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A VARIATION OF MULTIPLE L-VALUES
ARISING FROM THE SPECTRAL ZETA FUNCTION

OF THE NON-COMMUTATIVE HARMONIC OSCILLATOR

KAZUFUMI KIMOTO AND YOSHINORI YAMASAKI

(Communicated by Wen-Ching Winnie Li)

Abstract. A variation of multiple L-values, which arises from the description
of the special values of the spectral zeta function of the non-commutative
harmonic oscillator, is introduced. In some special cases, we show that its
generating function can be written in terms of the gamma functions. This
result enables us to obtain explicit evaluations of them.

1. Introduction

The multiple zeta values

(1.1) ζ•k(n1, . . . , nk) :=
∑

1≤i1<···<ik

1
in1
1 in2

2 . . . ink

k

are natural extensions of the Riemann zeta value ζ(n) =
∑∞

i=1 i−n introduced by
Euler and have been of continuing interest to many mathematicians [18]. Recently,
it has been shown by several authors that they appear in various fields in math-
ematics such as knot invariant theory, quantum group theory and mathematical
physics (see, e.g., [11, 20]). This fact implies the richness of the theory of multiple
zeta values and has encouraged recent studies of them. One of the main prob-
lems in studying multiple zeta values is to clarify the Q-algebra structure of the
space spanned by them, which is closely related to that of the category of mixed
Tate motives. In fact, for this purpose, many results concerning relations among
them and exact calculations of them are investigated. Furthermore, as a natural
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generalization, Arakawa and Kaneko [2] introduce two kinds of multiple L-values:

LX(n1, . . . , nk; f1, . . . , fk)

:=
∑

m1>···>mk>0

f1(m1 − m2) . . . fk−1(mk−1 − mk)fk(mk)
mn1

1 mn2
2 . . . mnk

k

,
(1.2)

L∗(n1, . . . , nk; f1, . . . , fk)

:=
∑

m1>···>mk>0

f1(m1)f2(m2) . . . fk(mk)
mn1

1 mn2
2 . . . mnk

k

,
(1.3)

where f1, . . . , fk are C-valued periodic functions on Z, and they also study their
relations and exact evaluations.

In this paper, we study the following variation S
(N,M)
k (n1, . . . , nk) (N, M ∈ N)

of the multiple L-values:

(1.4) S
(N,M)
k (n1, . . . , nk) :=

∑
1≤i1≤i2≤···≤ik

ε
(N)
i1i2...ik

ωi1+i2+···+ik

M

in1
1 in2

2 . . . ink

k

,

where ωM is a primitive Mth root of unity and

ε
(N)
ij :=

{
0 i = j �≡ 0 (mod N)
1 otherwise

= 1 − δij

(
1 − 1

N

N−1∑
r=0

ωri
N

)
,

ε
(N)
i1i2...ik

:=
k−1∏
j=1

ε
(N)
ijij+1

.

(1.5)

Here δij is the Kronecker delta. For simplicity, we sometimes write

S
(N)
k (n1, . . . , nk) = S

(N,N)
k (n1, . . . , nk),

S
(N,M)
k (n) = S

(N,M)
k (n, . . . , n),

S
(N)
k (n) = S

(N)
k (n, . . . , n).

We note that S
(N,M)
1 (n) = Lin(ωM ), where Lin(z) :=

∑∞
i=1 zi/in is the polyloga-

rithm.
The aim of the paper is to establish generating function formulas for the series

S
(N,M)
k (n), and give an explicit evaluation of them in terms of Bernoulli numbers

in the special case where N = M = 2 and n is even. It is quite remarkable
that the values S

(2)
k (n) can be fully computable; in fact, there are few examples of

computable multiple L-values. In this sense, S
(N)
k (n) seems to be a nice variant of

the ordinary multiple L-values.
We will sometimes refer to S

(N,M)
k (n1, . . . , nk) as a partial multiple L-value be-

cause it is indeed a partial sum of the “non-strict” multiple L-value∑
1≤i1≤i2≤···≤ik

ωi1+i2+···+ik

M

in1
1 in2

2 . . . ink

k

= S
(1,M)
k (n1, n2, . . . , nk).

