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Abstract. Let λ(n) be the nth normalized Fourier coefficient of a holomor-
phic Hecke eigenform f(z) ∈ Sk(Γ). In this paper we are interested in the
average behavior of λ2(n) over sparse sequences. By using the properties of
symmetric power L-functions and their Rankin-Selberg L-functions, we are
able to establish that for any ε > 0,∑

n≤x

λ2(nj) = cj−1x + O

(
x
1− 2

(j+1)2+2
+ε

)
,

where j = 2, 3, 4.

1. Introduction and main results

Let Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for
the full modular group Γ = SL(2, Z). Suppose that f(z) is an eigenfunction of
all Hecke operators belonging to Sk(Γ). Then the Hecke eigenform f(z) has the
following Fourier expansion at the cusp ∞:

f(z) =
∞∑

n=1

a(n)e2πinz,

where we normalize f(z) such that a(1) = 1. Instead of a(n), one often considers
the normalized Fourier coefficient

λ(n) =
a(n)

n
k−1
2

.

Then λ(n) is real and satisfies the multiplicative property

λ(m)λ(n) =
∑

d|(m,n)

λ
(mn

d2

)
,(1.1)

where m ≥ 1 and n ≥ 1 are any integers. The Fourier coefficients of cusp forms
are interesting objects. In 1974, P. Deligne [2] proved the Ramanujan-Petersson
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conjecture

|λ(n)| ≤ d(n),(1.2)

where d(n) is the divisor function. For the sum of normalized Fourier coefficients
over natural numbers, Rankin [14] proved that

S(x) =
∑
n≤x

λ(n) � x
1
3 (log x)−δ,

where 0 < δ < 0.06.
In 2001, Ivić [5] studied the sum of normalized Fourier coefficients over squares,

i.e.

S2(x) =
∑
n≤x

λ(n2).

By (1.1), the Rankin-Selberg method, and the zero-free region of the Riemann zeta
function, he successfully gave a nontrivial estimate

S2(x) �f x exp
(
−A(log x)

3
5 (log log x)−

1
5

)
,

where A is a suitable positive constant.
Later Fomenko [3] mentioned that

S2(x) �f x
1
2 (log x)3.

Recently Sankaranarayanan [16] showed that

S2(x) � x
3
4 (log x)

19
2 log log x

holds uniformly for any holomorphic cusp form of even integral weight k for the full
modular group satisfying k � x

1
3 (log x)

22
3 . In the same paper, Sankaranarayanan

mentioned that it is an open problem to give a nontrivial estimate for the sum of
Fourier coefficients over cubes, i.e.

S3(x) =
∑
n≤x

λ(n3).

Recently by using the properties of symmetric power L-functions, Lü [12] proved
that for any ε > 0,

S3(x) =
∑
n≤x

λ(n3) �f,ε x
3
4+ε, S4(x) =

∑
n≤x

λ(n4) �f,ε x
7
9+ε.

On the other hand, Rankin [13] and Selberg [17] studied the average behavior of
λ2(n) over natural numbers and showed that∑

n≤x

λ2(n) = cx + Of (x
3
5 ).

Therefore a natural problem is what is the average behavior of λ2(n) over sparse
sequences. In this paper we are interested in this problem, namely to study the
asymptotic formula of the sum ∑

n≤x

λ2(nj),

where j = 2, 3, 4.
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By using the properties of symmetric power L-functions and their Rankin-Selberg
L-functions, which have been established in [4], [8], [9], [10], [11], and [18], we are
able to establish the following results.

Theorem 1.1. Let f(z) ∈ Sk(Γ) be a Hecke eigenform of even integral weight k for
the full modular group, and let λ(n) denote its nth normalized Fourier coefficients.
Then for any ε > 0, we have∑

n≤x

λ2(n2) = c1x + Of,ε(x
9
11+ε).

