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ON THE Lp NORM OF THE RADEMACHER PROJECTION
AND RELATED INEQUALITIES

LES�LAW SKRZYPEK

(Communicated by Nigel J. Kalton)

Abstract. The purpose of this paper is to find the exact norm of the Rade-
macher projection onto {r1, r2, r3}. Namely, we prove

‖R3‖p =
(3p/q + 1)1/p(3q/p + 1)1/q

4
.

The same techniques also give the relative projection constant of ker{1, ..., 1}
in �n

p , that is,

λ(ker{1, ..., 1}, �n
p ) =

((n − 1)p/q + 1)1/p((n − 1)q/p + 1)1/q

n
,

for n = 2, 3, 4. We discuss the relation of the above inequalities to the famous
Khintchine and Clarkson inequalities. We conclude the paper by stating some
conjectures that involve the geometry of the unit ball of �n

p .

1. Introduction

The projection P : X → V is called minimal if it has the smallest possible norm,
that is, if

(1.1) ‖P‖ = λ(V, X) = inf{‖Q‖ : Q : X → V and Q is a projection}.
Observe that any projection with norm one is automatically minimal though, in
general, a given subspace will not be the range of a projection of norm 1. The first
problem is to find out whether a considered subspace is complemented, but even if
that is the case, there could be no minimal projection (as the inf above does not
have to be attained); for example, see [3]. In many cases the existence of a minimal
projection is known a priori (see [21, 11]), which is the case when the subspace is
finite-dimensional or finite-codimensional. Even in such cases, minimal projections
will be difficult to find. As a result of the dramatic evidence on the difficult nature
of such problems, one may cite the fact that the minimal projections of C([0, 1]) onto
the subspace of polynomials of degree > 2 remain unknown. Let us mention several
papers that characterize minimal projections in general settings [21, 6, 5, 17, 22].
Still rarer is the situation in which the minimal projection is known to be unique.
Even in Lp (p �= 2) spaces there are examples of minimal projections that are not
unique (see [24]).
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In two important cases we know minimal projections: the Fourier projection Fn

and the Rademacher projection Rn are minimal in Lp [2, 18, 5]. The uniqueness
of the Fourier projection in C[0, 1] and L1[0, 1] has been settled in [7, 14]. In Lp

(p �= 2) the problem is open; the special case has been proved in [25].
Now we will discuss Rademacher projection. We will define the Rademacher

functions, r0, r1, ... by rj(t) = (−1)[2
jt] for 0 ≤ t ≤ 1, where [·] denotes the integer

part of the argument. Since r0 ≡ 1 many authors consider only ri, i ≥ 1 (ri

therefore being symmetric independent random variables). This is only a choice of
convenience since

(1.2) ||aor0 + a1r1 + ... + an−1rn−1||p =
1
2
||aor1 + a1r2 + ... + an−1rn||p.

Put Radn = span{r1, ..., rn} and R̃adn = span{r0, ..., rn−1}. The Rademacher pro-
jection Rn (or R̃n) is an orthogonal projection onto Radn (R̃adn correspondingly).
Both spaces Radn and R̃adn are symmetric. As a result (see [16]) both Rademacher
projections are unique minimal in Lp[0, 1] (1 < p < ∞). In L1[0, 1] and L∞[0, 1],
however, they are not unique minimal projections ([5, 26]).

The study of Rademacher functions came from the Khintchine inequality

(1.3) Ap||
n∑

i=1

airi||2 ≤ ||
n∑

i=1

airi||p ≤ Bp||
n∑

i=1

airi||2.

One can easily compute that

(1.4) ||
n∑

i=1

airi||p = (Average{|
n∑

i=1

εiai|p : εi = ±1})1/p = (E(
n∑

i=1

airi)p)1/p

and

(1.5) ||
n∑

i=1

airi||2 = (
n∑

i=1

|ai|2)1/2.

The problem of finding the best possible constants appearing in (1.3) has a long
history and has finally been solved in ([10]). There are also generalizations of the
Khintchine inequality to Banach spaces. The Rademacher projection can also be
generalized and its norm has been compared to the Banach-Mazur distance (see [23]
for exact formulations and more information). In [4] the norm of the Rademacher
projection R2 : Lp → Lq has been computed. Paper [20] contains many interesting
formulas involving integrals of Rademacher functions.

