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ANOTHER DICHOTOMY FOR SURFACE DIFFEOMORPHISMS

C. MORALES

(Communicated by Jane M. Hawkins)

Abstract. We prove that a C1 generic orientation-preserving diffeomorphism
of a closed orientable surface either has infinitely many periodic points with
complex (nonreal) eigenvalues or is Axiom A without cycles. This improves
Mañé’s dichotomy.

1. Introduction

In this paper we prove that a C1 generic orientation-preserving diffeomorphism of
a closed orientable surface either has infinitely many periodic points with complex
eigenvalues or is Axiom A without cycles. This improves Mañé’s dichotomy [5],
at least in the orientation-preserving case, since a generic surface diffeomorphism
with infinitely many periodic points with complex eigenvalues has infinitely many
attracting or repelling periodic points too. We also obtain another obstruction
for the solution of Smale’s Conjecture [1] concerning the C1 genericity of Axiom A
diffeomorphisms on closed surfaces, namely, the existence of infinitely many periodic
points with complex eigenvalues. Let us state our result in a precise way.

Hereafter M denotes a closed orientable surface, i.e., a compact connected bound-
aryless two-dimensional orientable Riemannian manifold. We denote by Diff1(M)
the set of C1 diffeomorphisms f : M → M endowed with the standard C1 topology,
and by Diff1

+(M) the open set of orientation-preserving elements of Diff1(M). It
turns out that Diff1(M) is a Baire metric space. A subset R of Diff1(M) is resid-
ual if it contains the intersection of a countable family of open and dense subsets.
When we say that a C1 generic diffeomorphism satisfies a property (P) we mean
that there is R ⊂ Diff1(M) residual such that (P ) holds for every f ∈ R. The
closure of a set A is denoted by Cl(A).

By a periodic point of f we mean a point p ∈ M for which there is an integer
n ∈ N such that fn(p) = p. The minimal of such integers is called the minimal
period of p with respect to f and is denoted by np (observe that np also depends on
f). Denote by Per(f) the set of periodic points of f . We say that p ∈ Per(f) has
complex eigenvalues if the eigenvalues of the linear map Dfnp(p) : TpM → TpM
are nonreal complex conjugated numbers.

The nonwandering set of f , Ω(f), is the set of all points p ∈ M such that for
every neighborhood U of p there is n ∈ IN such that fn(U) ∩ U �= ∅. Clearly Ω(f)
is closed and Per(f) ⊂ Ω(f).
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If Λ is a compact invariant set of f , we define its stable and unstable sets by

W s(Λ) = {x ∈ M : ωf (x) ⊂ Λ} and Wu(Λ) = {x ∈ M : αf (x) ⊂ Λ}
respectively. We say that Λ is hyperbolic if there are a continuous f -invariant
tangent bundle decomposition TΛM = Es

Λ ⊕ Eu
Λ and constants K, λ > 0 such that

‖Dfn(x)/Es
x‖ ≤ Ke−λn and m(Dfn(x)/Eu

x ) ≥ K−1eλn, ∀x ∈ Λ, ∀n ∈ N,

where m(·) is the co-norm operation. We say that f is Axiom A if Ω(f) is hyper-
bolic and Cl(Per(f)) = Ω(f). In such a case the Spectral Decomposition Theorem
[6] asserts that Ω(f) is the disjoint union of finitely many compact invariant sets
Λ1, · · · , Λk which are transitive and isolated. We then say that f has no cycles if
there is no {i1, · · · , ir+1} ⊂ {1, · · · , k} with i1 = ir+1 such that

(Wu(Λij
) \ Λij

) ∩ (W s(Λij+1) \ Λij+1) �= ∅, ∀j (mod r).

With these definitions we can state our result.

Theorem 1.1. A C1 generic orientation-preserving diffeomorphism of M either
has infinitely many periodic points with complex eigenvalues or is Axiom A without
cycles.