In particular, S
(1)
k (n1, n2, . . . , nk) gives the non-strict multiple zeta value (see, e.g.,

[12]). It is also worth remarking that ε
(N)
ij → 1 − δij as N → ∞ for fixed indices

i, j, so that we may regard the (strict) multiple L-values (1.3) as “limiting cases”
S(∞,M)(n1, n2, . . . , nk) of our series. We notice that our partial multiple L-value
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S
(N,M)
k (n1, . . . , nk) is a special case of neither the multiple L-values (1.2) nor (1.3)

since ε
(N)
i1i2...ik

does depend on both the differences ij − ij−1 of adjacent indices and
the values of the indices i1, . . . , ik themselves. However, it is not difficult to see
that S

(N,M)
k (n1, . . . , nk) can be expressed as a Q-linear combination of (1.2) (or

(1.3)). Thus, for fixed N and M , it may be interesting to study the structure of
the subalgebra spanned by all S

(N,M)
k (n1, n2, . . . , nk) in the Q-algebra spanned by

all multiple L-values S
(1,M)
k (n1, . . . , nk). We leave these problems to future study.

We now explain the spectral-theoretic origin of our series S
(N,M)
k (n1, . . . , nk). A

system of differential equations defined by the operator

Q :=
(

α 0
0 β

)(
−1

2
d2

dx2
+

1
2
x2

)
+
(

0 −1
1 0

)(
x

d

dx
+

1
2

)
having two real parameters α, β is called the non-commutative harmonic oscilla-
tor. This system was first introduced and extensively studied by Parmeggiani and
Wakayama [16, 17] (see also [15]). It is shown that when α, β > 0 and αβ > 1,
Q defines a positive, self-adjoint operator on L2(R) ⊗ C2 which has only a dis-
crete spectrum (0 <) λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . (↗ +∞), and the multiplicities
of the eigenvalues are uniformly bounded. In order to describe the total behav-
ior of the spectrum, Ichinose and Wakayama [6] studied the spectral zeta function
ζQ(s) :=

∑∞
n=1 λ−s

n , which is absolutely convergent if 	(s) > 1. This is analytically
continued to the whole plane C and gives a single-valued meromorphic function
which has a simple pole at s = 1 and ‘trivial’ zeros at non-positive even integers.
If α = β = 1/

√
2, then Q is unitarily equivalent to a couple of the (ordinary) har-

monic oscillators, from which it follows that ζQ(s) = 2(2s − 1)ζ(s). Thus one can
regard ζQ(s) as a deformation of the Riemann zeta function ζ(s).

In describing the special values of the spectral zeta function ζQ(s), the integrals

Jm(n) = 2m

∫ 1

0

. . .

∫ 1

0

(
(1 − x4

1)(1 − x4
2 · · ·x4

m)
(1 − x2

1 · · ·x2
m)2

)n
dx1 · · · dxm

1 − x2
1 · · ·x2

m

(m = 2, 3, 4, . . . ; n = 0, 1, 2, . . . )

and their generating functions gm(x) =
∑∞

n=0

(−1/2
n

)
Jm(n)xn play a very important

role. In fact, Ichinose and Wakayama [7] calculated the first two special values ζQ(2)
and ζQ(3) in terms of g2(x) and g3(x), respectively. The higher special values ζQ(m)
(m ≥ 4) are also expected to be expressed by gm(x) and their generalizations (see,
e.g., [13, 9, 8]). In the case where m = 2r is even, J2r(n) is explicitly given by

J2r(n) =
n∑

p=0

(−1)p

(
−1

2

p

)2(
n

p

) r−1∑
k=0

ζ

(
2r − 2k,

1
2

)
Sk,p,

where ζ(s, x) :=
∑∞

n=0(n + x)−s is the Hurwitz zeta function and

Sk,p =
∑

1≤i1≤i2≤···≤ik≤2p

ε
(2)
i1i2...ik

(−1)i1+i2+···+ik

i21i
2
2 . . . i2k

.

Now it is immediate to see that our series S
(N,M)
k (n1, . . . , nk) is a natural gen-

eralization of S
(2)
k (2) = limp→∞ Sk,p (we give the explicit formula of S

(2)
k (2) in

Example 3.4).
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It is also worth remarking that another kind of generating function w2(t) =∑∞
n=0 J2(n)tn of J2(n) is regarded as a period integral for the universal family of

the elliptic curves equipped with a rational point of order 4 and that it satisfies a
Picard-Fuchs differential equation attached to this family of curves [10].

Conventions. We recall several basic conventions on partitions and symmetric
functions (for further details, see [5]).