Unfortunately, R3 may be the only Rademacher projection with a norm that can
be succinctly expressed, though the author believes that, even in the general case,
there could be an interesting formula to discover.

All of the above observations are also related to the relative projection constant of
ker(1, ..., 1) in �n

p . This is especially interesting due to the conjecture that ker(1, ..., 1)
is the worst complemented hyperplane in �n

p (1 < p < ∞). That is,

Conjecture 1.1. For any f ∈ �n
q , λ(ker f, �n

p ) ≤ λ(ker(1, ..., 1), �n
p ).

It is worth mentioning that for p = 1 and p = ∞ the relative projection constants
λ(ker f, �n

1 ) and λ(ker f, �n
∞) have been computed (see [3, 22]).
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2. Results

The Rademacher projection is defined by Rn =
∑n

i=1 ri⊗ri and R̃n =
∑n−1

i=0 ri⊗
ri. We can write the above projections as

(2.1) Rn(f) =
n∑

i=1

( ∫ 1

0

ri(t)f(t) dt
)
ri and R̃n(f) =

n−1∑
i=0

( ∫ 1

0

ri(t)f(t) dt
)
ri.

Our main goal is to find ||R3||p (we will see that actually ||R3||p=||R̃3||p).
Let S2n denote the space with a basis of simple functions of intervals Il,2k =

( l
2n , l+1

2n ), where l ∈ {0, 1, ..., 2n − 1}.

Theorem 2.1. The Lp norm of R̃n is attained on S2n−1 , and the Lp norm of Rn

is attained on S2n .

Proof. We will prove the above for R̃n; for Rn the proof is the same. We have
R̃adn ⊂ S2n−1 . Consider the projection

(2.2) Tn = R̃n/S2n−1 : S2n−1 → R̃adn.

||Tn||p ≤ ||R̃n||p. To prove the inequality in the opposite direction, consider the
norm-one projection Ln−1 : Lp[0, 1] → S2n−1 given by

(2.3) Ln−1(f) =
2n−1−1∑

l=0

2n−1(
∫

Il,2n−1

f(x) dx) χIl,2n−1 .

Furthermore, observe that Ln−1/S2n−1 = Id, and since ri ∈ S2n−1 , we also have

(2.4) ri(f) = ri(Ln−1f).

Taking a norming point for R̃n, we have

(2.5)
‖R̃n‖p = ‖R̃n(f)‖p = ‖

n−1∑
i=0

ri(f)ri‖p = ‖
n−1∑
i=0

ri(Ln−1f)ri‖p

= ‖R̃n(Ln−1f)‖p = ‖Tn(Ln−1f)‖p ≤ ‖Tn‖p · ‖Ln‖p ≤ ‖Tn‖p.

Hence, ‖R̃n‖p = ‖Tn‖p. �
The following is easy to observe.

Remark 2.2. ||R2||p = ||R̃2||p = 1.

Our goal is to prove

Theorem 2.3. Consider R̃3 : Lp[0, 1] → {r0, r1, r2}. Then

(2.6) ‖R̃3‖p =
(3p/q + 1)1/p(3q/p + 1)1/q

4
.

Proof. Since (R̃n)∗ = R̃n and ||(R̃n)∗|| = ||R̃n||, we can assume that p > 2. Put
w := r1r2. Then r0, r1, r2, w is a basis for S4. Let f = a0 r0 + a1 r1 + a2 r2 + a3 w.
Then it is easy to see that finding the norm of R3 is equivalent to finding the best
constant in the following inequality:
(2.7)
|ao + a1 + a2|p + |ao + a1 − a2|p+|ao − a1 + a2|p + |ao − a1 − a2|p

≤ C(|ao + a1 + a2 + a3|p + |ao + a1 − a2 − a3|p

+ |ao − a1 + a2 − a3|p + |ao − a1 − a2 + a3|p),
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where C1/p = ||R3||p. Making substitutions, x1 = a0 + a1 + a2, x2 = −a0 − a1 + a2,
x3 = −a0 + a1 − a2, x4 = a0 − a1 − a2 and d = a3, the above problem is reduced to

(2.8) C = max{
4∑

i=1

|xi|p :
4∑

i=1

|xi + d|p = 1 and
4∑

i=1

xi = 0},

or equivalently,

(2.9) λ =
1
C

= min{
4∑

i=1

|xi + d|p :
4∑

i=1

|xi|p = 1 and
4∑

i=1

xi = 0}.