Theorem 1.2. Let f(z) ∈ Sk(Γ) be a Hecke eigenform of even integral weight k for
the full modular group, and let λ(n) denote its nth normalized Fourier coefficients.
Then for any ε > 0, we have∑

n≤x

λ2(n3) = c2x + Of,ε(x
8
9+ε).

Theorem 1.3. Let f(z) ∈ Sk(Γ) be a Hecke eigenform of even integral weight k for
the full modular group, and let λ(n) denote its nth normalized Fourier coefficients.
Then for any ε > 0, we have∑

n≤x

λ2(n4) = c3x + Of,ε(x
25
27+ε).

2. Some lemmas

Lemma 2.1. Let f(z) ∈ Sk(Γ) be a Hecke eigenform of even integral weight k for
the full modular group, and let λ(n) denote its nth normalized Fourier coefficients.
For j = 2, 3, 4, we introduce

Lj(s) =
∞∑

n=1

λ2(nj)
ns

(2.1)

for Re(s) > 1. Let L(symjf, s) be the jth symmetric power L-function associated
to f , and let L(symjf × symjf, s) be the Rankin-Selberg L-function of symjf and
symjf .

Then we have that for Re(s) > 1,

(2.2) Lj(s) = L(symjf × symjf, s)Uj(s),

where Uj(s) converges uniformly and absolutely in the half-plane Re(s) ≥ 1/2 + ε
for any ε > 0.

Proof. According to Deligne [2], for any prime number p there are α(p) and β(p)
such that

λ(p) = α(p) + β(p) and |α(p)| = α(p)β(p) = 1.(2.3)

Then it is easy to show that for j ≥ 1,

λ(pj) =
α(p)j+1 − β(p)j+1

α(p) − β(p)
=

j∑
m=0

α(p)j−mβ(p)m.

In fact for any integer j ≥ 2, from the theory of Hecke operators we have the
following recursive relation:

λ(pj) = λ(pj−1)λ(p) − λ(pj−2).
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By induction, we have

λ(pj) =
α(p)j − β(p)j

α(p) − β(p)
× (α(p) + β(p)) − α(p)j−1 − β(p)j−1

α(p) − β(p)
=

α(p)j+1 − β(p)j+1

α(p) − β(p)
.

Therefore we have

λ2(pj) =

(
j∑

m=0

α(p)j−mβ(p)m

)2

.(2.4)

The jth symmetric power L-function attached to f ∈ Sk(Γ) is defined as

L(symjf, s) :=
∏
p

j∏
m=0

(1 − α(p)j−mβ(p)mp−s)−1(2.5)

for Re(s) > 1. The Rankin-Selberg L-function associated to symjf and symjf is
defined as

(2.6) L(symjf × symjf, s) :=
∏
p

j∏
m=0

j∏
u=0

(1 − α(p)j−mβ(p)mα(p)j−uβ(p)up−s)−1

for Re(s) > 1. The product over primes also gives a Dirichlet series representation
for L(symjf × symjf, s): for Re(s) > 1,

L(symjf × symjf, s) =
∞∑

n=1

λsymjf×symjf (n)
ns

,

where λsymjf×symjf (n) is a multiplicative function. From (2.3), we have∣∣λsymjf×symjf (n)
∣∣ ≤ d(j+1)2(n),(2.7)

where dk(n) is the nth coefficient of the Dirichlet series ζk(s). Then we have that
for Re(s) > 1,
(2.8)

L(symjf × symjf, s) =
∏
p

(
1 +

λsymjf×symjf (p)
ps

+ · · · +
λsymjf×symjf (pk)

pks
+ · · ·

)
.

By (2.6) and (2.8), we have

λsymjf×symjf (p) =
j∑

m=0

j∑
u=0

α(p)j−mβ(p)mα(p)j−uβ(p)u(2.9)

=

(
j∑

m=0

α(p)j−mβ(p)m

)2

.

