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MIYAOKA-YAU INEQUALITY
FOR MINIMAL PROJECTIVE MANIFOLDS

OF GENERAL TYPE

YUGUANG ZHANG

(Communicated by Jon G. Wolfson)

Abstract. In this short paper, we prove the Miyaoka-Yau inequality for min-
imal projective n-manifolds of general type by using Kähler-Ricci flow.

1. Introduction

If M is a projective n-manifold with ample canonical bundle KM , there exists a
Kähler-Einstein metric ω with negative scalar curvature by Yau’s theorem on the
Calabi conjecture ([14]), which was obtained by Aubin independently ([1]). As a
consequence, there is an inequality for Chern numbers, the Miyaoka-Yau inequality,

(1.1) (
2(n + 1)

n
c2(M) − c2

1(M)) · (−c1(M))n−2 ≥ 0,

where c1(M) and c2(M) are the first and the second Chern classes of M (cf. [13]).
Furthermore, if the equality in (1.1) holds, the Kähler-Einstein metric ω is a com-
plex hyperbolic metric; i.e. the holomorphic sectional curvature of ω is a negative
constant. If n = 2, (1.1) even holds for algebraic surfaces of general type (cf. [4],
[8], [9]), which may not admit any Kähler-Einstein metric. In [12], the inequality
(1.1) is proved for any dimensional minimal projective manifold of general type by
using conic Kähler-Einstein metrics. In this short paper, we give a different proof
of (1.1) for minimal projective n-manifolds of general type by using Kähler-Ricci
flow and study the extremal case of (1.1).

Let M be a minimal projective manifold of general type with dimC M = n ≥ 2.
The canonical bundle KM of M is big, and semi-ample, i.e. Kn

M > 0, and, for
a positive integer m � 1, the linear system |mKM | is base point free (as quoted
in [11]). For m � 1, the complete linear system |mKM | defines a holomorphic
map Φ : M −→ CP

N , which is birational onto its image Mcan. Mcan is called the
canonical model of M , and Φ is called the contraction map. Note that M may not
admit any Kähler-Einstein metric. The Kähler-Ricci flow is an evolution equation
of a family of Kähler metrics ωt, t ∈ [0, T ), on M ,

(1.2) ∂tωt = −Ric(ωt) − ωt,
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where Ric(ωt) is the Ricci form of ωt. By [11], [10], [3], and [15], for any Kähler
metric as initial metric, the solution ωt of the Kähler-Ricci flow equation exists for
all time t ∈ [0,∞), and the scalar curvature of ωt is uniformly bounded. Thus we
can prove (1.1) by using the technique developed in [6], where a Hitchin-Thorpe
type inequality was proved for 4-manifolds which admit a long time solution to a
normalized Ricci flow equation with bounded scalar curvature. Before proving the
Miyaoka-Yau inequality, we show that the L2-norm of the Einstein tensor tends to
zero along a subsequence of a solution of the Kähler-Ricci flow equation (1.2).

Theorem 1.1. Let M be a minimal projective manifold of general type with dimC M
= n ≥ 2, and let ωt, t ∈ [0,∞), be a solution of the Kähler-Ricci flow equation (1.2).
Then there exists a sequence of times tk −→ ∞, when k −→ ∞, such that

lim
k−→∞

∫
M

|ρtk
|2ωn

tk
= 0,

where ρtk
= Rictk

− Rtk

n ωtk
denotes the Einstein tensor of ωtk

and Rtk
denotes the

scalar curvature of ωtk
.

As a corollary of this theorem, we obtain the Miyaoka-Yau inequality for minimal
projective manifolds of general type.

Corollary 1.2. If M is a minimal projective manifold of general type with dimC M
= n ≥ 2, then

(
2(n + 1)

n
c2(M) − c2

1(M)) · (−c1(M))n−2 ≥ 0.

Furthermore, if the equality holds, there is a complex hyperbolic metric on the
smooth part M0 of the canonical model Mcan of M .

2. Proof of Theorem 1.1

Let M be a minimal projective manifold of general type with dimC M = n ≥ 2,
Mcan be the canonical model of M , and Φ : M −→ Mcan be the contraction map.
Consider the Kähler-Ricci flow equation on M ,

(2.1) ∂tωt = −Ric(ωt) − ωt,

with initial metric ω0. In [7], the short time existence of the solution of (2.1) is
proved. Then, in [11], [10], and [3], it is proved that the solution ωt of (2.1) exists
for all time, i.e. t ∈ [0, +∞), and there exists a unique semi-positive current ω∞
on M which satisfies that:

(1) ω∞ represents −2πc1(M).
(2) ω∞ is a smooth Kähler-Einstein metric with negative scalar curvature on

Φ−1(M0), where M0 is the smooth part of Mcan.
(3) On any compact subset K ⊂ Φ−1(M0), ωt C∞-converges to ω∞ when

t −→ ∞.

In [15], it is shown that there is a constant C > 0 depending only on ω0 such that

(2.2) |Rt| < C,

where Rt is the scalar curvature of ωt.
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First, we need evolution equations for volume forms and scalar curvatures as
follows:

∂tω
n
t = −(Rt + n)ωn

t(2.3)

and

∂tRt = �tRt + |Rict|2 + Rt = �tRt + |Rict
o|2 − (Rt + n),(2.4)

where Rict
o = Rict + ωt and |Rict

o|2 = |Rict|2 + 2Rt + n (cf. Lemma 2.38 in [5]).

Lemma 2.1. There are two constants t0 > 0 and c > 0 independent of t such that,
for t > t0,

R̆t = inf
x∈M

Rt(x) ≤ −n + e−tc < −n

2
< 0.