A partition is a weakly decreasing sequence of non-negative integers which has
finitely many non-zero entries. For a partition λ = (λ1, . . . , λl) (λl ≥ 1), the sum
λ1 + · · · + λl of entries in λ is denoted by |λ| and the number l of non-zero entries
in λ is denoted by �(λ). We write λ � k to imply |λ| = k, and say λ is a partition
of k. We denote by ∅ the (only) partition of 0. To indicate a multiple of the
same numbers in λ, we often write in an exponential form; Let mi = mi(λ) be the
number of i’s in λ. We call mi(λ) the multiplicity of i in λ. Then, we also write
λ = (kmk , . . . , 2m2 , 1m1) or λ = 1m12m2 . . . kmk . For instance, λ = (4, 2, 2, 1, 1, 1) is
also written as λ = (4, 22, 13) = 132241. When all the entries of λ are even, we call
λ an even partition. For a given partition µ = (µ1, . . . , µl) and a positive integer q,
we define qµ = (qµ1, . . . , qµl). We notice that {λ � 2k |λ : even} = {2µ |µ � k}. If
a given pair of two partitions λ and µ satisfies that λi − µi = 0 or 1 for any index
i, then we say λ/µ is a vertical strip. For instance, (4, 2, 2, 1, 1, 1)/(3, 2, 1, 1) is a
vertical strip.

Let f(n) be a function on N and an a sequence. Then, for a partition λ and
q ∈ N, we put f(qλ) :=

∏�(λ)
j=1 f(qλj) and aqλ :=

∏�(λ)
j=1 aqλj

. For instance, (qλ)! =∏�(λ)
j=1(qλj)!.
Let x1, x2, . . . be (infinitely many) variables. For each positive integer r, we

respectively denote by er = er(x1, x2, . . . ) and hr = hr(x1, x2, . . . ) the r-th elemen-
tary and r-th complete symmetric function defined by

er =
∑

1≤i1<i2<···<ir

xi1xi2 . . . xir
, hr =

∑
1≤i1≤i2≤···≤ir

xi1xi2 . . . xir
.

We also put e0 = h0 = 1 for convenience. Moreover, for a partition λ, we put
eλ =

∏
i≥1 eλi

and hλ =
∏

i≥1 hλi
. The generating functions of er and hr are given

by

(1.6) E(t) =
∞∑

r=0

ert
r =

∞∏
n=1

(1 + xnt), H(t) =
∞∑

r=0

hrt
r =

∞∏
n=1

(1 − xnt)−1.

2. Generating functions

In this section, we establish generating function formulas for the series S
(N,M)
k (n).

To achieve this, we first consider a decomposition of the non-strict multiple sum
S

(N,M)
k (n) into the sum of several strict multiple sums. Notice that each increasing

sequence 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik of k positive integers uniquely determines a se-
quence r = (r1, r2, . . . , rl), which we will refer to as the multiplicity of the sequence
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(i1, i2, . . . , ik), through the condition

i1 = · · · = ir1︸ ︷︷ ︸
r1

< ir1+1 = · · · = ir1+r2︸ ︷︷ ︸
r2

< ir1+r2+1 = . . .

= ir1+···+rl−1 < ir1+···+rl−1+1 = · · · = ir1+···+rl︸ ︷︷ ︸
rl

.

Obviously, r is a permutation of a certain partition of k. We denote by S̃(N,M)(n; r)
the partial sum of S(N,M)(n) whose running indices have multiplicity r, i.e.

S̃(N,M)(n; r) =
∑

j1<···<jl

ε
(N)
j1,...,j1︸ ︷︷ ︸

r1

,...,jl,...,jl︸ ︷︷ ︸
rl

ωr1j1+···+rljl

M

jnr1
1 . . . jnrl

l

=
∑

j1<···<jl

ri>1⇒N|ji

ωr1j1+···+rljl

M

jnr1
1 . . . jnrl

l

.

We also put

S(N,M)(n; ∅) = 1, S(N,M)(n; λ) =
∑

r∈P (λ)

S̃(N,M)(n; r) (λ �= ∅),

where P (λ) denotes the set consisting of the permutations of a partition λ. It is
easy to see that

(2.1) S
(N,M)
k (n) =

∑
λ�k

S(N,M)(n; λ).

To study the series S(N,M)(n; λ), we here employ another function R(N,M)(n; µ)
defined by

R(N,M)(n; ∅) := 1, R(N,M)(n; µ) := S(N,M)(n; µ>1)S(N,M)(n; 1m1(µ)) (µ �= ∅).

Here µ>1 denotes the partition defined by µ>1 := 2m2(µ)3m3(µ) . . . . Fix a partition
µ � k and put q = m1(µ), p = �(µ) − q. We easily see that

R(N,M)(n; µ) =
∑

r∈P (µ>1)

R̃(N,M)
p,q (n; r),

R̃(N,M)
p,q (n; r) =

∑
s1<···<sp
t1<···<tq

N|si

ω
r1s1+···+rpsp+t1+···+tq

M

sr1n
1 . . . s

rpn
p tn1 . . . tnq

.