The proof is based on Franks’s Lemma and the main theorem in [7].
Let us state a corollary of Theorem 1.1. A sink of f ∈ Diff1(M) is a periodic

point p such that the eigenvalues of Dfnp(p) have moduli less than 1. A source of f
is a sink of the inverse map f−1. We denote the set of sinks (resp. sources) of f by
Sink(f) (resp. Source(f)). A dominated splitting of a nonempty compact invariant
set Λ is a continuous invariant tangent bundle decomposition TΛM = EΛ⊕FΛ with
Ex �= 0 and Fx �= 0 for all x ∈ Λ such that there are constants K, λ > 0 satisfying

‖Dfn(x)/Ex‖
m(Dfn(x)/Fx)

≤ Ke−λn, ∀x ∈ Λ, ∀n ∈ N.

It was proved in [2] that for a C2 diffeomorphism f with infinitely many sinks
of M there is no dominated splitting for Cl(Sink(f)) \ Sink(f) with contracting
direction, i.e., ‖Dfn(x)/Ex‖ ≤ Ke−λn for all x ∈ Cl(Sink(f)) \ Sink(f) and n ∈ N.

It is natural to ask if such a property holds if we replace C2 by C1 generic in its
statement. The following corollary gives a partial positive answer for this question.

Corollary 1.2. For a C1 generic orientation-preserving diffeomorphism f of M
there is no dominated splitting for either Cl(Sink(f)) \ Sink(f) or Cl(Source(f)) \
Source(f).

2. Proofs

We first state Franks’s Lemma, which can be found in [4, Lemma 1.1] or [7,
Lemma 2.1.1].

Lemma 2.1. Let f ∈ Diff1(M) and W(f) ⊂ Diff1(M) be a neighborhood of f .
Then, there are ε > 0 and a neighborhhod W0(f) ⊂ W(f) of f such that if g′ ∈
W0(f), {x1, · · · , xn} ⊂ M is a finite set, U ⊂ M is a neighborhood of {x1, · · · , xn}
and Li : Txi

M → Tg′(xi)M are linear maps satisfying ‖Li − Dg′(xi)‖ < ε (∀i =
1, · · · , n), then there is g ∈ W(f) such that g(x) = g′(x) in {x1, · · · , xn} ∪ (M \U)
and Dg(xi) = Li for every i = 1, · · · , n.
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We use this lemma to prove the following proposition. Given f ∈ Diff(M) we
denote by Saddle(f) the set of all p ∈ Per(f) such that Dfnp(p) has real eigenvalues
λp, σp with |λp| < 1 < |σp|. Denote by Es

p and Eu
p the eigenspaces corresponding to

λp and σp respectively. Denote by ∠(E, F ) the angle between the linear subspaces
E, F ⊂ TpM , p ∈ M .

Proposition 2.2. There is a residual subset R+ ⊂ Diff1
+(M) such that if f ∈ R+

has finitely many periodic points with complex eigenvalues, then there are γ > 0
and a neighborhood U(f) ⊂ Diff1

+(M) of f such that ∠(Es
p, Eu

p ) > γ for all g ∈ U(f)
and p ∈ Saddle(g).

Proof. Given f ∈ Diff1(M) we denote by Spir(f) the set of p ∈ Per(f) with complex
eigenvalues. Denote by 2M

c the set formed by the compact subsets of M endowed
with the Hausdorff topology. Define the set-valued map

Φ : f ∈ Diff1(M) → 2M
c ,

Φ(h) = Cl(Spir(h)).

Clearly Φ is lower-semicontinuous, so the set

R = {f ∈ Diff1(M) : Φ is semicontinuous at f}
is residual in Diff1(M). Then, by the Kupka-Smale Theorem [6], we can assume
that every periodic point p ∈ Per(f) of f ∈ R is hyperbolic; namely, the linear map
Dfnp(p) has no eigenvalues of modulus 1. Define

R+ = R∩ Diff1
+(M).

It is clear that R+ is residual in Diff1
+(M).

Now suppose that f ∈ R+ has finitely many periodic points with complex eigen-
values. As each element of Per(f) is hyperbolic we have that Spir(f) consists of
finitely many sinks or sources. Then, there are neighborhoods U0(f) of f and U0

of Spir(f) such that

(1) Per(g) ∩ U0 ⊂ Spir(g), ∀g ∈ U0(f).