We will write the above in the quotient form
(2.10)

λ =
1
C

= min{
∑4

i=1 |xi + d|p∑4
i=1 |xi|p

:
4∑

i=1

xi = 0} = min{
∑4

i=1 |xi + 1|p∑4
i=1 |xi|p

:
4∑

i=1

xi = 0}.

Assume the above minimum is attained at x = (x1, x2, x3, x4), where
∑4

i=1 xi = 0.

Observe that x �= 0, because if x → 0, then
∑4

i=1 |xi+1|p∑4
i=1 |xi|p

→ ∞. Take any v =

(v1, v2, v3, v4) where
∑4

i=1 vi = 0 and consider the function

(2.11) g(ε) =
∑4

i=1 |xi + εvi + 1|p∑4
i=1 |xi + εvi|p

.

Since p > 2 and x = (x1, x2, x3, x4) �= 0, g is a well-defined C1 function around 0.
The function g has a minimum at 0. As a result, g′(0) = 0 and g′′(0) ≥ 0. From
now on we will use the notation

(2.12) 〈x〉p = |x|psign(x).

Observe that g = T
S ; therefore gS = T and g′S + gS′ = T ′. Using g(0) = λ we

obtain

(2.13) g′(0) =
p

∑4
i=1 vi(〈xi + 1〉p−1 − λ〈xi〉p−1)∑4

i=1 |xi|p
= 0.

Taking a second derivative we get g′′S + 2g′S′ + gS′′ = T ′′. Using g(0) = λ and
g′(0) = 0 we get

(2.14) g′′(0) =
p(p − 1)

∑4
i=1 v2

i (|xi + 1|p−2 − λ|xi|p−2)∑4
i=1 |xi|p

≥ 0.

Consider the following function:

(2.15) h(t) = 〈t + 1〉p−1 − λ〈t〉p−1.

Putting v = (1,−1, 0, 0), v = (1, 0,−1, 0) and v = (1, 0, 0,−1) in (2.13) gives us
that for all i, j,

(2.16) h(xi) = h(xj) = A.

Observe that λ < 1. Taking the derivative of the function h, we can easily see that
it has only two extreme points, a maximum at t0 = − 1

1−λ1/p−2 and a minimum at
t1 = − 1

1+λ1/p−2 . As a result, h(t) = A can have a maximum of 3 different solutions.
Therefore only 3 numbers among the xi can be different. We will prove that, in
fact, only 2 numbers among the xi can be different.
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Assume for a contradiction that 3 numbers among the xi are different. Since∑4
i=1 xi = 0 at least one of xi > 0. Thus, h(t) = A has to have a positive solution.

Observe now that h(−1) = λ < 1 = h(0); therefore all negative solutions to h(t) =
A have to be less than −1. As a result, all the solutions of h(t) = A have to be of
the form

(2.17) −α,−β, γ, where α > β > 1, γ > 0.

Observe that, until now, we have only used the first derivative of g. The above
conditions guarantee us that g is actually a C∞ function. There could be only one
−β among the xi (otherwise, since h′(−β) < 0, g′′(0) < 0, a contradiction to (2.14)).
The possible choices for x1, x2, x3, x4 are now −α,−α,−β, γ or −α,−β, γ, γ. But
since

∑4
i=1 xi = 0 in the first case, we have γ = 2α+β, and secondly γ = (α+β)/2.

In both cases

(2.18) γ ≥ β.

Using (2.17), the equation h(γ) = h(−β) gives

(2.19)
(γ + 1)p−1 + (β − 1)p−1

γp−1 + βp−1
= λ < 1.

On the other hand, since γ ≥ β,

(2.20) (γ + 1)p−1 − γp−1 ≥ (p − 1)γp−2 ≥ (p − 1)βp−2 ≥ βp−1 − (β − 1)p−1.