From (2.4) and (2.9), we find that

λ2(pj) = λsymjf×symjf (p).(2.10)
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From (1.2), we learn that

Lj(s) =
∞∑

n=1

λ2(nj)
ns

(2.11)

is absolutely convergent in the half-plane Re(s) > 1. On noting that λ2(nj) is a
multiplicative function, we have that for Re(s) > 1,

(2.12) Lj(s) =
∞∑

n=1

λ2(nj)
ns

=
∏
p

(
1 +

λ2(pj)
ps

+
λ2(p2j)

p2s
+ · · · + λ2(pkj)

pks
+ · · ·

)
.

Therefore from (2.8), (2.10) and (2.12), we have that for Re(s) > 1,

Lj(s) = L(symjf × symjf, s)

×
∏
p

(
1 +

λ2(p2j) − λsymjf×symjf (p2)
p2s

+ · · ·
)

=: L(symjf × symjf, s)Uj(s).

From (1.2) and (2.7), it is obvious that Uj(s) converges uniformly and absolutely
in the half-plane Re(s) ≥ 1

2 + ε for any ε > 0. This completes the proof of Lemma
2.1. �

Based on the work of Cogdell and Michel [1], Lau and Wu [11] showed that
for j = 2, 3, 4, L(symjf × symjf, s) has a meromorphic continuation to the whole
complex plane and satisfies a functional equation.

Lemma 2.2. Let f(z) ∈ Sk(Γ) be a Hecke eigenform of even integral weight k.
The Rankin-Selberg L-function associated to symjf and symjf is defined as (2.6).
For j = 2, 3, 4, the Archimedean local factor of L(symjf × symjf, s) is

L∞(symjf × symjf, s) = ΓR(s)δ2|jΓC(s)[j/2]+δ2�j

j∏
v=1

ΓC(s + v(k − 1))j−v+1,

where ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s), δ2|j = 1 − δ2�j, and

δ2�j =
{

1, if 2 � j,
0, otherwise .

Then the complete L-function

Λ(symjf × symjf, s) =: L∞(symjf × symjf, s)L(symjf × symjf, s)

is entire except possibly for simple poles at s = 0, 1 and satisfies the functional
equation

Λ(symjf × symjf, s) = εsymjf×symjfΛ(symjf × symjf, 1 − s)

with |εsymjf×symjf | = 1.

Proof. This is Proposition 2.1 in Lau and Wu [11]. �
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Lemma 2.3. Let j = 2, 3, 4. Then for any ε > 0 and 0 ≤ σ ≤ 1, we have

L(symjf × symjf, σ + it) �f,ε (1 + |t|)
(j+1)2

2 (1−σ)+ε.

Proof. From Lemma 2.2, we can follow standard arguments to establish the con-
vexity bound for L(symjf × symjf, σ + it) in the critical strip 1

2 ≤ σ ≤ 1 (see, for
example, Chapter 5 of [7]). �

Lemma 2.4. Let j = 2, 3, 4. Then for T ≥ T0 (where T0 is sufficiently large), we
have the estimate∫ 2T

T

∣∣∣∣L
(

symjf × symjf,
1
2

+ it

)∣∣∣∣
2

dt �f,ε T
(j+1)2

2 +ε,

where ε is any positive constant.

Proof. From Lemma 2.2, we observe that the L-function L
(
symjf × symjf, s

)
is

of degree (j + 1)2 and is being extended as an entire function except possibly with
simple poles at s = 0 and s = 1. It also satisfies a nice functional equation of the
Riemann zeta type, and thus we can write the functional equation here as

L
(
symjf × symjf, s

)
= χ(s)L

(
symjf × symjf, 1 − s

)
,

where

|χ(s)| � |t|
(j+1)2

2 (1−2σ) as |t| → ∞

in any fixed strip a ≤ σ ≤ b. Now we follow the arguments of (i) of Theorem 4.1
of the paper by Sankaranarayanan [15]. The only necessary changes are that we

need the free parameters Y and Y1 therein to be Y = Y1 = cT
(j+1)2

2 , where c is a
suitable positive constant. This leads to the estimate of this lemma. �

3. Proof of Theorems 1.1.–1.3

Recall that for j = 2, 3, 4, we define

Lj(s) =
∞∑

n=1

λ2(nj)
ns

(3.1)

for Re(s) > 1. From Lemma 2.1 and Lemma 2.2, we learn that Lj(s) = L(symjf ×
symjf, s)Uj(s) can be analytically continued to the half-plane Re(s) > 1/2. In this
region, Lj(s) only has a simple pole s = 1.