Since Diff1
+(M) is open and f ∈ Diff1

+(M) we can assume that U0(f) ⊂ Diff1
+(M).

But Φ is semicontinuous at f . So, we have the following remark.

Remark 2.3. We can assume that Cl(Spir(g)) ⊂ U0 for all g ∈ U0(f).

Let ε > 0 and W0(f) ⊂ W(f) be the constant and the neighborhood (respec-
tively) given by Lemma 2.1 applied to W(f) = U0(f). We claim that U(f) = W0(f)
works.

Suppose by contradiction that this is not true. Then, there is a sequence
gm ∈ W0(f) such that for all m there is pm ∈ Saddle(gm) such that αm =
∠(Es

pm
, Eu

pm
) → 0 as m → ∞. Note that Dg

npm
m (pm) ∈ GL+(2, R) for all m

since gm ∈ Diff1
+(M). Then, by Lemma 3.2, p. 384 in [3], there is tm ∈ [−1, 1] such

that Ttmαm
◦Dg

npm
m (pm) has a complex (nonreal) eigenvalue (Tα denotes the rota-

tion of angle α). Hence the eigenvalues of Ttmαm
◦Dg

npm
m (pm) are nonreal complex

conjugated numbers.
Since αm → 0 and tm ∈ [−1, 1] we have that tmαm → 0 too. Then, we can fix

m large so that

(2) ‖Ttmαm
◦ Dg

npm
m (pm) − Dgnpm (pm)‖ < ε.



2642 C. MORALES

To simplify we write T = Ttmαm
, g′ = gm, p = pm, and so on. Then, g′ ∈ U0(f)

and p ∈ Saddle(g′), so p �∈ U0 by (1).
Set xi = gi−1(p) for i = 1, · · · , n and define the linear operators Li : Txi

M →
Tg′(xi)M by

Li =
{

Dg′(xi), i = 1, · · · , n − 1,
T ◦ Dg′(xn), i = n.

By (2) we have that ‖Li −Dg′(xi)‖ < ε, ∀i = 1, · · · , n. Then, by Lemma 2.1 there
is g ∈ U0(f) such that g(x) = g′(x) in {x1, · · · , xn} ∪ (M \ U), and Dg(xi) = Li

for every i = i, · · · , n. Then, p ∈ Per(g) has period np and by the chain rule we
have Dgnp(p) = T ◦ D(g′)np(p). Hence the eigenvalues of Dgnp(p) are nonreal
complex conjugated numbers too. This implies that p ∈ Spir(g), which contradicts
Remark 2.3 since p �∈ U0. This contradiction finishes the proof. �

We use this proposition to prove the following one.

Proposition 2.4. If R+ is the residual subset of Diff+
1 (M) in Proposition 2.2,

then for all f ∈ R+ with finitely many periodic points with complex eigenvalues
there is an open and dense subset A(f) of U(f) such that every g ∈ A(f) is Axiom
A without cycles.

Proof. Notice that no g ∈ U(f) has a homoclinic tangency, i.e., a nontransversal
intersection between the stable and unstable manifolds of some hyperbolic periodic
point. Indeed, if such a tangency exists, then we could unfold it to obtain g′

close to g (thus g′ ∈ U(f)) exhibiting p′ ∈ Saddle(g′) such that ∠(Es
p, Eu

p ) < γ,
contradicting Proposition 2.2. Then, by the main theorem in [7], there is a dense
subset A(f) ⊂ U(f) all of whose elements are Axiom A without cycles (see p. 966
of [7]). Then, A(f) is also open since the set of Axiom A diffeomorphisms without
cycles is (e.g. [6]). This concludes the proof. �

Next we prove two topological lemmas which seem to be standard (their proofs
are included for the sake of completeness). Recall that Cl(·) denotes the closure
operation. For simplicity we say that a subset A of a metric space X is open-dense
in X if it is simultaneously open and dense in X.

Lemma 2.5. Let X be a metric space and A, B, C ⊂ X. If A is open-dense in X,
B is open in X and C ⊂ B is open-dense in B, then (A \Cl(B))∪C is open-dense
in X.

