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ARC DISTANCE EQUALS LEVEL NUMBER

SANGBUM CHO, DARRYL MCCULLOUGH, AND ARIM SEO

(Communicated by Daniel Ruberman)

Abstract. Let K be a knot in 1-bridge position with respect to a genus-g
Heegaard surface that splits a 3-manifold M into two handlebodies V and W .
One can move K by isotopy keeping K∩V in V and K∩W in W so that K lies
in a union of n parallel genus-g surfaces tubed together by n−1 straight tubes,
and K intersects each tube in two arcs connecting the ends. We prove that
the minimum n for which this is possible is equal to a Hempel-type distance
invariant defined using the arc complex of the two-holed genus-g surface.

Introduction

A knot K in a closed orientable 3-manifold M is said to be in 1-bridge position
with respect to a surface F if F is a Heegaard surface that splits M into two
handlebodies V and W , and each of K ∩ V and K ∩ W is a single arc that is
parallel into F . We denote the 1-bridge position of K with respect to F by (F, K),
and the genus of (F, K) is the genus of F . A knot is called a (g, 1)-knot if it can
be put in a genus-g 1-bridge position.

There is a natural way to reposition a knot in 1-bridge position, called level
position. In a neighborhood F × [0, 1] of F in M , one may take n parallel copies
of the form F × {t} and tube them together with n− 1 unknotted tubes to obtain
a surface G of genus gn in F × [0, 1], where g is the genus of F . We say that K
lies in n-level position with respect to F if K ⊂ G, and moreover K meets each of
the n − 1 tubes in two arcs, each of which connects the two ends of the tube. As
we will see below, every 1-bridge position of K is isotopic keeping K ∩ V in V and
K ∩W in W into some n-level position. The minimum such n is an invariant of the
1-bridge position, called the level number. Of course, the minimum level number
over all genus-g 1-bridge positions of a (g, 1)-knot is an invariant of the knot.

Level position was used by M. Eudave-Muñoz [3, 4] to obtain closed incompress-
ible surfaces in the complements of (1, 1)-knots.

In this paper, we use an invariant of a 1-bridge position, called its arc distance.
This is a version of a well-known complexity of a Heegaard splitting introduced
by J. Hempel in [8] and defined using the curve complex of the Heegaard surface.
D. Bachman and S. Schleimer have used a more general and somewhat different
definition of arc distance to obtain information about bridge positions of knots [1].
To define our arc distance, write K ∩ F = {x, y}. The isotopy classes of arcs in
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F from x to y form the vertices of a simplicial complex called the arc complex
of F − {x, y}. The arc distance of the 1-bridge position is the minimum distance
(simplicial distance in the 1-skeleton of the arc complex) between the collection of
vertices represented by arcs in F from x to y that are parallel to K ∩ V in V and
the analogous collection for K ∩ W .

Our main result, Theorem 3.2, says that the arc distance of a 1-bridge position
of K equals its level number. Although the proof is not especially difficult, this fact
seems noteworthy in that although many such Hempel-type invariants have been
defined and used, this appears to be the first that gives a concrete and natural
geometric meaning to every possible value of the invariant rather than just small
values.

Theorem 3.2 for the case g = 1 appeared in the third author’s dissertation.
We are grateful to the referee for a careful reading and for suggesting improve-

ments to the manuscript.

1. Leveling a (g, 1)-knot

Suppose that K is in 1-bridge position with respect to F , which splits M into
two handlebodies V and W . A shadow of K ∩ V is an arc in F isotopic to K ∩ V ,
relative to K ∩ F , through arcs in V . A shadow of K ∩ W is defined similarly. A
Heegaard isotopy of K is a (piecewise-linear) isotopy of K such that K ∩ V stays
in V and K ∩ W stays in W at all times. The resulting knot may not be in strict
1-bridge position, since the arc K ∩ V may be moved to meet F in its interior or
even to be a shadow of K ∩ V .