As a result,

(2.21)
(γ + 1)p−1 + (β − 1)p−1

γp−1 + βp−1
≥ 1,

contrary to (2.19). Therefore we can have only 2 different numbers among the xi,
giving the possibilities −a,−a, b, b and −a, b, b, b (a > 1, b > 0). The first one is, in
fact, not possible since it would lead to b = a, a contradiction. Hence x1, x2, x3, x4

has to be −3b, b, b, b (b > 1/3). Plugging it into (2.10) and using s = 1/b we get

(2.22) λ =
1
C

= min
b>1/3

{3|b + 1|p + |3b − 1|p
3|b|p + 3p|b|p } =

1
3 + 3p

min
0<s<3

{3(1+s)p +(3−s)p}.

Standard calculations yield that the minimum is attained for s = 3−3q/p

1+3q/p and

(2.23) C =
(3p/q + 1)(3q/p + 1)p/q

4p
.

�

Theorem 2.4. ||R3||p = ||R̃3||p.

Proof. Using the convexity of a function f(x) = |x|p we have
(2.24)
|a0+a1+a2+a3+a4+a5+a6+a7|p+|−a0+a1+a2−a3+a4−a5−a6+a7|p

2 ≥ |a1 + a2 + a4 + a7|p,
|a0+a1+a2+a3−a4−a5−a6−a7|p+|−a0+a1+a2−a3−a4+a5+a6−a7|p

2 ≥ |a1 + a2 − a4 − a7|p,
|a0+a1−a2−a3+a4+a5−a6−a7|p+|−a0+a1−a2+a3+a4−a5+a6−a7|p

2 ≥ |a1 − a2 + a4 − a7|p,
|a0+a1−a2−a3−a4−a5+a6+a7|p+|−a0+a1−a2+a3−a4+a5−a6+a7|p

2 ≥ |a1 − a2 − a4 + a7|p.
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Using (1.2) and Theorem 2.3 we get
(2.25)
||a1r1+a2r2+a4r4||p = 2||a1r0+a2r1+a3r2||p ≤ 2||R̃3||p||a1r0+a2r1+a3r2+a7w||p,
and applying equations (2.24), we get

(2.26) ||R3||p ≤ ||R̃3||p.
But since the above inequalities will become equalities when a3 = a5 = a6 = 0, we
will have equality. �

From the proof of the above Theorem 2.3 we can deduce that

Corollary 2.5. For any a0, a1, a2, a3 ∈ R,

(2.27)

|ao + a1 + a2|p+|a0 + a1 − a2|p + |a0 − a1 + a2|p + |a0 − a1 − a2|p

≤ Cp(|a0 + a1 + a2 + a3|p + |a0 + a1 − a2 − a3|p

+ |a0 − a1 + a2 − a3|p + |a0 − a1 − a2 + a3|p),

where Cp = (3p/q+1)(3q/p+1)p/q

4p is the best possible constant.

There are several inequalities known that contain the left part of the above
inequality. The following inequality was used to obtain important results on sums
of independent random variables.

Theorem 2.6 ([15], Lemma 5). For any a0, a1, a2 ∈ R,

(2.28)
|a0 + a1 + a2|p+|a0 + a1 − a2|p + |a0 − a1 + a2|p + |a0 − a1 − a2|p

≤ (|a0 + a1|p + |a0 − a1|p)(|a0 + a2|p + |a0 − a2|p)
|a0|p

.

The left side of (2.27) can be viewed as

(2.29) 4 ∗ Average{|ε0a0 + ε1a1 + ε2a2|p : εi = ±1};
therefore it is related to Khintchine-type Inequalities. The following inequality can
be deduced from it.

Theorem 2.7 ([9], Proposition 2.1; [13], Corollary 3). For any a0, a1, a2 ∈ R and
p > 2,

(2.30)
|a0 + a1 + a2|p+|a0 + a1 − a2|p + |a0 − a1 + a2|p + |a0 − a1 − a2|p

≤ (3p/q + 1)(|a0|p + |a1|p + |a2|p).

The above results are also connected to the famous Clarkson Inequalities (see
[19, 12] for generalizations).

Theorem 2.8 (Clarkson Inequality [8]). For any a0, a1 ∈ R and p > 2,

(2.31) |a0 + a1|p + |a0 − a1|p ≤ 2p/q(|a0|p + |a1|p).

We will now compute the relative projection constants of ker(1, ..., 1) in �n
p . We

will need the following.