Now we begin to prove our main results. By (3.1) and Perron’s formula (see
Proposition 5.54 in [7]), we have

∑
n≤x

λ2(nj) =
1

2πi

∫ b+iT

b−iT

Lj(s)
xs

s
ds + O

(
x1+ε

T

)
,(3.2)

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later. Here we have
used (1.2).
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Next we move the integration to the parallel segment with Re(s) = 1
2 + ε. By

Cauchy’s residue theorem, we have

∑
n≤x

λ2(nj) = Ress=1Lj(s)x +
1

2πi

{∫ 1
2+ε+iT

1
2+ε−iT

+
∫ b+iT

1
2+ε+iT

+
∫ 1

2+ε−iT

b−iT

}
Lj(s)

xs

s
ds

+ O

(
x1+ε

T

)
(3.3)

= : cj−1x + I1 + I2 + I3 + O

(
x1+ε

T

)
.

For I1, by Lemma 2.1, we have

I1 � x
1
2+ε + x

1
2+ε

∫ T

1

∣∣L(symjf × symjf, 1/2 + ε + it)Uj(1/2 + ε + it)
∣∣ t−1dt

� x
1
2+ε + x

1
2+ε

∫ T

1

∣∣L(symjf × symjf, 1/2 + ε + it)
∣∣ t−1dt.(3.4)

Then by the Cauchy-Schwarz inequality, Gabriel convexity and Lemma 2.4, we have

I1 � x
1
2+ε + x

1
2+ε log T max

T1≤T

{
1
T1

∫ T1

T1/2

∣∣L(symjf × symjf, 1/2 + ε + it)
∣∣ dt

}

� x
1
2+ε log T max

T1≤T

⎧⎨
⎩ 1

T1

(∫ T1

T1/2

∣∣L(symjf × symjf, 1/2 + ε + it)
∣∣2 dt

) 1
2

(3.5)

×
(∫ T1

T1/2

1dt

) 1
2

⎫⎬
⎭ + x

1
2+ε

� x
1
2+ε + x

1
2+εT

(j+1)2

4 − 1
2+ε � x

1
2+εT

(j+1)2

4 − 1
2+ε.

For the integrals over the horizontal segments, we use Lemma 2.3 to get

I2 + I3 �
∫ b

1
2+ε

xσ
∣∣L(symjf × symjf, σ + iT )

∣∣ T−1dσ

� max
1
2+ε≤σ≤b

xσT
(j+1)2

2 (1−σ)+εT−1 = max
1
2+ε≤σ≤b

(
x

T
(j+1)2

2

)σ

T
(j+1)2

2 −1+ε(3.6)

� x1+ε

T
+ x

1
2+εT

(j+1)2

4 −1+ε.

From (3.3), (3.5) and (3.6), we have

∑
n≤x

λ2(nj) = cj−1x + O

(
x1+ε

T

)
+ O

(
x

1
2+εT

(j+1)2

4 − 1
2+ε

)
.(3.7)

On taking T = x
2

(j+1)2+2 in (3.7), we have∑
n≤x

λ2(nj) = cj−1x + O
(
x

1− 2
(j+1)2+2

+ε
)

.
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By taking j = 2, 3, 4 respectively, we have∑
n≤x

λ2(n2) = c1x + O(x
9
11+ε),

∑
n≤x

λ2(n3) = c2x + O(x
8
9+ε),

and ∑
n≤x

λ2(n4) = c3x + O(x
25
27+ε).
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