A 1-leveling of a knot K in 1-bridge position with respect to F is a Heegaard
isotopy that ends with a knot K ′ ⊂ F . For n ≥ 2, an n-leveling of K is a Heegaard
isotopy taking K to a knot K ′ which may be described as follows: Fix a collar
F×[0, 1] of F in W , with F = F×{0}. Let 0 = t1 < t2 < · · · < tn = 1 be a sequence
of values, and put Fi = F × {ti} ⊂ F × [0, 1]. Let D1, . . . , Dn−1 be a collection of
disks in F with Di ∩ Di+1 = ∅. Denote by Tj the tube ∂Dj × [tj , tj+1] connecting
Fj and Fj+1 for each 1 ≤ j ≤ n−1. From the union F1∪T1∪· · ·∪Fn−1∪Tn−1∪Fn,
remove the interiors of Dj ×{tj} and Dj ×{tj+1} for 1 ≤ j ≤ n− 1 to get a closed
surface G of genus gn, where g is the genus of F . Then

(1) K ′ ⊂ G,
(2) K ′ ∩ Tj consists of two arcs, each connecting two boundary circles of Tj ,

for each 1 ≤ j ≤ n − 1.

Necessarily, K ′ ∩ F1 and K ′ ∩ Fn are single arcs, and K ′ ∩ Fi is a pair of arcs for
each 2 ≤ i ≤ n− 1. The knot K ′ is said to be in n-level position with respect to F .

If K is in level position with respect to F , then there is a knot in 1-bridge position
with respect to F which is Heegaard isotopic to K. Conversely, we have

Proposition 1.1. Let K be in 1-bridge position with respect to F . Let n be the
minimum number of intersection points of shadows αV and αW of K∩V and K∩W
respectively. Then K is Heegaard isotopic to a knot in k-level position with respect
to F for some k < n.

We will not give a direct proof of Proposition 1.1. Although such a proof is not
difficult, it is somewhat cumbersome to explain and tedious to read. Also, it is
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not needed, for as we will see, Proposition 1.1 follows directly from our main re-
sult, Theorem 3.2, together with the connectivity of the arc complex discussed in
Section 2 below.

In view of Proposition 1.1, we may make the following definition for a knot K
in genus-g 1-bridge position with respect to F :

(1) The level number of the 1-bridge position (F, K) is the minimum n such
that K is Heegaard isotopic to a knot in n-level position with respect to F .

(2) The genus-g level number of K is the minimum level number over all
genus-g 1-bridge positions of K.

2. The arc complex

Let Σ be a genus-g surface with two holes, g ≥ 0, and denote by C1 and C2

the two boundary circles of Σ. The arc complex A(Σ) of Σ is a simplicial complex
defined as follows. The vertices are isotopy classes of properly embedded arcs in
Σ connecting C1 and C2, and a collection of k + 1 vertices spans a k-simplex if it
admits a collection of representative arcs which are pairwise disjoint. In this section
we will show that A(Σ) is connected. Indeed, as we will explain, it is contractible.

Arc complexes have been used in Teichmüller theory by J. Harer [5, 6] (see also
A. Hatcher [7]) and R. C. Penner [11]. In particular, many arc complexes are known
to be contractible, although we have not found our particular case in the existing
literature.

Let v and w be vertices of A(Σ). Define v · w to be the minimal cardinality
of l ∩ m where l and m are arcs in Σ which represent v and w, respectively, and
intersect transversely.

Lemma 2.1. Let v and w be vertices of A(Σ) and suppose v · w > 0. Then there
exists a vertex w′ such that w · w′ = 0 and w′ · v < w · v.

Proof. Choose arcs l and m representing the vertices v and w, respectively, so that
|l ∩ m| = v · w. Since v · w > 0, we have at least one intersection point of l and
m. Let p be the intersection point for which the subarc of l connecting p and
C2 is disjoint from m. Denote by m′ the union of this subarc and the subarc of
m connecting p and C1 (see Figure 1). Then the arc m′ is disjoint from m and
has fewer intersections with l than m had (after a slight isotopy) since at least p
intersectoins no longer count. Letting w′ be the vertex represented by m′, we have
w′ · v < w · v and w · w′ = 0. �

Theorem 2.2. The arc complex A(Σ) is connected. In fact, if representative arcs
of v and w intersect transversely in k points, then the distance from v to w is at
most k + 1.