Proof. It is clear that (A \ Cl(B)) ∪ C is open, so we only need to prove that it
is dense. For this choose x ∈ X. Since A is dense there is a sequence xn ∈ A
converging to x. If xn �∈ Cl(B) for all n large, we have that xn ∈ (A \ Cl(B)) ∪ C
for all n large; thus x is a cluster point of (A \ Cl(B)) ∪ C. Otherwise we can
assume that xn ∈ Cl(B) for all n. Since C is dense in B we can choose for all
n a point x′

n ∈ C close to xn. Thus the sequence x′
n also converges to x and so

x ∈ Cl(C). So, x is a cluster point of (A \ Cl(B)) ∪ C. Since x is arbitrary we
obtain the proof. �

We use this lemma to prove the following.

Proposition 2.6. Let R be a residual subset of Diff1
+(M). Suppose that there is a

disjoint union R = A ∪ O where O is open in Diff1
+(M). If O′ ⊂ O is open-dense

in O, then A ∪ O′ is residual in Diff1
+(M).
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Proof. As A∩O = ∅ and R = A∪O we have A = R\O. Then, A∪O′ = (R\O)∪O′.
But R is residual, so we can write

R =
⋂
n

On,

where each On is open-dense in Diff1
+(M). Then, R \ O =

⋂
n(On \ O) and so

(3) A ∪ O′ = (R \ O) ∪ O′ =
⋂
n

[(On \ O) ∪ O′].

Now, notice that each (On \ Cl(O)) ∪ O′ is open-dense in Diff1
+(M) (∀n) by

Lemma 2.5 applied to X = Diff1
+(M), A = On, B = O and C = O′. Then,⋂

n

[(On \ Cl(O)) ∪ O′]

is residual in Diff1
+(M). But⋂

n

[(On \ O) ∪ O′] ⊃
⋂
n

[(On \ Cl(O)) ∪ O′],

so ⋂
n

[(On \ O) ∪ O′]

is residual in Diff1
+(M). Then, A ∪ O′ also is by (3). This finishes the proof. �

Proof of Theorem 1.1. Let R+ be the residual subset of Diff1
+(M) given in Propo-

sition 2.2. Define

A = {f ∈ R+ : f has infinitely many periodic points with complex eigenvalues}.
If f ∈ R+ has finitely many periodic points with complex eigenvalues, we consider
the neighborhood U(f) of f given in that proposition. This allows us to define the
open set O as the union of all such neighborhoods. Define R = A ∪ O. It follows
that R+ ⊂ R, so R is residual in Diff1

+(M). Moreover, A ∩ O = ∅ by Remark 2.3.
Now using Proposition 2.4 we can define O′ as the union of all A(f) such that

f ∈ R+ has finitely many complex eigenvalues. It follows from this proposition that
O′ ⊂ O is open-dense in O. Then, A∪O′ is residual in Diff1

+(M) by Proposition 2.6.
It follows from Proposition 2.4 (and the definition of A) that any element of A∪O′

satisfies one of the alternatives in Theorem 1.1. This completes the proof. �

Proof of Corollary 1.2. Suppose by contradiction that for a C1 generic diffeomor-
phism f of M both Cl(Sink(f)) \ Sink(f) and Cl(Source(f)) \ Source(f) have a
dominated splitting.

Since f is generic we have the inclusion

Cl(Spir(f)) \ Spir(f) ⊂ (Cl(Sink(f)) \ Sink(f)) ∪ (Cl(Source(f)) \ Source(f)) .

It follows that Cl(Spir(f)) \ Spir(f) has a dominated splitting (since Cl(Sink(f)) \
Sink(f) and Cl(Source(f)) \ Source(f) do), which is a contradiction unless f has
finitely many periodic points with complex eigenvalues. Then, f is Axiom A without
cycles by Theorem 1.1 and so both Sink(f) and Source(f) are finite sets. Then,
both Cl(Sink(f)) \ Sink(f) and Cl(Source(f)) \ Source(f) must be empty, which is
a contradiction once more. This proves the result. �
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