In the sum R̃
(N,M)
p,q (n; r) for each r ∈ P (µ>1), several of the running indices

t1, . . . , tq may coincide with certain s1, . . . , sp. To describe the situation, we in-
troduce the following map: Put

I(p, q) ={
(τ , ε) = (τ0, τ1, . . . , τp, ε1, . . . , εp) | τi ∈ Z≥0, εi ∈ {0, 1},

p∑
i=0

τi +
p∑

i=1

εi = q

}
.

For each element (r, (τ , ε)) ∈ P (µ>1) × I(p, q), we associate a new sequence
πµ(r, (τ , ε)) by

πµ(r, (τ , ε)) = (1τ0 , r1 + ε1, 1τ1 , r2 + ε2, . . . , rp + εp, 1τp).
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Notice that there exists a partition λ � k such that λ/µ>1 is a vertical strip and
πµ(r, (τ , ε)) ∈ P (λ). Namely, the correspondence πµ defines a map πµ : P (µ>1) ×
I(p, q) →

∐
λ�k

λ/µ>1:vertical strip
P (λ). Thus it follows that∑

r∈P (µ>1)

R̃(N,M)
p,q (n; r) =

∑
λ�k

λ/µ>1:vertical strip

∑
r∈P (λ)

∣∣π−1
µ (r)

∣∣ S̃(N,M)(n; r).

Since each
∣∣π−1

µ (r)
∣∣ depends only on λ, we obtain

R(N,M)(n; µ) =
∑
λ�k

λ/µ>1:vertical strip

∣∣π−1
µ (λ)

∣∣S(N,M)(n; λ).

Next, we calculate
∣∣π−1

µ (λ)
∣∣. For each a > 2, we assume that λia1 = · · · = λia,d(a) =

a, where d(a) = ma(λ). Let us count the number of elements (r, (τ , ε)) in I(p, q)
such that πµ(r, (τ , ε)) = λ. Notice that τ is uniquely determined by the assump-
tion. If riaj

+εiaj
= λiaj

= a, then it is possible that (riaj
, εiaj

) = (a, 0) or (a−1, 1),
and there are exactly

( ma(λ)
ma(λ;µ)

)
ways of choosing iaj such that (riaj

, εiaj
) = (a, 0),

where mi(λ; µ) = |{j | λj = µj = i}|. (Remark that m2(λ; µ) = m2(λ).) Thus we
have

∣∣π−1
µ (λ)

∣∣ =
∏

i>2

( ma(λ)
ma(λ;µ)

)
. If µ is an even partition and µ/λ>1 is a vertical

strip, then mi(λ; µ) = mi(λ) (if i is even) or 0 (if i is odd) by definition, and hence∣∣π−1
µ (λ)

∣∣ = 1. Consequently, we get the following lemma.

Lemma 2.1. For each µ � k, it follows that

(2.2) R(N,M)(n; µ) =
∑
λ�k

λ/µ>1:vertical strip

∏
i>2

(
mi(λ)

mi(λ; µ)

)
S(N,M)(n; λ),

where mi(λ; µ) = |{j | λj = µj = i}|. In particular, if µ is even, then

(2.3) R(N,M)(n; µ) =
∑
λ�k

λ/µ>1:vertical strip

S(N,M)(n; λ).

�
Lemma 2.2. For any λ � k, there uniquely exists µ � k such that µ>1 is even and
λ/µ>1 is a vertical strip.

Proof. It is immediate to see that

µ = 1m1(λ)+m3(λ)+m5(λ)+...2m2(λ)+m3(λ)4m4(λ)+m5(λ)6m6(λ)+m7(λ) · · · � k

is the unique partition which satisfies all the desired conditions. �

By Lemmas 2.1 and 2.2, we readily obtain the

Lemma 2.3. Let U
(N,M)
d (n) :=

∑
µ�d S(N,M)(n; 2µ). Then it follows that

S
(N,M)
k (n) =

∑
λ�k

S(N,M)(n; λ) =
∑
µ�k

µ>1:even

R(N,M)(n; µ)

=
∑

0≤2d≤k

S(N,M)(n; 1k−2d)U (N,M)
d (n).

(2.4)

�
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We next study the generating function of S
(N,M)
k (n). For this purpose, the

following formula, which is obtained by the canonical product expression of the
gamma function, is useful.

Lemma 2.4. For ai, bi ∈ C satisfying
∑l

i=1 ai =
∑l

i=1 bi, the equality

(2.5)
∞∏

m=k

l∏
j=1

m + aj

m + bj
=

l∏
j=1

Γ(k + bj)
Γ(k + aj)

holds for any integer k. �

Lemma 2.5. The generating function of U
(N,M)
d (n) is given by

(2.6) H(N,M)(n; x) :=
∞∑

d=0

U
(N,M)
d (n)x2nd =

M∏
k=1

2n−1∏
j=0

Γ
(

1
M

(
k − 1

N ωj
2nωkN

Mnx
))

Γ
(

k
M

) .