Proof. Let v and w be any two vertices of A(Σ). If v · w = 0, then v and w are
connected by an edge of A(Σ), so lie at distance 1. If v ·w = k > 0, then Lemma 2.1
and induction give the result. �

In fact, A(Σ) is contractible. This can be proven fairly quickly using Proposi-
tion 3.1 of [2]. Since we do not need this fact, we do not include the argument.
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Figure 1

3. The arc distance of a (g, 1)-knot

In Section 2, we showed that the arc complex A(Σ) is connected. Thus, for
any two vertices v and w of A(Σ), we can define the distance between v and w,
dist(v, w), to be the distance in the 1-skeleton of A(Σ) from v to w with the usual
path metric.

Keeping the notation of previous sections, let K be a (g, 1)-knot in 1-bridge
position with respect to the Heegaard surface F . By removing from F a small
open neighborhood of the two points K ∩ F , we obtain a 2-holed genus-g surface
Σ. Denote by k and k′ the two arcs V ∩K and W ∩K, and let s and s′ be shadows
of k and k′, respectively. Then the arcs s ∩ Σ and s′ ∩ Σ represent vertices of the
arc complex A(Σ). We will call s ∩ Σ and s′ ∩ Σ shadows of k and k′ again.

Definition 3.1. Let K be in genus-g 1-bridge position with respect to F .
(1) The arc distance of (F, K) is the minimum of dist(v, v′) over all the vertices

v and v′ represented by shadows of K ∩ V and K ∩ W , respectively.
(2) The genus-g arc distance of K is the minimum of the arc distance of (F, K)

over all genus-g 1-bridge positions (F, K) of K.

We observe that the trivial knot is the only knot of arc distance 0, and a knot in
S3 has genus-1 arc distance 1 if and only if it is a nontrivial torus knot. Figure 2
shows that the genus-1 arc distance of the figure-8 knot is at most 2, and hence is
2 since the figure-8 knot is not a torus knot.

Theorem 3.2. Let K be a nontrivial knot which is in 1-bridge position with respect
to F . If K is in n-level position with respect to F , then the arc distance of (F, K)
is at most n. Conversely, if the arc distance of (F, K) is n, then K is Heegaard
isotopic to a knot in n-level position with respect to F . As a consequence, the arc
distance of (F, K) equals the level number of (F, K).

Proof. Suppose that K is in n-level position with respect to F . The case of n = 1
is clear. We will assume that n ≥ 3. (The case of n = 2 is similar but simpler.)
We describe the surface G as in Section 1. In particular, recall that the tube Tj

connects two surfaces Fj and Fj+1. By an isotopy, we may assume that the two
arcs K ∩ Tj are vertical, that is, K ∩ Tj = (K ∩ ∂Dj) × [tj , tj+1]. Denote the arcs
K ∩ F1 and K ∩ Fn by k and k′ respectively, and denote the two arcs of Fj ∩ K



ARC DISTANCE EQUALS LEVEL NUMBER 2805

Figure 2. A genus-1 2-level position of the figure-8 knot, having
arc distance 2.

by αj and βj for each 2 ≤ j ≤ n − 1. Choose an arc µj properly embedded in
Dj × {tj}, connecting the two points K ∩ (∂Dj × {tj}) for each 1 ≤ j ≤ n− 1 (see
Figure 3).

Let a = a×{t1} and b = b×{t1} be the endpoints of k, with notation chosen so
that a × {t2} ∈ α2 and b × {t2} ∈ β2. There is an isotopy jt of F2 that moves the
endpoints of µ2 along α2 and β2 until they reach a × {t2} and b × {t2}, stretching
µ2 onto α2 ∪ µ2 ∪ β2. Extend jt to the isotopy Jt = jt × id[t2,tn] on F × [t2, tn].

Consider the knot obtained from K by replacing K∩(F ×[t2, tn]) by J1(K∩(F ×
[t2, tn])). The original K is isotopic to this new knot by an isotopy supported on
a small neighborhood of F × [t2, tn] that resembles Jt on F × [t2, tn]. This isotopy
pulls α2 ∪ β2 onto part of K ∩ T1 and stretches µ2 onto α2 ∪ µ2 ∪ β2, as Jt did.

