
W (Z/dZ) = {y ∈ V ′(Z/dZ) : f(y) ≡ 0 (mod d)}.

Let

λd =
#W (Z/dZ)

dk
.

By the Chinese Remainder Theorem, λd is multiplicative for d coprime to
∏

p∈S1
p.

Since

W (Z/dZ) =
t⋃

i=1

Wi(Z/dZ),
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for such square-free d one has

#W (Z/dZ) ≤
t∑

i=1

#Wi(Z/dZ) =
t∑

i=1

∏
p|d

#Wi(Z/pZ)

=
t∑

i=1

∏
p|d

(
pk−1 + O(pk−3/2)

)
�ε dk−1+ε.

Therefore for d ≤ L and gcd
(
d,

∏
p∈S1

p
)

= 1, we obtain∑
x∈Ob(L)

f(x)≡0 (mod d)

1 = X(λd + ed) , where ed �ε dεX− 1
k .(3.1)

It follows from Lemma 3.1 below that the estimate (3.1) still holds if on the
left-hand side the points x ∈ Ob(L) such that f(x) = 0 are removed. Thus we may
assume that f(x) 
= 0 for all x ∈ Ob(L). Now we return to λd. For d = l a prime
and l 
∈ S1 we have

W (Z/lZ) =
t⋃

i=1

Wi(Z/lZ).

For fixed i 
= j, the algebraic subset W ′ = Wi(Z/lZ) ∩ Wj(Z/lZ) is defined over
the finite field Fl = Z/lZ and has dimension at most k − 2. Then it follows from
Lemma 2.1 of [4] that

# (Wi(Z/lZ) ∩ Wj(Z/lZ)) � lk−2,

where the implied constant depends on f and V only. By the inclusion-exclusion
principle,

t∑
i=1

#Wi(Z/lZ) −
∑

1≤i<j≤t

# (Wi(Z/lZ) ∩ Wj(Z/lZ))

≤ #W (Z/lZ) ≤
t∑

i=1

#Wi(Z/lZ) ,

from which one obtains

#W (Z/lZ) = tlk−1 + O
(
lk−

3
2

)
.

This implies that

(3.2) λl =
t

l
+ O

(
l−

3
2

)
.

Using (3.1) and (3.2) and choosing

Y = exp
(

log X

log log X

)
, β =

1
2k

,

one can verify the conditions (i)–(vi) of Theorem 3 for f and Ob. For example, for
(i), noticing that f ∈ Z[x1, . . . , xn] and x ∈ Ob(L), one has f(x) � Ldeg f � X

deg f
k .

Thus
∑

l>Xβ

l|f(x)

1 � 1; i.e., the number of distinct prime divisors l of f(x) with l > Xβ



2606 MAOSHENG XIONG

is bounded uniformly. For (ii), noticing log log Y = log log X − log log log X, one
has ∑

Y <l≤Xβ

l �∈S1

λl ≤
∑

Y <l≤Xβ

t

l
+ O

(
l−

3
2

)
� t log log Xβ − t log log Y + O(1) ,

which is o((log log X)1/2) as X goes to infinity. The conditions (iii)–(v) can be
verified similarly.

Finally, for (vi), for any fixed r ∈ N and 1 ≤ u ≤ r,∑′′

li≤Y

|el1···lu | ≤ε

∑
li≤Y

X− 1
k (l1 · · · lu)ε ≤ X− 1

k Y r(1+ε) ≤ X− 1
k (log X)2r ,

which is o((log log X)−r/2) as X goes to infinity.
Since the conditions (i)–(vi) of Theorem 3 are satisfied for f and Ob, the desired

conclusion follows from Theorem 3. The proof of Theorem 1 will be completed once
we prove Lemma 3.1 below.

Lemma 3.1. Let W be a proper closed subset of V ′ = V + b defined over Q. Then
as L → ∞ one has

# (Ob(L) ∩ W ) � X1− 1
dim V .

Proof. The proof is very similar to that of Proposition 3.2 in [3]. For the sake of
completeness we give a detailed proof here.