Proof. If we define αt = [ωt] ∈ H1,1(M, R), from (2.1) we have

∂tαt = −2πc1(M) − αt

and

(2.5) αt = −2πc1(M) + e−t(2πc1(M) + α0).

Thus

(2.6) [ω∞] = α∞ = lim
t−→∞

αt = −2πc1(M).

Since

R̆t

∫
M

ωn
t ≤

∫
M

Rtω
n
t = n

∫
M

Rict ∧ ωn−1
t = n2πc1(M) · αn−1

t ,

we obtain

R̆t ≤ n
2πc1(M) · αn−1

t

αn
t

= n
2πc1(M) · αn−1

t

−2πc1(M) · αn−1
t + e−t(2πc1(M) + α0) · αn−1

t

=
−n

1 + e−tAt
,

where At = − (2πc1(M)+α0)·αn−1
t

2πc1(M)·αn−1
t

. Note that (−c1(M))n > 0. Thus there is a t1 > 0

such that if t > t1, At < | (α∞+α0)·αn−1
∞

αn
∞

| + 1 = A, and we obtain that

R̆t ≤
−n

1 + e−tA
< −n + e−tc,

where c = −n( A
1+e−t1A

). By taking t0 > t1 such that e−t0c < n
2 , we obtain the

conclusion. �

Lemma 2.2. ∫ ∞

0

∫
M

|Rt + n|ωn
t dt < ∞.

Proof. By (2.4) and the maximal principle, ∂tR̆t ≥ −(R̆t + n), and so

(2.7) n + R̆t ≥ Ce−t,
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for a constant C independent of t. Note that by Lemma 2.1, (2.7) and (2.5), when
t > t0, ∫

M

|Rt + n|ωn
t ≤

∫
M

(Rt − R̆t)ωn
t +

∫
M

|n + R̆t|ωn
t

≤
∫

M

(Rt + n)ωn
t + 2

∫
M

|n + R̆t|ωn
t

≤
∫

M

(Rt + n)ωn
t + C3e

−t

= n(2πc1 · αn−1
t + αn

t ) + C3e
−t

= ne−t(2πc1 + α0) · αn−1
t + C3e

−t

≤ C4e
−t

for two constants C3 and C4 independent of t. Thus∫ ∞

0

∫
M

|Rt + n|ωn
t dt =

∫ t0

0

∫
M

|Rt + n|ωn
t dt +

∫ ∞

t0

∫
M

|Rt + n|ωn
t dt < ∞.

�
Proof of Theorem 1.1. From (2.4), (2.3), (2.6), (2.2), and Lemma 2.2, we obtain∫ ∞

0

∫
M

|Rico
t|2ωn

t dt =
∫ ∞

0

∫
M

(
∂

∂t
Rt)ωn

t dt +
∫ ∞

0

∫
M

(Rt + n)ωn
t dt

=
∫ ∞

0

∂

∂t
(
∫

M

Rtω
n
t )dt +

∫ ∞

0

∫
M

(Rt + 1)(Rt + n)ωn
t dt

≤ nαn
∞ −

∫
M

R0ω
n
0 + C

∫ ∞

0

∫
M

|Rt + n|ωn
t dt

< ∞.

If ρt = Rict − Rt

n ωt is the Einstein tensor of ωt, then |ρt|2 = |Rico
t|2 − 1

n (Rt + n)2,
and from the above estimation,∫ ∞

0

∫
M

|ρt|2ωn
t dt ≤

∫ ∞

0

∫
M

|Rico
t|2ωn

t dt < ∞.

Thus there is a sequence tk −→ ∞ such that

lim
k−→∞

∫
M

|ρtk
|2ωn

tk
= 0.

�
Proof of Corollary 1.2. Note that the Kähler curvature tensor has a decomposition

Rmt =
Rt

2n2
ωt ⊗ ωt +

1
n

ωt ⊗ ρt +
1
n

ρt ⊗ ωt + Bt

(cf. (2.63) and (2.38) in [2]). By Chern-Weil theory,

(
2(n + 1)

n
c2(M) − c2

1(M)) · [ωt]n−2 =
(n − 2)!
4π2n!

∫
M

(
n + 1

n
|B0,t|2 −

(n2 − 2)
n2

|ρt|2)ωn
t

(cf. (2.82a) and (2.67) in [2]), where B0,t = Bt − trBt

n2−1 Id is the tensor given by
(2.64) in [2] corresponding to ωt. By Theorem 1.1, there is a sequence tk −→ ∞
such that

lim
k−→∞

∫
M

|ρtk
|2ωn

tk
= 0.
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Hence

(
2(n + 1)

n
c2(M) − c2

1(M)) · (−2πc1(M))n−2

= (
2(n + 1)

n
c2(M) − c2

1(M)) · [ω∞]n−2

= lim
k−→∞

(
2(n + 1)

n
c2(M) − c2

1(M)) · [ωtk
]n−2

= lim
k−→∞

(n − 2)!
4π2n!

∫
M

(
n + 1

n
|B0,tk

|2)ωn
tk

≥ 0.

If the equality holds, on any compact subset K ⊂ Φ−1(M0),∫
K

|B0,∞|2ωn
∞ ≤ lim

k−→∞

∫
M

|B0,tk
|2ωn

tk
= 0,

by the smooth convergence of ωt to ω∞. Thus B0,∞ ≡ 0. Since ω∞ is a Kähler-
Einstein metric with negative scalar curvature on Φ−1(M0), the holomorphic sec-
tional curvature is a negative constant by Section 2.66 in [2]; i.e. ω∞ is a complex
hyperbolic metric. �
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