Figure 3
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Figure 4

Calling the new knot K again, we may notationally replace each µ2, . . . , µn−1

and k′ by its image under J1, each D2, . . . , Dn−1 by its image, and so on. The new
α3 and β3 end at a × {t3} and b × {t3}.

Repeat this process on each descending level. At the last stage (after renaming),
K has been moved to k ∪ (a ∪ b) × [t1, tn] ∪ k′ and we have the sequence of arcs k,
µ1, . . . , µn−1, k′, with endpoints lying in a× [t1, tn] and b× [t1, tn]. After projecting
k, µ1, . . . , µn−1, and k′ to F , each intersects the next only in their endpoints.
Therefore the vertices represented by the projected arcs k and k′ have distance at
most n in the arc complex.

The projected k and k′ are shadows of K ∩ V and K ∩ W , where V and W are
the two handlebodies into which F cuts M . Thus the arc distance of (F, K) is at
most n.

Conversely, suppose that the arc distance of (F, K) is n for n ≥ 3 (again the case
n = 1 is clear and we omit the case n = 2, which is similar to n ≥ 3). Denote by p
and q the two points K∩F . Then we have a sequence of arcs s0, s1, s2, . . . , sn−1, sn

in F , each connecting p and q, such that s0 and sn are shadows of V ∩ K and
W ∩ K, and sj−1 meets sj only in their endpoints p and q for 1 ≤ j ≤ n.

Let Np and Nq be disjoint regular neighborhoods of p and q in F respectively.
By a Heegaard isotopy, we may assume that each of Np ∩ (s0 ∪ s1 ∪ · · · ∪ sn) and
Nq ∩ (s0 ∪ s1 ∪ · · · ∪ sn) is contractible. In particular, any si and sj meet in Np

only at the point p, and in Nq only at the point q. For 1 ≤ j ≤ n − 1, choose
regular neighborhoods Dj of sj ∩ F − (Np ∪ Nq) in F − (Np ∪ Nq) so that s0 is
disjoint from D1, sn is disjoint from Dn−1, and Dj−1 is disjoint from Dj . For
1 ≤ j ≤ n − 1, denote the arcs sj ∩ Np and sj ∩ Nq by αj and βj respectively, and
the points αj ∩ ∂Np and βj ∩ ∂Nq by pj and qj respectively (see Figure 4).

As in Section 1, let 0 = t1 < t2 < · · · < tn = 1 be a sequence of values, put
Fj = F ×{tj} ⊂ F × [0, 1] ⊂ W , and construct a closed surface G from the surfaces
Fj and the tubes Tj = ∂Dj × [tj , tj+1]. By a Heegaard isotopy, we may assume
that K = s0 × {t1} ∪ (p ∪ q) × [t1, tn] ∪ sn × {tn}. Construct a knot K ′ contained
in G so that:

(1) K ′ ∩ F1 = (s0 ∪ α1 ∪ β1) × {t1},
(2) K ′ ∩ Fj = (αj−1 ∪ αj ∪ βj−1 ∪ βj) × {tj}, for 2 ≤ j ≤ n − 1,
(3) K ′ ∩ Fn = (sn ∪ αn−1 ∪ βn−1) × {tn}, and
(4) K ′ ∩ Tj = (pj ∪ qj) × [tj , tj+1], for 1 ≤ j ≤ n − 1.
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By construction, K ′ lies in n-level position with respect to F . There is a Heegaard
isotopy from K to K ′ that moves each {p}×[ti, ti+1] onto αi×{ti}∪{pi}×[ti, ti+1]∪
βi+1 × {ti+1} and similarly for {q} × [ti, ti+1]. �

As we mentioned in Section 1, Proposition 1.1 follows from Theorem 3.2. For
if αV and αW intersect in n points, then as representative arcs of the vertices of
the arc complex A(Σ) they intersect in n− 2 points. By Theorem 2.2, the distance
from αV to αW is at most n − 1, so by Theorem 3.2, K is Heegaard isotopic to a
knot in k-level position for some k < n.

From Theorem 3.2, we have our main objective.

Corollary 3.3. Let K be a nontrivial knot which can be put in genus-g 1-bridge
position. Then the genus-g arc distance of K equals the genus-g level number of K.
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