Since V ′ = V + b is irreducible, W is defined over Q and has dimension at most
dim V − 1 = k − 1. Let W1, . . . , Wr be the irreducible components of W . Then we
have W =

⋃r
i=1 Wj , where the Wj ’s are defined over a finite extension K of Q and

dim Wj ≤ k − 1 for each j. For P outside a finite set of prime ideals of the ring
of integers OK , Wj is an absolutely irreducible variety over the finite field OK/P
([18]). Hence by [12] we have

#Wj(OK/P) � N(P)dim(Wj) ≤ N(P)k−1.

Here, as usual, N(P) = #(OK/P). Choose p so that it splits completely in K and
let P|(p). Then OK/P ∼= Fp and we have

#W (Z/pZ) ≤
r∑

j=1

#Wj(OK/P) � N(P )k−1 = pk−1.(3.3)

Now proceed as before. For L → ∞ and any large p as above, we have

# (Ob(L) ∩ W ) =
∑

x∈Ob(L)
x∈W

1 ≤
∑

x∈W (Z/pZ)

∑
y∈Z

k ,|y|≤L

yA+b≡x (mod p)

1.

Similarly the right-hand side can be estimated as

∑
x∈W (Z/pZ)

(
X

pk
+ O

(
X1−1/k

pk−1

))
.

Hence for large p as in (3.3),

# (Ob(L) ∩ W ) � Xp−1 + X1−1/k.
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By the Chebotarev density theorem ([5]) we can choose a p which splits completely
in K and which satisfies

X1/k/2 ≤ p ≤ 2X1/k.

With this choice we get the bound claimed in Lemma 3.1. �

4. Proof of Theorem 2

It is elementary that the number of points on a 2d-regular tree whose distance
to a given vertex is at most [log L] is equal to X = #Ob(L) = d(2d−1)[log L]−1

d−1 . By
the assumptions of Theorem 2, V is an absolutely irreducible affine variety defined
over Q with dimV > 0 and f1, . . . , ft generate distinct prime ideals in Q̄[V ]. Hence
for i = 1, . . . , t, the varieties

Wi = V ∩ {fi = 0}
are defined over Q, absolutely irreducible, and of dimension equal to dimV −1. We
consider the reduction of the varieties(mod p). By Noether’s theorem [18] and the
Lang-Weil Theorem [12], there is a finite set S1 of primes such that if p 
∈ S1, the
varieties V (Z/pZ), Wi(Z/pZ) are absolutely irreducible and

#V (Z/pZ) = pdim V + O
(
pdim V − 1

2

)
,

#Wi(Z/pZ) = pdim V −1 + O
(
pdim V − 3

2

)
.

By using the uniform expansion property of SL2 established in [2] (or assuming a
conjecture of Lubotzy for a more general setting), Bourgain, Gamburd and Sarnak
proved (Proposition 3.1, [3]) that

(4.1)
1
X

∑
x∈Ob(L)
v(x,b)≤L

f(x)≡0 (mod d)

1 = λd + ed ,

for square-free integers d ≤ X coprime to
∏

p∈S2
p. Here S2 is a finite set of primes

containing S1 and

λd =
#V0(Z/dZ)
#V (Z/dZ)

, ed �ε ddim V −1+εXγ−1 ,

where
V0(Z/dZ) = {y ∈ V (Z/dZ) : f(y) ≡ 0 (mod d)},

and the absolute constant γ < 1 is bounded below by some δ > 0. Also by
Proposition 3.2 in [3], in the sum the terms x ∈ Ob(L) with f(x) = 0 can also be
omitted without altering (4.1). Clearly λd is a multiplicative function of d coprime
to

∏
p∈S2

p. With similar arguments as in the proof of Theorem 1, for d = l a prime
and l 
∈ S2 we have

(4.2) λl =
t

l
+ O

(
l−

3
2

)
.

Now using (4.1), (4.2), choosing Y = exp(log X/ log log X) and β > 0 to be suffi-
ciently small, we can similarly verify that the conditions (i)–(vi) of Theorem 3 for
f and Ob hold. This completes the proof of Theorem 2.
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16. R. Murty, K. Murty, An analogue of the Erdős-Kac theorem for Fourier coefficients of modular
forms, Indian J. Pure Appl. Math. 15(1984), no. 10, 1090–1101. MR765015 (86d:11039)

17. R. Murty, F. Saidak, Non-abelian generalizations of the Erdős-Kac theorem, Canad. J. Math.
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