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COMPUTATIONAL UNSOLVABILITY OF DOMAINS
OF ATTRACTION OF NONLINEAR SYSTEMS

NING ZHONG

(Communicated by Julia Knight)

Abstract. Let S be the domain of attraction of a computable and asymptot-
ically stable hyperbolic equilibrium point of the non-linear system ẋ = f(x).
We show that the problem of determining S is computationally unsolvable.
We also present an upper bound of the degree of unsolvability of this problem.

1. Preliminaries

One of the central objects of study in continuous dynamical systems is the do-
main of attraction of an asymptotically stable equilibrium point. Determining
this domain is one of the most important problems in (Lyapunov) stability theory.
In the late 1960’s there was a surge of theoretical studies analyzing properties of
such domains. In recent years much effort has been devoted to the development
of numerical methods for the estimation of these domains, which has resulted in
numerous numerical algorithms. In contrast, relatively little theoretical work on
computability of these domains exists. In fact, it is not yet known whether or not
domains of attraction of computable systems are computable.

In this paper, we show that, despite the existence of various successful numerical
estimations, the problem of determining domains of attraction is computationally
unsolvable. We also present an upper bound of the degree of unsolvability of the
problem by showing that the domains of attraction of computable systems are
recursively enumerable. Speaking roughly, a set is computable if its image can be
generated by a computer with arbitrary precision.

For real computation, there are several non-equivalent models. Among them are
the BSS model [3] and the Turing-machine-based bit model [18], [14], [8], [13], [15],
[11], and [19]. The BSS model permits real numbers as input and uses infinite-
precision arithmetic, while the bit model operates on infinite sequences of bits and
uses finite-precision arithmetic; that is, “bit approximations” to the output are
computed with arbitrary precision if good “bit approximations” to the input are
accessible. Since finite-precision is generally used in “practical computation,” we
use the bit model in this paper. Associated with the bit model is the Type-Two
Theory of Effectivity (TTE) [19].
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In TTE, every point x ∈ Rn is represented by a sequence {rk} of points with
rational coordinates satisfying |x − rk| < 2−k. Any such sequence φ : N → Qn,
φ(k) = rk, is called a ρn-name of x. A ρn-name is called computable if it is gen-
erated by a Turing machine without input. A point x in Rn is called computable
if it has a computable ρn-name. The same class of computable points is defined
if points of rational coordinates are replaced by points of dyadic rational coordi-
nates. A rational number is called a dyadic rational if it is of the form j

2m . A
matrix is computable if every entry of the matrix is a computable real or com-
plex number. The norm of an n × n matrix A is defined as the operator norm:
||A|| = sup|x|�=0 |Ax|/|x| = max|x|=1 |Ax|, where |x| =

√
x2

1 + . . . + x2
n, x ∈ Rn.

Definition 1.1 (Recursive and recursively enumerable open subsets of Rn, [19]).
(1) An open subset U ⊆ Rn is called recursively enumerable (r.e.) open if

there is a computable sequence {ak} of points with rational coordinates in
Rn and a computable sequence {rk} of positive rational numbers such that
U =

⋃∞
k=0 B(ak, rk), where B(ak, rk) = {x ∈ Rn : |x − ak| < rk}.

(2) A closed subset K ⊆ Rn is called r.e. closed if there is a Turing machine
that enumerates all rational open balls intersecting K.

(3) An open subset U ⊆ Rn is called recursive (also called computable) open if
U is r.e. open and its complement is r.e. closed.

Roughly speaking, an open subset U of Rn is r.e. if there is a computer program
that sketches the image of U by plotting rational open balls, which will eventually
fill up U . We may not know how well these balls are filling up U if U is merely r.e.
On the other hand, if U is recursive, then there is a program that plots the balls
filling U up to precision 2−k (in terms of Hausdorff distance) on input k ([19]).