Proof. We notice that

U
(N,M)
d (n) =

∑
µ�d

S(N)(n; 2µ) = hd

(ω2N
M

N2n
,

ω4N
M

(2N)2n
,

ω6N
M

(3N)2n
, . . .

)
since the complete symmetric function hd is the sum of all monomials of degree
d. Therefore, by specializing xm = ω2mN

M /(Nm)2n and t = x2n in the generating
function H(t) in (1.6), we obtain

H(N,M)(n; x) =
∞∏

m=1

(
1 − ω2mN

M

(Nm)2n
x2n

)−1

=
∞∏

m=0

M∏
k=1

{
1 −
(

ωkN
Mnx

N(Mm + k)

)2n
}−1

=
∞∏

m=0

M∏
k=1

2n−1∏
j=0

(
1 − ωj

2n

ωkN
Mnx

N(Mm + k)

)−1

=
∞∏

m=0

M∏
k=1

2n−1∏
j=0

m + k
M − ωj

2nωkN
Mnx

MN

m + k
M

.

Applying Lemma 2.4 to the equation above, we have (2.6). �

Lemma 2.6. The generating function of S(N,M)(n; 1r) is given by

(2.7) E(M)(n; x) :=
∞∑

r=0

S(N,M)(n; 1r)xnr =
M∏

k=1

n−1∏
j=0

Γ
(

k
M

)
Γ
(

1
M

(
k − ω2j−1

2n ωk
Mnx

)) .

Proof. We notice that

S(N)(n; 1r) = er

(ωM

1n
,
ω2

M

2n
,
ω3

M

3n
, . . .
)
.

Hence, if we specialize xm = ωm
M/mn and set t = xn in the generating function

E(t) in (1.6), then we obtain the lemma by a similar calculation as in the case of
H(N,M)(n; x). �
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Now, we obtain the following.

Theorem 2.7. The generating function of S
(N,M)
k (n) is given by

(2.8)

S(N,M)(n; x) :=
∞∑

k=0

S
(N)
k (n)xnk =

M∏
k=1

∏2n−1
j=0 Γ

(
1
M

(
k − 1

N ωj
2nωkN

Mnx
))

Γ
(

k
M

)n∏n−1
j=0 Γ

(
1
M

(
k − ω2j−1

2n ωk
Mnx

)) .

Proof. It is clear that S(N,M)(n; x) = H(N,M)(n; x)E(M)(n; x) from equation (2.4).
Hence one immediately obtains the formula (2.8) from (2.6) and (2.7). �

If M | N , then, using the Gauss-Legendre formula of the gamma function, we
have the following reduced formulas:

H(N,M)(n; x) =
2n−1∏
j=0

Γ

(
1 − ωj

2nx

N

)
,(2.9)

S(N,M)(n; x) =
M∏

k=1

Γ
(

k
M

)n∏2n−1
j=0 Γ

(
1 − ωj

2nx
N

)
∏n−1

j=0 Γ
(

1
M

(
k − ω2j−1

2n ωk
Mnx

)) .(2.10)

Notice that E(M)(n; x) depends only on M .

3. Partial alternating multiple zeta values

In this section, we concentrate on the special case where N = M = 2. From the
definition, the sums Sk(n) := S

(2,2)
k (n) in this case may be called partial alternating

multiple zeta values. From (2.10), we have

S(n; x) := S(2)(n; x) =
Γ
(

1
2

)n∏2n−1
j=0 Γ

(
1 − x

2ωj
2n

)
∏n−1

j=0 Γ
(

1
2 − x

2ωj
n

)
Γ
(
1 − x

2ωj
nω2n

)
=

Γ
(

1
2

)n∏n−1
j=0 Γ

(
1 − x

2ωj
n

)
∏n−1

j=0 Γ
(

1
2 − x

2ωj
n

) .

Furthermore, using the duplication formula Γ (2a) Γ(1/2) = 22a−1Γ(a)Γ(1/2 + a)
with a = −xωj

n/2 and the equation
∑n−1

j=0 ωj
n = δn,1, we see that

(3.1)

S(n; x) =
Γ
(

1
2

)n∏n−1
j=0 Γ

(
1 − x

2ωj
n

)
∏n−1

j=0 Γ(−xωj
n)Γ
(

1
2

)
2xωj

n+1Γ
(
−x

2ωj
n

)−1 = 2−xδn,1

n−1∏
j=0

Γ
(
1 − x

2ωj
n

)2
Γ
(
1 − xωj

n

) .

