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ON THE COMPLETENESS OF GRADIENT RICCI SOLITONS

ZHU-HONG ZHANG

(Communicated by Richard A. Wentworth)

Abstract. A gradient Ricci soliton is a triple (M, g, f) satisfying Rij+∇i∇jf
= λgij for some real number λ. In this paper, we will show that the complete-
ness of the metric g implies that of the vector field ∇f .

1. Introduction

Definition 1.1. Let (M, g, X) be a smooth Riemannian manifold with X a smooth
vector field. We call M a Ricci soliton if Ric + 1

2LXg = λg for some real number
λ. It is called shrinking when λ > 0, steady when λ = 0, and expanding when
λ < 0. If (M, g, f) is a smooth Riemannian manifold, where f is a smooth function
such that (M, g,∇f) is a Ricci soliton, i.e. Rij + ∇i∇jf = λgij , we call (M, g, f)
a gradient Ricci soliton and f the soliton function.

On the other hand, one has the following definition (see chapter 2 of [3]).

Definition 1.2. Let (M, g(t), X) be a smooth Riemannian manifold with a solution
g(t) of the Ricci flow on a time interval (a, b) containing 0, where X is a smooth
vector field. We call (M, g(t), X) a self-similar solution if there exist scalars σ(t)
such that g(t) = σ(t)ϕ∗

t (g0), where the diffeomorphism ϕt is generated by X. If
the vector field X comes from a gradient of a smooth function f , then we call
(M, g(t), f) a gradient self-similar solution.

It is easy to see that if (M, g(t), f) is a complete gradient self-similar solution,
then (M, g(0), f) must be a complete gradient Ricci soliton. Conversely, when
(M, g, f) is a complete gradient Ricci soliton and, in addition, the vector field ∇f
is complete, it is well known (see for example Theorem 4.1 of [2]) that there is a
complete gradient self-similar solution (M, g(t), f), t ∈ (a, b) (with 0 ∈ (a, b)), such
that g(0) = g. Here we say that a vector field ∇f is complete if it generates a
family of diffeomorphisms ϕt of M for t ∈ (a, b).

So when the vector field is complete, the definitions of gradient Ricci soliton and
gradient self-similar solution are equivalent. In the literature, people sometimes
confuse the gradient Ricci solitons with the gradient self-similar solutions. Indeed,
if the gradient Ricci soliton has bounded curvature, then it is not hard to see that
the vector field ∇f is complete. But, in general, the soliton does not have bounded
curvature.
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The purpose of this paper is to show that the completeness of the metric g of a
gradient Ricci soliton (M, g, f) implies that of the vector field ∇f , even though the
soliton does not have bounded curvature. Our main result is the following.

Theorem 1.3. Let (M, g, f) be a gradient Ricci soliton. Suppose the metric g is
complete. Then we have:

(i) ∇f is complete;
(ii) R ≥ 0 if the soliton is steady or shrinking;
(iii) ∃C ≥ 0, such that R ≥ −C if the soliton is expanding.

Indeed, we will show that the vector field ∇f grows at most linearly and so
it is integrable. Hence Definitions 1.1 and 1.2 are equivalent when the metric is
complete.

2. Gradient Ricci solitons

Let (M, g, f) be a gradient Ricci soliton, i.e., Rij +∇i∇jf = λgij . By using the
contracted second Bianchi identity we get the equation R + |∇f |2 − 2λf = const.

Definition 2.1. Let (M, g, f) be a gradient shrinking or expanding soliton. By
rescaling g and changing f by a constant we can assume λ ∈ {−1

2 , 1
2} and R +

|∇f |2 − 2λf = 0. We call such a soliton normalized, and we call f a normalized
soliton function.

Proposition 2.2. Let (M, g, f) be a gradient Ricci soliton. Fix p on M and define
d(x) ∆= d(p, x). Then the following hold:

(i) �R = 〈∇f,∇R〉 + 2λR − |Ric|2.
(ii) Suppose Ric ≤ (n − 1)K on Br0(p), for some positive numbers r0 and K.

Then for an arbitrary point x, outside Br0(p), we have

�d − 〈∇f,∇d〉 ≤ −λd(x) + (n − 1)
{2

3
Kr0 + r−1

0

}
+ |∇f |(p).

Proof. (i) By using the soliton equation and the contracted second Bianchi identity
∇iR = 2gjk∇jRik, we have

�R = gij∇i∇jR = gij∇i(2gklRjk∇lf) = 2gijgkl∇i(Rjk∇lf)

= 2gijgkl∇i(Rjk)∇lf + 2gijgklRjk∇i∇lf

= gkl∇kR∇lf + 2gijgklRjk(λgil − Ril)

= 〈∇f,∇R〉 + 2λR − 2|Ric|2.