Definition 1.2 (Computable functions, [11]). A function f : A → Rm, A ⊆ Rn, is
computable if there is an oracle Turing machine M such that, for each x ∈ A and
any dyadic ρn-name φ of x, M computes with oracle φ a dyadic rational point rk

satisfying |f(x) − rk| ≤ 2−k upon input k ∈ N.

This definition leads naturally to (the “non-uniform” concept of) polynomial-
time computability of Ker-I Ko.

Definition 1.3 (Polynomial-time computable functions, [11]). A function f : Rn →
Rm is called polynomial-time computable if there exist an oracle Turing machine
M that computes f and a polynomial p : N → N such that for any l ∈ N, any
x ∈ [−2l, 2l]n (the Cartesian product of n copies of [−2l, 2l]), and any ρn-name φ

of x with φ(k) = (d1
k, d2

k, . . . , dn
k ) and dj

k ∈ Dk = {α · 2−k : α ∈ Z} for 1 ≤ j ≤ n,
one has TM (φ, l) ≤ p(l), where TM (φ, l) is the number of moves for M to halt on
input l with oracle φ.

Next we briefly review notions necessary for defining the domain of attraction.
Consider a non-linear autonomous system

(1.1) ẋ = f(x(t)),

where ẋ = dx/dt and f : E → Rn (E is an open subset of Rn) is continuously
differentiable on E ([5]).

Definition 1.4 (Stable and asymptotically stable equilibrium points, [9]). Let
x(t, x0) denote the solution to (1.1) corresponding to the initial condition x(0) = x0.
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(i) A point x0 is called an equilibrium point of (1.1) if f(x0) = 0. An equilib-
rium point x0 is called hyperbolic if none of the eigenvalues of the gradient
matrix Df(x0) of f at x0 has zero real part.

(ii) An equilibrium point x0 of (1.1) is called stable if for any ε > 0, there exists
a δ > 0 such that |x(t, x̃) − x0| < ε for all t ≥ 0, provided |x̃ − x0| < δ.
Furthermore, x0 is called asymptotically stable if it is stable and there
exists a (fixed) δ0 > 0 such that limt→∞ x(t, x̃) = x0 for all x̃ satisfying
|x̃ − x0| < δ0.

If x0 is an equilibrium point of (1.1), then the constant solution x(t, x0) ≡ x0

is the unique solution to the problem ẋ = f(x) and x(0) = x0. It is also known
that a hyperbolic equilibrium point x0 is asymptotically stable if all eigenvalues of
Df(x0) have negative real parts ([9]).

Definition 1.5 (Domain of attraction, [9]). Suppose that x0 is an asymptotically
stable equilibrium point of the system (1.1). Then the domain of attraction (or
basin of attraction or region of asymptotical stability) of x0 is defined by

S = {x̃ ∈ E : x(t, x̃) → x0 as t → ∞}.

The domain of attraction S is an open subset of Rn. If E is simply connected,
then so is S. Furthermore, if S is bounded, then its boundary is formed by whole
trajectories (that is, solution curves); in particular, S is bounded by (unstable)
equilibrium point(s) in the one-dimensional case ([6] and the references therein).

2. Computational unsolvability of domains of attraction

Theorem 2.1. There exists a C∞ (infinitely differentiable) and polynomial-time
computable function g : R2 → R such that the following system{

ẋ = xg(x, y) − y
ẏ = yg(x, y) + x

(2.1)

has a unique equilibrium point at (0, 0). This unique equilibrium point is hyperbolic
and asymptotically stable, and the domain of attraction of (0, 0) is non-computable.

Proof. It is easy to see that (0, 0) is the only equilibrium point of the system (2.1).
Denote the right-hand sides of the two equations in (2.1) as h1 and h2: h1(x, y) =
xg(x, y) − y and h2(x, y) = yg(x, y) + x. The function g is to be constructed such
that (0, 0) is an asymptotically stable hyperbolic equilibrium point of (2.1) and the
domain of attraction S of (0, 0) is a disk centered at (0, 0) with a non-computable
radius. This shows that S is non-computable and completes the proof.