For m ≥ 0, define the sequence {A•(m)}m≥0 by A•(0) := 1, A•(1) := 0 and

A•(m) :=
m−1∑
a=1

ζ•a(1, . . . , 1︸ ︷︷ ︸
a−1

, m − a + 1) (m ≥ 2).

Namely, A•(m) (m ≥ 2) denotes the sum of multiple zeta values of weight m and
height 1. It is known that A•(m) can be expressed as a polynomial in ζ(2), ζ(3), . . .



A VARIATION OF MULTIPLE L-VALUES ARISING FROM NCHO 2511

and ζ(m) with rational coefficients (see [14]). For example, we have A•(3) = ζ(3)+
ζ•2 (1, 2) = 2ζ(3) since ζ•2 (1, 2) = ζ(3), which is due to Euler. Furthermore, we put

A•
n(m) :=

∑
m1,...,mn≥0

m1+···+mn=m

A•(m1) · · ·A•(mn), Zn(k) :=
∑
µ�k

µ�(µ)>δn,1

ν(nµ)
zµ

ζ(nµ),

where ν(x) := 21−x − 1 and zµ :=
∏

i≥1 imi(µ)mi(µ)!. Note that A•
1(m) = A•(m).

Then, we get the following expressions of the values Sk(n) = S
(2)
k (n).

Theorem 3.1. (i) If n = 1, then

Sk(1) =
k∑

m=0

(− log 2)k−m

(k − m)!2m
A•(m)

=
k∑

m=0

(− log 2)k−m

(k − m)!
Z1(m) ∈ Q[ log 2, ζ(2), ζ(3), . . . , ζ(k)].

(3.2)

(ii) If n ≥ 2, then

(3.3) Sk(n) =
1

2nk
A•

n(nk) = Zn(k) ∈ Q[ζ(n), ζ(2n), . . . , ζ(kn)].

Proof. From the generating function (3.1), it is sufficient to show that

(3.4)
n−1∏
j=0

Γ
(
1 − x

2ωj
n

)2
Γ
(
1 − xωj

n

) =
∞∑

m=0

A•
n(nm)

(x

2

)nm

=
∞∑

m=0

Zn(m)xnm.

To prove this, we recall the identity (see [1, 4])

Γ(1 − X)Γ(1 − Y )
Γ(1 − X − Y )

= 1 −
∞∑

a,b=1

ζ•a(1, . . . , 1︸ ︷︷ ︸
a−1

, b + 1)XaY b

= exp

( ∞∑
m=2

Xm + Y m − (X + Y )m

m
ζ(m)

)
.

(3.5)

Putting X = Y = xωj
n/2 and writing a + b = m in the middle term in (3.5), we

have

Γ
(
1 − x

2ωj
n

)2
Γ
(
1 − xωj

n

) =
∞∑

m=0

A•(m)
(

xωj
n

2

)m
= exp

( ∞∑
m=2

ν(m)
m

ζ(m)(ωj
nx)m

)
.

Then, taking the product
∏n−1

j=0 of this equation, one sees that

(3.6)
n−1∏
j=0

Γ
(
1 − x

2ωj
n

)2
Γ
(
1 − xωj

n

) =
∞∑

m=0

A•
n(m)

(
xωj

n

2

)m
= exp

⎛⎜⎝ ∞∑
m=1

nm≥2

ν(nm)
m

ζ(nm)xnm

⎞⎟⎠
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because
∑n−1

j=0 ωjm
n = n if n | m and 0 otherwise. Here, the rightmost side of (3.6)

can be written as
∞∏

m=1
nm≥2

exp
(

ν(nm)
m

ζ(nm)xnm

)

=
∞∏

m=1
nm≥2

∞∑
lm=0

1
lm!

(
ν(nm)

m
ζ(nm)xnm

)lm

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
l2,l3,...=0

ν(2)l2ν(3)l3 · · ·
(2l23l3 · · · )(l2!l3! · · · )

(
ζ(2)l1ζ(3)l3 · · ·

)
x2l2+3l3+··· (n = 1)

∞∑
l1,l2,...=0

ν(n)l1ν(2n)l2 · · ·
(1l12l2 · · · )(l1!l2! · · · )

(
ζ(n)l1ζ(2n)l2 · · ·

)
xl1+2l2+··· (n ≥ 2)

=
∞∑

m=0

{ ∑
µ�m

µ�(µ)>δn,1

ν(nµ)
zµ

ζ(nµ)

}
xnm =

∞∑
m=0

Zn(m)xnm.

Note that from the second equality in (3.6), this shows that A•
n(m) = 0 if n � m.