(ii) Let γ : [0, d(x)] → M be a shortest normal geodesic from p to x. We may
assume that x and p are not conjugate to each other; otherwise, we can under-
stand the differential inequality in the barrier sense. Let {γ̇(0), e1, · · · , en−1} be
an orthonormal basis of TpM . Extend this basis parallel along γ to form a parallel
orthonormal basis {γ̇(t), e1(t), · · · , en−1(t)} along γ.

Let Xi(t), i = 1, 2, · · · , n− 1, be the Jacobian fields along γ with Xi(0) = 0 and
Xi(d(x)) = ei(d(x)). Then it is well-known that (see for example [4])

�d(x) =
n−1∑
i=1

∫ d(x)

0

[|Ẋi|2 − R(γ̇, Xi, γ̇, Xi)]dt.
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Define vector fields Yi, i = 1, 2, · · · , n − 1, along γ as follows:

Yi(t) =

⎧⎨
⎩

t
r0

ei(t), if t ∈ [0, r0];

ei(t), if t ∈ [r0, d(x)].

Then by using the standard index comparison theorem we have

�d(x) =
n−1∑
i=1

∫ d(x)

0
[|Ẋi|2 − R(γ̇, Xi, γ̇, Xi)]dt

≤
n−1∑
i=1

∫ d(x)

0
[|Ẏi|2 − R(γ̇, Yi, γ̇, Yi)]dt

=
∫ r0

0
[n−1

r2
0

− t2

r2
0
Ric(γ̇, γ̇)]dt +

∫ d(x)

r0
[−Ric(γ̇, γ̇]dt

= −
∫ d(x)

0
Ric(γ̇, γ̇)dt +

∫ r0

0
[n−1

r2
0

+ (1 − t2

r2
0
)Ric(γ̇, γ̇)]dt

≤ −
∫

γ
Ric(γ̇, γ̇)dt + (n − 1)

{
2
3Kr0 + r−1

0

}
.

On the other hand,

〈∇f,∇d〉 (x) = ∇γ̇f(x) =
∫ d(x)

0

(
d

dt
∇γ̇f)dt + ∇γ̇f(p) ≥

∫
γ

(∇γ̇∇γ̇f)dt − |∇f |(p).

Using the soliton equation, we have

�d −〈∇f,∇d〉 ≤ −
∫

γ

[
Ric(γ̇, γ̇) + ∇γ̇∇γ̇f

]
dt+(n − 1)

{
2
3Kr0 + r−1

0

}
+|∇f |(p)

= −λd(x) + (n − 1)
{

2
3Kr0 + r−1

0

}
+ |∇f |(p).

�

Now we are ready to prove Theorem 1.3.

Proof. Fix a point p on M , and define d(x) ∆= d(p, x). We divide the argument into
three steps.

Step 1. We want to prove a curvature estimate in the following assertion.

Claim. For any gradient Ricci soliton, we have:
(i) If the soliton is shrinking or steady, then R ≥ 0.
(ii) If the soliton is expanding, then there exists a nonnegative constant C = C(n)

such that R ≥ λC.

We only prove the case (i), λ ≥ 0. Note that there is a positive constant r0, such
that Ric ≤ (n−1)r−2

0 on Br0(p), and |∇f |(p) ≤ (n−1)r−1
0 . Then by Proposition 2.2,

we have
�d − 〈∇f,∇d〉 ≤ 8

3
(n − 1)r−1

0 ,

for any x /∈ Br0(p).
For any fixed constant A > 2, we consider the function u(x) = ϕ(d(x)

Ar0
)R(x),

where ϕ is a fixed smooth nonnegative decreasing function such that ϕ = 1 on
(−∞, 1

2 ], and ϕ = 0 on [1,∞).
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Then by Proposition 2.2, we have

�u = R�ϕ + ϕ�R + 2 〈∇ϕ,∇R〉

= R(ϕ′′ 1
(Ar0)2

+ ϕ′ 1
Ar0

�d) + ϕ(〈∇f,∇R〉 + 2λR − |Ric|2) + 2 〈∇ϕ,∇R〉 .

If min
x∈M

u ≥ 0, then R ≥ 0 on B 1
2 Ar0

(p). Otherwise, min
x∈M

u < 0. Then there

exists some point x1 ∈ BAr0(p) such that u(x1) = ϕR(x1) = min
x∈M

u < 0. Because

u(x1) is the minimum of the function u(x), we have ϕ′R(x1) > 0, ∇u(x1) = 0, and
�u(x1) ≥ 0.