We construct a function f : R → R , and then we set g(x, y) = f(x2 + y2). The
function f satisfies the following properties:

(i) f : R → R is C∞ and polynomial-time computable;
(ii) f decreases in a neighborhood of 0, f(w) = 0 for all α ≤ w ≤ 2, and

f(w) < 0 for all w ∈ [0,∞) \ [α, 2],
where α =

∑∞
n=0 2−a(n), and a : N → N is a computable one-to-one function that

enumerates a r.e. but non-recursive set A. It is known that α is a non-computable
real number ([15]). Without loss of generality assume that 0 /∈ A and 1 ∈ A. Thus
1/2 < α < 2. Let φ : N → D, φ(n) =

∑n
j=0 2−a(j), where D is the set of dyadic

rational numbers. Since a : N → N is computable, it follows that φ is a computable
function. Let γ = 2−(a(0)+1). Then 0 < γ < 1/2. Let M be a Turing machine
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computing the function φ, and let t(n) be the total number of moves for M to run
on inputs 0, 1, . . . , n.

The function f to be constructed will be a superposition of countably many
“V-shaped hats”, hanging below and suspended at the endpoints of each interval
(γ, φ(n)). We take the following C∞ function as our standard V-shaped hat:

ϕ(w) =
{

−e−w2/(1−w2) for |w| < 1,
0 for |w| ≥ 1.

This hat is V-shaped with half-width 1, depth 1, centered at 0, and is hanging
below [−1, 1]. Also ϕ ∈ C∞(R) is easily seen to be polynomial-time computable.
Define the n-th hat ϕn(w) hanging below the interval (γ, φ(n)) by the formula

ϕn(w) =
dn

2
ϕ

(
w − cn

dn

)
,

where dn = φ(n)−γ
2 and cn = φ(n)+γ

2 . Then ϕn is a V-shaped hat of depth dn/2
(dn/2 is bounded by 1 since dn ≤ 2), half-width dn, and centered at cn. In addition,
we make two more special hats ϕ−1 and ϕ∞ defined by the following formulae:

ϕ−1(w) =

{
−e

− (8w−1)2

9−(8w−1)2 for −1
4 < w < 1

2 ,
0 otherwise

and

ϕ∞(w) =
{

−e−
1

w−2 if w > 2,
0 otherwise.

The hat ϕ−1 is hanging below (−1
4 , 1

2 ) with center at 1/8 and has the property that
ϕ−1(0) < 0 and ϕ−1 decreases on the interval (−1

4 , β), where β = min{1/8, γ}.
The function ϕ∞ is a half-hat hanging below (2,∞). Now we are ready to give a
description of the function f : R → R,

f(w) = ϕ−1(w) + ϕ∞(w) +
∞∑

n=0

2−t(n)ϕn(w).

It is readily seen that f is C∞ in R and has the property (ii). (The main observation
we need for checking infinite differentiability of f is that 1/dn = 2/(φ(n) − γ) ≤
2/(φ(0)−γ) = 2a(0)+2 for all n.) An argument similar to Ko’s proofs of Theorem 3.1
and Theorem 6.2 [11] shows that f is polynomial-time computable. Set g(x, y) =
f(x2+y2). Obviously g is C∞ and polynomial-time computable. Since the gradient
matrix D(h1, h2) of (h1, h2) has the following form:

D(h1, h2) =
(

∂h1/∂x ∂h1/∂y
∂h2/∂x ∂h2/∂y

)
=

(
f(r) + 2x2Df(r) 2xyDf(r) − 1
2xyDf(r) + 1 f(r) + 2y2Df(r)

)
,

where r = x2 + y2, it follows that D(h1, h2)(0, 0) =
(

f(0) −1
1 f(0)

)
. It is easy

to see that f(0) + i and f(0) − i are the eigenvalues of D(h1, h2)(0, 0), and both
eigenvalues have negative real part f(0), which shows that (0, 0) is an asymptotically
stable hyperbolic equilibrium point of (2.1). We claim that the disk Dα = {(x, y) ∈
R2 : x2 + y2 < α} is the domain of attraction of (0, 0). To see this, we first reduce
the system (2.1) to a single equation. By multiplying the first equation in (2.1) by
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x and the second by y, then adding the two resulting equations, we can reduce the
system (2.1) to the following equation:

(2.2) ṙ = 2rf(r).