Therefore, one can actually obtain the equations (3.4). This completes the proof
of the theorem. �

Example 3.2. We have

S1(1) = − log 2, S2(1) =
(log 2)2

2
− ζ(2)

4
,

S3(1) = − (log 2)3

6
+

log 2
4

ζ(2) − 1
4
ζ(3),

and

S1(3) = −3
4
ζ(3), S2(3) = −31

64
ζ(6) +

9
32

ζ(3)2,

S3(3) = −255
768

ζ(9) +
93
128

ζ(6)ζ(3) − 27
384

ζ(3)3.

If one further assumes that n is even, then one can obtain the following various
expressions.

Theorem 3.3. It follows that

Sk(2n) = (−π2)nk
∑

m1,...,mn≥0
m1+···+mn=nk

ωm1+2m2+···+nmn
n

B2m1

(2m1)!
· · · B2mn

(2mn)!
(3.7)

= (−π2)nk
∑

λ�nk
�(λ)≤n

〈pn ◦ hk, mλ〉
B2λ

(2λ)!
(3.8)

= (−π2)nk
∑
µ�k

ν̃(2nµ)
zµ

B2nµ

(2nµ)!
,(3.9)

where ν̃(x) := 2x−1 − 1, pn is the n-th power-sum symmetric function, mλ is the
monomial symmetric function for λ, ◦ is the plethysm, and 〈·, ·〉 is the standard
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scalar product in the ring of symmetric functions defined by 〈hλ, mµ〉 = δλµ with
δλµ being the Kronecker delta (see [5] for details).

Proof. If we apply the reflection formula for the gamma function in (3.1), then we
have

S(2n; x) =
n∏

j=1

Γ
(
1 − ωj

2nx
2

)2
Γ
(
1 + ωj

2nx
2

)2
Γ
(
1 − ωj

2nx
)

Γ
(
1 + ωj

2nx
)

=
n∏

j=1

πxωj
2n

2
cot

ωj
2nπx

2
=

n∏
j=1

∞∑
m=0

(−ωj
n)mB2mπ2m

(2m)!
x2m,

(3.10)

from which we immediately obtain (3.7). Next, it readily follows from (3.7) that

S
(2n)
k = (−π2)nk

∑
λ�nk

�(λ)≤n

mλ(1, ωn, . . . , ωn−1
n , 0, . . . )

B2λ

(2λ)!
.

Thus we should calculate mλ(1, ωn, . . . , ωn−1
n , 0, . . . ). Let us recall the expansion

formula (see, e.g., [5])

(3.11)
∏

i,j≥1

1
1 − xiyj

=
∑

λ

hλ(x)mλ(y).

If we set yj = ωj−1
n for j = 1, 2, . . . , n and yj = 0 for j > n in (3.11), then we have∑

�(λ)≤n

hλ(x)mλ(1, ωn, . . . , ωn−1
n , 0, . . . )

=
∏
i≥1

1
1 − xn

i

=
∞∑

k=0

hk(xn
1 , xn

2 , . . .) =
∞∑

k=0

pn ◦ hk.

(3.12)

By taking the terms of homogeneous degree nk in (3.12), we have

(3.13)
∑

λ�nk
�(λ)≤n

hλmλ(1, ωn, . . . , ωn−1
n , 0, . . . ) = pn ◦ hk

for each k. Hence we get mλ(1, ωn, . . . , ωn−1
n , 0, . . . ) = 〈pn ◦ hk, mλ〉, which readily

implies (3.8). The equation (3.9) follows immediately from (3.3) together with
the classical result ζ(2m) = (−1)m−122m−1B2mπ2m/(2m)! due to Euler. This
completes the proof. �

Example 3.4. From the equation (3.7), we have

Sk(2) =
(−1)kB2k

(2k)!
π2k = − ζ(2k)

22k−1
, Sk(4) =

{ 2k∑
m=0

(−1)m B2mB4k−2m

(2m)!(4k − 2m)!

}
π4k.

See [19] for a similar discussion on the multiple Dirichlet L-values.

Remark 3.5. It is remarkable that Sk(2) = S
(2)
k (2) can be reduced as above. We

recall that S
(2)
k (2) is closely related to the special value ζQ(2) of the spectral zeta

function. Can one explain the simplicity (or “exact solvability”) of S
(2)
k (2) by, for

instance, the existence of the Picard-Fuchs differential equation for w2(t)?
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Remark 3.6. Let us give an example of the partial alternating double zeta value
with distinct indices:

S
(2)
2 (1, 2k) = (k + 1)S(2)

1 (2k + 1) + 2(1 − 2−2k)ζ(2k) log 2

−
k−1∑
p=1

S
(2)
1 (2p + 1)ζ(2k − 2p),

S
(2)
2 (2k, 1) = −kS

(2)
1 (2k + 1) − ζ(2k) log 2

+
k−1∑
p=1

S
(2)
1 (2p + 1)ζ(2k − 2p).