Let us first consider the case that x1 /∈ Br0(p). Then by direct computation, we
have

�u(x1) = (ϕ′′

ϕ
1

(Ar0)2
+ ϕ′

ϕ
1

Ar0
�d)u(x1) − ϕ′

ϕ
1

Ar0
〈∇f,∇d〉u(x1)

+2λu(x1) − ϕ|Ric|2 − ϕ′2

ϕ2
2

(Ar0)2
u(x1)

≤ (ϕ′′

ϕ
1

(Ar0)2
− ϕ′2

ϕ2
2

(Ar0)2
)u(x1) − 2

nϕR2

+ϕ′

ϕ
1

Ar0
u(x1)(�d − 〈∇f,∇d〉).

≤ (ϕ′′

ϕ
1

(Ar0)2
− ϕ′2

ϕ2
2

(Ar0)2
)u(x1) − 2

n
1
ϕu(x1)2

+8
3 (n − 1)ϕ′

ϕ
1

Ar2
0
u(x1)

= u(x1)
ϕ

{
(ϕ′′ 1

(Ar0)2
− ϕ′2

ϕ
2

(Ar0)2
) + 8

3 (n − 1)ϕ′ 1
Ar2

0
− 2

nu(x1)
}

≤ |u(x1)|
ϕ

{
ϕ′2

ϕ
2

Ar2
0

+ 8(n−1)
3 (−ϕ′) 1

Ar2
0

+ |ϕ′′| 1
Ar2

0
− 2

n |u(x1)|
}

.

Note that there exists a constant C̃ = C̃(ϕ) such that |ϕ′| ≤ C̃, ϕ′2

ϕ ≤ C̃, and

|ϕ′′| ≤ C̃. So

|u(x1)| ≤
C

Ar2
0

,

where the constant C = C(ϕ, n), i.e., R ≥ − C
Ar2

0
on B 1

2 Ar0
(p).

We now consider the remaining case that x1 ∈ Br0(p). Then ϕ′(x1) = ϕ′′(x1) =
0, and we have

�u(x1) = 2λu(x1) − ϕ|Ric|2 ≤ |u(x1)|[−2λ − 2
n
|u(x1)|].

Since λ ≥ 0, we have |u(x1)| ≤ 0, i.e., u(x1) = 0. This is a contradiction.
Combining the above two cases, we have R ≥ − C

Ar2
0

on B 1
2Ar0

(p) for any A > 2,
which implies that R ≥ 0 on M .

The proof of (ii) is similar.

Step 2. We next want to show that the gradient field grows at most linearly.

Claim. For any gradient Ricci soliton, there exist constants a and b depending only
on the soliton, such that

(i) |∇f |(x) ≤ |λ|d(x) + a;
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(ii) |f |(x) ≤ |λ|
2 d(x)2 + ad(x) + b.

For any point x on M , we connect p and x by a shortest normal geodesic γ(t), t ∈
[0, d(x)].

We first consider that the soliton is steady. Then R ≥ 0 and R+ |∇f |2 = C ≥ 0,
so we have |∇f | ≤

√
C.

Secondly, we consider that the soliton is shrinking. Without loss of generality,
we may assume the soliton is normalized. So R ≥ 0 and R + |∇f |2 − f = 0; these
imply f ≥ |∇f |2. Let h(t) = f(γ(t)). Then

|h′|(t) = | 〈∇f, γ̇〉 |(t) ≤ |∇f |(γ(t)) ≤
√

f(γ(t)) =
√

h(t).

By integrating the above inequality, we get |
√

h(d(x)) −
√

h(0)| ≤ 1
2d(x). Thus

|∇f |(x) ≤ 1
2d(x) +

√
f(p).

Finally, we consider that the soliton is expanding. Similarly we only need to
show the normalized case. So R ≥ −C

2 and R + |∇f |2 + f = 0. We obtain
−f + C

2 ≥ |∇f |2. Let h(t) = −f(γ(t)) + C
2 . Thus

|h′|(t) = | 〈∇f, γ̇〉 |(t) ≤ |∇f |(γ(t)) ≤
√

h(t).

By integrating the above inequality, we get |
√

h(d(x)) −
√

h(0)| ≤ 1
2d(x). Thus

|∇f |(x) ≤ 1
2d(x) +

√
−f(p) + C

2 .
Therefore we have proved (i).
The conclusion (ii) follows from (i) immediately.

Step 3. Since the gradient field ∇f grows at most linearly, it must be integrable.
Thus we have proved Theorem 1.3.

�
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