It is easy to see that if (x(t, x0, y0), y(t, x0, y0)) is the solution to the system (2.1)
satisfying the initial conditions x(0) = x0 and y(0) = y0, and if (γ, δ) is the maximal
interval of existence of this solution, then r(t, r0) = x2(t, x0, y0)+y2(t, x0, y0) is the
solution of (2.2) satisfying the initial condition r(0) = r0 = x2

0 + y2
0 with (γ, δ) as

its maximal interval of existence.
We now show that S ⊆ Dα. For any (x0, y0) satisfying α ≤ x2

0 + y2
0 =

r0 ≤ 2, let (x(t, x0, y0), y(t, x0, y0)) be the solution to the system (2.1) satisfy-
ing the initial conditions x(0) = x0 and y(0) = y0. Then r(t, r0) = x2(t, x0, y0) +
y2(t, x0, y0) is the solution of (2.2) satisfying the initial condition r(0) = r0. Since
f(r0) = 0, the solution r(t, r0) is a constant solution that is equal to r0 for all
t. This implies that x2(t, x0, y0) + y2(t, x0, y0) = r0 for all t. Consequently,
limt→∞(x(t, x0, y0), y(t, x0, y0)) �→ (0, 0). Since S is simply connected and (0, 0) ∈
S ∩ Dα, this shows that S ⊆ Dα.

Next we show that Dα ⊆ S. First we observe that the problem ṙ = 2rf(r) and
r(0) = 0 has the constant solution r(t, 0) ≡ 0, while the problem ṙ = 2rf(r) and
r(0) = α has the constant solution r(t, α) ≡ α. Now for any (x0, y0) ∈ Dα \{(0, 0)},
let r0 = x2

0 + y2
0 ; then 0 < r0 < α. If δ, the right endpoint of the maximal

existence interval (γ, δ) of the solution (x(t, x0, y0), y(t, x0, y0)), is not ∞, then
limt→δ− r(t, r0) = ∞. Thus there exists a t0 such that 0 < t0 < δ and r(t0, r0) =
α. Due to the uniqueness of the solution, the solution r(t, r0) coincides with the
constant solution r(t, α) ≡ α. This is a contradiction because r0 < α. Therefore,
δ = ∞. It remains to show that limt→∞ r(t, r0) = 0. Otherwise, suppose that
limt→∞ r(t, r0) = β �= 0 or r(t, r0) oscillates without a limit as t → ∞. We note
that 0 < r(t, r0) < α for all t ≥ 0, for otherwise r(t, r0) is either identically 0 or
identically α, which is false because 0 < r(0, r0) = r0 < α. Since 0 < r0 < α and
f(r) < 0 on [0, α), it follows that dr

dt |t=0 = 2r0f(r0) < 0; hence r(t, r0) decreases
near t = 0. Thus if r(t, r0) turns around becoming increasing at a later time, then
there is a t1 > 0 such that 0 < r(t1, r0) < α and 2r(t1, r0)f(r(t1, r0)) = dr

dt |t1 = 0,
which implies that f(r(t1, r0)) = 0. This contradicts the fact that f(r) < 0 for all
0 < r < α. Therefore r(t, r0) is decreasing for all t ≥ 0, limt→∞ r(t, r0) exists, and
limt→∞ r(t, r0) ≤ r0. Now if limt→∞ r(t, r0) = β �= 0, then r = β is an asymptote
of the trajectory r = r(t, r0) and it follows that limt→∞ dr(t, r0)/dt = 0. Thus,
2βf(β) = 2 limt→∞ r(t, r0)f(r(t, r0)) = limt→∞ dr(t, r0)/dt = 0 with 0 < β ≤ r0 <
α, so it follows that f(β) = 0 with 0 < β ≤ r0 < α, which is false. This shows that
limt→∞ r(t, r0) = 0 for any 0 < r0 < α. In other words, limt→∞ x(t, x0) = 0 and
limt→∞ y(t, y0) = 0 for all (x0, y0) ∈ Dα. The proof is now complete. �

The above theorem shows that if the dimension is higher than one, then the
domain of attraction of a computable asymptotically stable equilibrium point of a
computable system is not necessarily computable, even in the case where the system
has exactly one equilibrium point and this unique equilibrium point is hyperbolic.
For a computable system in one-dimensional space, if the system has only finitely
many equilibrium points, then the domain of attraction of any asymptotically stable
equilibrium point is computable.
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Proposition 2.2. Let f : E → R be a computable function that is also locally
Lipschitz, where E is a computable open interval of R or E = R. Assume that f has
finitely many roots in E. Then the domain of attraction, S, of any asymptotically
stable equilibrium point of (1.1) is a computable open interval.

Proof. It is known that if a computable function has only finitely many roots, then
each of its roots is computable ([11, 19]). On the other hand, S is an interval
that is either unbounded or has unstable equilibrium point(s) as its bound(s) ([6]).
Therefore, S is a computable interval. �
Remark 2.3. If f has infinitely many roots, then the conclusion of Proposition 2.2
no longer holds. For example, let f be the function constructed in Theorem 2.1.
Then f is C∞ and polynomial-time computable. It is easy to verify that 0 is an
asymptotically stable equilibrium point of the system ẋ = f(x) and (−1/4, α) is
the corresponding domain of attraction, which is non-computable.

If we further assume that f is polynomial-time computable in Proposition 2.2,
is S also polynomial-time computable? The following proposition gives a strong
negative answer. Not only is S non-polynomial-time computable, but there is no
complexity bound on S.

Proposition 2.4. For any computable real number c, 1/2 < c < 1, there exists a
polynomial-time computable function f defined on R such that 0 is an asymptoti-
cally stable equilibrium point of the system ẋ = f(x) and (−c, c) is the domain of
attraction of 0.

Proof. By Theorem 4.4 of [11], there exists a strictly increasing polynomial-time
computable function f1 on [1/2, 1] such that c is the unique root of f1. Let
f2(x) = −f1(−x), x ∈ [−1,−1/2]. Then f2 is a strictly increasing polynomial-
time computable function on [−1,−1/2] such that −c is the unique root of f2. In
particular, f1(1/2) = −f2(−1/2) = b, b < 0 is a polynomial-time computable real
number. Define the desired function f as follows:

f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f2(−1) x < −1
f2(x) x ∈ [−1,−1/2)
2bx x ∈ [−1/2, 1/2)
f1(x) x ∈ [1/2, 1)
f1(1) x ≥ 1.

Since f : R → R is computable and globally Lipschitz, the system ẋ = f(x) has a
unique computable solution for any initial value x0 ∈ R ([7]). Moreover, because
f(0) = 0 and f ′(0) = 2b < 0, x = 0 is an asymptotically stable equilibrium point
of ẋ = f(x). A proof similar to the proof of Theorem 2.1 shows that the domain of
attraction of 0 is (−c, c). �

If f is a polynomial-time computable analytic function, then all roots of f are
polynomial-time computable ([11]). This fact together with Proposition 2.2 leads
to the following corollary.