Theorem 2.9. The following holds:

(2.32) min{
∑n

i=1 |ai + d|p∑n
i=1 |ai|p

:
n∑

i=1

ai = 0} =
np

((n − 1)p/q + 1)((n − 1)q/p + 1)p/q
.
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Proof. The case n = 2 is trivial, and the case n = 4 follows from Theorem 2.3. If
n = 3, the proof goes the same way as in Theorem 2.3, since x1 + x2 + x3 = 0 gives
α+β +γ = 0 and then γ = α+β > β and the rest follows from the same reasoning
as in the n = 4 case. The general case can be handled in a similar way as in n = 4.
The proof becomes extremely tedious and depends on the consideration of many
cases. The author does not know a satisfactory solution in the general case. �

The following is an easy consequence of the above.

Theorem 2.10. Consider P = Id − 1
n1 ⊗ 1 : �n

p → ker 1. Then for n = 2, 3, 4 and
1 ≤ p ≤ ∞,

(2.33) ||P ||p =
((n − 1)p/q + 1)1/p((n − 1)q/p + 1)1/q

n
.

Moreover, for 1 < p < ∞, p �= 2, if x ∈ S(�n
p ) is a norming point for P , then

x = (x1, ..., xn) = ±(uπ(1), ..., uπ(n)), where π is any permutation and

(2.34) u = 1
((n−1)+(n−1)q)1/p (−(n − 1)q/p, 1, ..., 1).

Proof. We have

(2.35) Px = x − 1
n

(
n∑

i=1

xi)(1, ..., 1).

Taking ai = xi − 1
n (

∑n
i=1 xi) and d = 1

n (
∑n

i=1 xi) and applying Theorem 2.9, we
get the result. �

The above projection is minimal [16]. Interestingly, because of the form of the
norming points of P, we can see that it is not a minimal projection with respect
to the numerical radius (see [1] for details). As a result of the above theorem, we
automatically get

Theorem 2.11. For n = 2, 3, 4 and 1 ≤ p ≤ ∞, the relative projection constant is

(2.36) λ(ker(1, 1, ..., 1), �n
p ) =

((n − 1)p/q + 1)1/p((n − 1)q/p + 1)1/q

n
.

We will conclude this article by stating two conjectures that relate to the geom-
etry of the �n

p unit ball.

Conjecture 2.12. Assume n ≥ 3 and 1 < p < ∞, p �= 2. Let S be a unit sphere
in �n

p and let Sd be the shift of S by the vector (d, ..., d). Consider the ring R =
S∩ker(1, ..., 1). Now we can shrink or enlarge Sd in such a way that it will be tangent
to R and R will be outside of Sd. Then the points where R and c · Sd meet have
exactly n − 1 coordinates equal. As a result we have exactly 2n points of tangency
of c · Sd and R.

The above conjecture is equivalent to showing that

(2.37) min{
n∑

i=1

|xi + d|p :
n∑

i=1

|xi|p = 1 and
n∑

i=1

xi = 0}

is attained at points that have exactly n−1 coordinates equal. This is also equivalent
to Theorem 2.9 (we gave a satisfactory proof of it for n = 3, 4).
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Conjecture 2.13. Assume n ≥ 3 and 1 < p < ∞, p �= 2. Let S be a unit sphere
in �n

p and let Sd be the shift of S by the vector (d, ..., d). Consider the ring R =
S ∩ ker(1, ..., 1). Now we can shrink or enlarge Sd in such a way that it will be
tangent to R and R will be inside of Sd. Then the coordinates of the points where
R and c · Sd meet are such that n − 2 of them are equal and also the remaining 2
are equal to each other. As a result we have exactly n(n − 1) points of tangency of
c · Sd and R.

The above conjecture is equivalent to showing that

(2.38) max{
n∑

i=1

|xi + d|p :
n∑

i=1

|xi|p = 1 and
n∑

i=1

xi = 0}

is attained at points in which the coordinates are such that n−2 of them are equal
and also the remaining 2 are equal to each other.

The dilemma in (2.37) and (2.38) is that both functions have several local min-
ima and maxima (for instance, numerical calculations show that (2.38) has a local
maximum with three different numbers among x1, ..., xn), so one has to be very
careful when trying to find any numerical solutions to the above.
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