Notice that S
(2)
1 (n) = (21−n − 1)ζ(n) for n ≥ 2. This is regarded as an analogue of

Euler’s formula ζ•2 (1, 2k) = kζ(2k + 1)− 1
2

∑2k−1
p=2 ζ(p)ζ(2k− p + 1). See also [3] for

related calculations.
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9. K. Kimoto and M. Wakayama, Apéry-like numbers arising from special values of spectral zeta

functions for non-commutative harmonic oscillators, Kyushu J. Math. 60 (2006), 383–404.
MR2268243 (2007h:11108)

10. K. Kimoto and M. Wakayama, Elliptic curves arising from the spectral zeta function for non-
commutative harmonic oscillators and Γ0(4)-modular forms, The Conference on L-Functions,
201–218, World Sci. Publ., Hackensack, NJ, 2007. MR2310296 (2008g:11144)

11. M. Kontsevich and D. Zagier, Periods. Mathematics unlimited—2001 and beyond, 771–808,
Springer, Berlin, 2001. MR1852188 (2002i:11002)

12. S. Muneta, On some explicit evaluations of multiple zeta-star values, J. Number Theory 128
(2008), 2538–2548. MR2444209

13. H. Ochiai, A special value of the spectral zeta function of the non-commutative harmonic
oscillators, Ramanujan J. 15 (2008), no. 1, 31–36. MR2372790 (2008m:11179)

14. Y. Ohno and D. Zagier, Multiple zeta values of fixed weight, depth, and height, Indag. Math.
12 (2001), 483–487. MR1908876 (2003e:11094)

http://www.ams.org/mathscinet-getitem?mr=1046562
http://www.ams.org/mathscinet-getitem?mr=1046562
http://www.ams.org/mathscinet-getitem?mr=2091412
http://www.ams.org/mathscinet-getitem?mr=2091412
http://www.ams.org/mathscinet-getitem?mr=2390277
http://www.ams.org/mathscinet-getitem?mr=2390277
http://www.ams.org/mathscinet-getitem?mr=1080203
http://www.ams.org/mathscinet-getitem?mr=1080203
http://www.ams.org/mathscinet-getitem?mr=1354144
http://www.ams.org/mathscinet-getitem?mr=1354144
http://www.ams.org/mathscinet-getitem?mr=2172015
http://www.ams.org/mathscinet-getitem?mr=2172015
http://www.ams.org/mathscinet-getitem?mr=2134054
http://www.ams.org/mathscinet-getitem?mr=2134054
http://www.ams.org/mathscinet-getitem?mr=2268243
http://www.ams.org/mathscinet-getitem?mr=2268243
http://www.ams.org/mathscinet-getitem?mr=2310296
http://www.ams.org/mathscinet-getitem?mr=2310296
http://www.ams.org/mathscinet-getitem?mr=1852188
http://www.ams.org/mathscinet-getitem?mr=1852188
http://www.ams.org/mathscinet-getitem?mr=2444209
http://www.ams.org/mathscinet-getitem?mr=2372790
http://www.ams.org/mathscinet-getitem?mr=2372790
http://www.ams.org/mathscinet-getitem?mr=1908876
http://www.ams.org/mathscinet-getitem?mr=1908876


A VARIATION OF MULTIPLE L-VALUES ARISING FROM NCHO 2515

15. A. Parmeggiani, Introduction to the spectral theory of non-commutative harmonic oscilla-
tors, COE Lecture Note, 8. Kyushu University, The 21st Century COE Program “DMHF”,
Fukuoka, 2008. MR2381448 (2008m:35254)

16. A. Parmeggiani and M. Wakayama, Oscillator representations and systems of ordinary dif-
ferential equations, Proc. Natl. Acad. Sci. USA 98 (2001), 26–30. MR1811870 (2002d:81058)

17. A. Parmeggiani and M. Wakayama, Non-commutative harmonic oscillators. I, II; Corri-
genda and remarks to I, Forum. Math. 14 (2002), 539–604, 669–690; ibid 15 (2003), 955–963.

MR1900173 (2003g:34186a), MR1924773 (2003g:34186b)
18. V. S. Varadarajan, Euler and his work on infinite series, Bull. Amer. Math. Soc. (New Series)

44 (2007), no. 4, 515–539. MR2338363 (2008g:01012)
19. Y. Yamasaki, Evaluations of multiple Dirichlet L-values via symmetric functions, preprint,

arXiv:0712.1639
20. D. Zagier, Values of zeta functions and their applications, First European Congress of Mathe-

matics, Vol. II (Paris, 1992), 497–512, Progr. Math. 120, Birkhäuser, Basel, 1994. MR1341859
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