Corollary 2.5. Let f : R → R be a polynomial-time computable analytic function.
Assume that x0 ∈ R is an asymptotically stable equilibrium point of (1.1). Then the
domain of attraction of x0 is a polynomial-time computable open interval. (Recall
that an open interval (α, β) is called polynomial-time computable if α and β are
polynomial-time computable real numbers.)
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3. Domains of attraction of computable systems are r.e. open

Although the domain of attraction S of a computable and asymptotically stable
hyperbolic equilibrium point of a computable system may not be computable, it is
r.e. open, as Theorem 3.1 below shows. This indicates that S can be approximated
from “inside”, starting with a small neighborhood containing the equilibrium point
and lying inside S. However, since S may not be computable, there may not exist
any algorithm that can provide information on how far an approximation is from
filling up S.

Throughout this section we assume that the system ẋ = f(x) defines a dynamical
system on Rn; that is, for any x0 ∈ Rn, the unique solution x(t, x0) to the problem

(3.1) ẋ = f(x), x(0) = x0

is defined for all t ∈ R. Then the solution map x : R × Rn → Rn, (t, x0) 
→
x(t, x0) (also written as x(t, x0) = xt(x0)) has the following properties: xs+t(x0) =
xs(xt(x0)), x−t(xt(x0)) = x0, and xt(x−t(x0)) = x0 for all s, t ∈ R and x0 ∈ Rn

([9]).

Theorem 3.1. Let f : Rn → Rn be a C1-computable function (meaning that both
f and Df are computable). Assume that x0 is a computable and asymptotically
stable hyperbolic equilibrium point of (3.1). Let S be the domain of attraction of
x0. Then S is a r.e. open subset of Rn.

Proof. First we note that under the assumption that f is C1-computable, the so-
lution map x : R × Rn → Rn is computable ([7]).

Since the system (3.1) is autonomous, without loss of generality, we may assume
that x0 is the origin 0. An outline of the proof proceeds as follows. A small ball
B is computed so that B is centered at the origin and contained in the domain of
attraction S. Then B is expanded “effectively” to fill S. The expansion is done by
letting points in B flow backward in time. For the purpose of construction of B,
we write f(x) = Ax + F (x), where A = Df(0) and F (x) = f(x) − Ax. Clearly, if
x(t, a) is the solution of the following integral equation

(3.2) x(t, a) = etA

(
a +

∫ t

0

e−sAF (x(s, a))ds

)
= etAa +

∫ t

0

e(t−s)AF (x(s, a))ds,

then it is also the solution of the initial value problem ẋ = f(x(t)) and x(0) = a as
is seen by differentiation (an application of the product rule and the fundamental
theorem of calculus), where etA =

∑∞
k=0 tkAk/k! and detA/dt = AetA. In the

following, we compute an upper bound for ||etA|| from eigenvalues of A, and then
we use this upper bound to compute a radius for the desired ball B.

Since F (x) = f(x)−Ax, it follows that F (0) = 0, DF (0) = 0, F and DF are both
computable for f and Df are computable functions. Thus there is a computable
function d : N → N such that

(3.3) |F (x) − F (y)| ≤ 2−m|x − y| whenever |x| ≤ 2−d(m) and |y| ≤ 2−d(m).

Since 0 is an asymptotically stable hyperbolic equilibrium point, all eigenvalues
of the n × n matrix A = Df(0) have negative real parts ([9]). Moreover, since
Df is computable, all entries in the matrix A are computable; consequently, the
coefficients of the characteristic polynomial det(A−λIn) of A are computable, where
det(A − λIn) denotes the determinant of A − λIn and In is the n × n unit matrix.
Thus all eigenvalues of A are computable, for they are zeros of the computable
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polynomial det(A−λIn). Assume that λ1, λ2, . . . , λn are eigenvalues of A (counting
multiplicity). Then a rational number α > 0 can be computed from the λk’s such
that Re(λk) < −α for 1 ≤ k ≤ n, where Re(λk) denotes the real part of λk. We
break α into two parts for later use: Let α1 and α2 be two rational numbers such
that 0 < α1 < α and α1 + α2 = α.

Next we construct a simple closed curve in the complex plane that contains
all eigenvalues of A in its interior. Let M be a natural number such that M >
max{α, 1} and max{|λk| : 1 ≤ k ≤ n} ≤ M − 1, and let Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 be
the boundary of a rectangular region in R2, where Γ1 = {(x, y) : x = −α,−M ≤
y ≤ M}, Γ2 = {(x, y) : −M ≤ x ≤ −α, y = M}, Γ3 = {(x, y) : x = −M,−M ≤
y ≤ M}, and Γ4 = {(x, y) : −M ≤ x ≤ −α, y = −M}. Then Γ encloses all
eigenvalues of A in its interior (with the counterclockwise direction as the positive
direction). We observe that for any ξ ∈ Γ, the matrix A − ξIn is invertible and
det(A − ξIn) =

∏n
k=1(λk − ξ).

Claim 1. The function g : Γ → R, g(ξ) = ||(A − ξIn)−1||, is computable, where
(A − ξIn)−1 is the inverse of the matrix A − ξIn.

Proof of Claim 1. Since (A − ξIn)−1 
→ ||(A − ξIn)−1|| is computable, it suffices
to show that ξ 
→ (A − ξIn)−1 is computable. For each 1 ≤ i, j ≤ n, let Mij be
the determinant of the matrix obtained by deleting the ith row and jth column
of A − ξIn, and let Cij = (−1)i+jMij . Then each Cij is a polynomial in ξ with
computable coefficients (which are sums of products of elements of A). Now let
bij denote the ijth-entry of (A − ξIn)−1. Then bij = Cji/det(A − ξIn) (see, for
example, Appendix I [9]), which is computable from A and ξ. This completes the
proof of Claim 1.

Since g : Γ → R is computable and Γ is computably compact, the maximum of g
on Γ, maxξ∈Γ ||(A− ξIn)−1||, is computable ([19]). Let K1 ∈ N be an upper bound
of this computable maximum. Now for any t ≥ 0, from (5.47) and Problem 5.19
of Chapter 1, Paragraph 5 of [10], etA = − 1

2πi

∫
Γ

etξ(A − ξIn)−1dξ. A simple
calculation shows that || − 1

2πi

∫
Γj

etξ(A − ξIn)−1dξ|| ≤ K1Me−αt/π, 1 ≤ j ≤ 4.
Let K = 4MK1. Then

||etA|| ≤
4∑

j=1

∣∣∣∣∣
∣∣∣∣∣− 1

2πi

∫
Γj

etξ(A − ξIn)−1dξ

∣∣∣∣∣
∣∣∣∣∣ ≤ Ke−αt, for all t ≥ 0.

Next we compute an integer m such that 2−m ≤ α2
2K , and then set r = 2−d(m)/(2K)

and B = B(0, r) = {a ∈ Rn : |a| < r}, where the computable function d is as in
(3.3). In the following claim, we show that this ball B is what we desire.

Claim 2. For any a ∈ B, if x(t, a) is the solution of (3.2), then limt→∞ x(t, a) = 0.
Therefore, B ⊆ S.

Proof of Claim 2. For a ∈ B and t ≥ 0, define

x(0)(t, a) = 0, x(j)(t, a) = etAa +
∫ t

0

e(t−s)AF (x(j−1)(s, a))ds, j ≥ 1.
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If the two inequalities

|x(j)(t, a) − x(j−1)(t, a)| ≤ K|a|e−α1t/2j−1,(3.4)

|x(j)(t, a)| ≤ 2−d(m)e−α1t,(3.5)

hold for all j ∈ N, then it is clear from (3.4) that {x(j)(t, a)}∞j=1 is a Cauchy sequence
that converges to the solution of (3.2); that is, limj→∞ x(j)(t, a) = x(t, a), uniformly
for all t ≥ 0 and a ∈ B. Furthermore, (3.5) shows that |x(t, a)| ≤ 2−d(m)e−α1t for
all t ≥ 0 and a ∈ B, which in turn implies that limt→∞ x(t, a) = 0 for all a ∈ B.
Thus the proof is complete if we can show that (3.4) and (3.5) hold for all j ∈ N.
We employ an induction argument to prove this fact. Since |x(1)(t, a)−x(0)(t, a)| =
|etAa| ≤ ||etA|| · |a| ≤ Ke−αt|a| ≤ Ke−α1t|a| and |x(1)(t, a)| = |etAa| ≤ ||etA|| · |a| ≤
Ke−αt · 2−d(m)/2K ≤ 2−d(m)e−α1t, the two inequalities hold for j = 1. Assume
that the induction hypotheses hold for k ≤ j. Then for k = j + 1, since

|x(j+1)(t, a) − x(j)(t, a)| =
∣∣∣∣
∫ t

0

e(t−s)A
(
F (x(j)(s, a)) − F (x(j−1)(s, a))

)
ds

∣∣∣∣
≤

∫ t

0

||e(t−s)A|| ·
∣∣∣F (x(j)(s, a)) − F (x(j−1)(s, a))

∣∣∣ds

≤
∫ t

0

Ke−α(t−s) · 2−m|x(j)(s, a) − x(j−1)(s, a)|ds

≤ 2−m

∫ t

0

Ke−α(t−s) · K|a|e−α1s

2j−1
ds

= 2−m K2|a|
2j−1

e−(α1+α2)t

∫ t

0

eα2sds

≤ 2−m K2|a|e−α1t

α2 · 2j−1
≤ α2

2K
· K2|a|e−α1t

α2 · 2j−1
=

K|a|e−α1t

2j

(recall that 2−m ≤ α2/2K), (3.4) holds for j + 1. Furthermore, from the above
inequality and the induction hypothesis, we obtain that

|x(j+1)(t, a)| ≤ |x(j)(t, a)| + K|a|e−α1t

2j
≤

j∑
k=0

K|a|e−α1t

2k
≤ 2K|a|e−α1t ≤ e−α1t

2d(m)
.

It follows that (3.5) holds for j + 1. Thus (3.4) and (3.5) hold for all j ∈ N. This
completes the proof of Claim 2.

Finally we expand B to fill S by letting points in B flow backward in time. Let
{rk} be a computable sequence that enumerates all non-negative rational numbers.
Since the solution map x : R × Rn → Rn, (t, a) 
→ x(t, a), is computable, the
sequence {xrk

(a)} is a computable sequence of functions from Rn to Rn (recall that
xrk

(a) = x(rk, a)). By Theorem 6.2.4 of [19], the open set x−rk
(B) = x−1

rk
(B) is

recursively enumerable for all k ∈ N. Thus the set
⋃

k∈N
x−rk

(B) is a r.e. open
subset of Rn. We show that S =

⋃
k∈N

x−rk
(B), which completes the proof of the

theorem. To see this, we first observe that for any a ∈ S, since limt→∞ xt(a) = 0
and xt(a) = x(t, a) is continuous in t, there exists a rational number rk > 0 such
that b = xrk

(a) ∈ B. Then a = x−rk
(b) ∈ x−rk

(B) and consequently, S ⊆⋃
k∈N

x−rk
(B). On the other hand, for any a ∈

⋃
k∈N

x−rk
(B), there exist k ∈ N

and b ∈ B such that a = x−rk
(b), and so xrk

(a) = b. Then limt→∞ x(t, a) =
limt→∞ xt−rk

(xrk
(a)) = limt→∞ xt−rk

(b) = 0, which implies that a ∈ S. �
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We end this section with an open question: Is the domain of attraction (DA)
of an asymptotically stable equilibrium point of a polynomial planar system ẋ =
P (x, y) and ẏ = Q(x, y) computable? Here both P and Q are real polynomials with
computable coefficients. In the case where the DA is bounded, it is known that the
boundary of the DA is formed by either a limit cycle or a phase polygon. We also
mention in passing that to decide an upper bound for the number of limit cycles
in the above system and to investigate their relative positions is the second part of
Hilbert’s 16th problem, which is unresolved.
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