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OPTIMAL LENGTH ESTIMATES FOR STABLE CMC SURFACES
IN 3-SPACE FORMS

LAURENT MAZET

(Communicated by Richard A. Wentworth)

Abstract. In this paper, we study stable constant mean curvature H surfaces
in R

3. We prove that, in such a surface, the distance from a point to the
boundary is less than or equal to π/(2H). This upper bound is optimal and
is extended to stable constant mean curvature surfaces in space forms.

1. Introduction

A constant mean curvature (cmc) surface Σ in a Riemannian 3-manifold M
3 is

stable if its stability operator, L = −∆−Ric(n, n)− |A|2, is nonnegative, where ∆
is the Laplace operator on Σ, Ric is the Ricci tensor on M

3, n is the normal along
Σ and A is the second fundamental form on Σ. For minimal surfaces (H = 0), this
characterization is only valid for two-sided surfaces, so in the following we restrict
ourselves to such surfaces. The nonnegativity of the stability operator means that Σ
is a local minimizer of the area functional on surfaces with regard to the infinitesimal
deformations fixing its boundary.

The stability hypothesis was studied by several authors and has many conse-
quences (see [6] for an overview). For example, D. Fischer-Colbrie and R. Schoen
[4] studied the case of complete stable minimal surfaces when M

3 has nonnegative
scalar curvature. They obtain that the universal cover of Σ is not conformally
equivalent to the disk and, as a consequence, prove that the plane is the only com-
plete stable minimal surface in R

3. From this, R. Schoen [9] has derived a curvature
estimate for stable cmc surfaces.

In [2], T. H. Colding and W. P. Minicozzi introduced new techniques and ob-
tained area and curvature estimates for stable cmc surfaces. Afterward, these tech-
niques were used by P. Castillon [1] to answer a question asked in [4] about the
consequences of the positivity of certain elliptic operators. Recently, the same ideas
have been used by J. Espinar and H. Rosenberg [3] to obtain similar results.

In [7], A. Ros and H. Rosenberg study constant mean curvature H surfaces in
R

3 with H �= 0. They prove a maximum principle at infinity. One of their tools
is a length estimate for stable cmc surfaces. In fact, they prove that the intrinsic
distance from a point p in a stable cmc surface Σ to the boundary of Σ is less
than π/H. H. Rosenberg [8] has generalized this result to any ambient 3-manifolds
and large mean curvature. The aim of this paper is to improve the result of Ros
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and Rosenberg. In fact, applying the ideas of [2], we prove that the distance is
less than π/(2H). This estimate is optimal since, for a hemisphere of radius 1/H,
the distance from the pole to the boundary is π/(2H). Actually we prove that
the hemisphere of radius 1/H is the only stable cmc H surface where the distance
π/(2H) is reached. We can generalize this result to stable cmc H surfaces in
M

3(κ), where M
3(κ) is the 3-space form of sectional curvature κ. We prove that

when H2 + κ > 0 such an optimal estimate exists. In fact, it is already known that
when κ ≤ 0 and H2 + κ ≤ 0, there is no such estimate since there exist complete
stable cmc H surfaces. But, in some sense, our results are an extension of the fact
that the planes (resp. the horospheres) are the only stable complete constant mean
curvature H surfaces in R

3 (resp. M3(κ), κ < 0) when H = 0 (resp. H2 + κ = 0).

2. Definitions

On a constant mean curvature surface Σ in a Riemannian 3-manifold M
3, the

stability operator is defined by L = −∆−Ric(n, n)− |A|2, where ∆ is the Laplace
operator on Σ, Ric is the Ricci tensor on M

3, n is the normal along Σ and A is the
second fundamental form on Σ. When it is necessary, we will denote the stability
operator by Lf to refer to the immersion f of Σ in M

3.
The surface Σ is called stable if the operator L is nonnegative; i.e., for every

compactly supported function u, we have

0 ≤
∫

Σ

uL(u)dσ =
∫

Σ

‖∇u‖2 − (Ric(n, n) + |A|2)u2dσ.

We remark that this property is sometimes called strong stability since it means
that the second derivatives of the area functional are nonnegative with respect to
any compactly supported infinitesimal deformations u, whereas Σ is critical for this
functional only for compactly supported infinitesimal deformations with vanishing
mean value, i.e.

∫
Σ

udσ = 0.
In the following, on a cmc surface, the normal n is always chosen such that H is

nonnegative.
We will denote by dΣ the intrinsic distance on Σ and by K the sectional curvature

of the surface.

3. Results

The main result of this paper is the following theorem.

Theorem 3.1. Let H be positive. Let Σ be a stable constant mean curvature H
surface in R

3. Then, for p ∈ Σ, we have

(3.1) dΣ(p, ∂Σ) ≤ π

2H
.

Moreover, if the equality is satisfied, Σ is a hemisphere.

In R
3, the stability operator can be written L = −∆ − 4H2 + 2K.

Proof. We denote by R0 the distance dΣ(p, ∂Σ) and assume that R0 ≥ π/(2H). If
R0 < π/H we denote by I the segment [π/(2H), R0]; otherwise I = [π/(2H), π/H).
In fact, because of the work of Ros and Rosenberg [7], we already know that R0 ≤
π/H. Let R be in I.

The surface Σ has constant mean curvature H; thus its sectional curvature is
less than H2. So the exponential map expp is a local diffeomorphism on the disk
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D(0, R) ⊂ TpΣ of center 0 and radius R. On this disk, we consider the induced
metric and the operator L = −∆−4H2+2K. The surface Σ is stable, so there exists
a positive function g on Σ such that L(g) = 0 (see Theorem 1 in [4]). On D(0, R),
the function g̃ = g ◦ expp is then positive and satisfies L(g̃) = 0 since D(0, R) and
Σ are locally isometric. The operator L is thus nonnegative on D(0, R) [4].

For r ∈ [0, R], we define l(r) as the length of the circle {v, |v| = r} ⊂ D(0, R)
and K(r) =

∫
D(0,r)

Kdσ. Since D(0, R) and Σ are locally isometric, the sectional
curvature K of D(0, R) is less than H2. Then

(3.2) l(r) ≥ 2π

H
sin Hr.

By Gauss-Bonnet, we have

(3.3) K(r) = 2π − l′(r).

Let us consider a function η : [0, R] → [0, 1] with η(0) = 1 and η(R) = 0. Let us
write the nonnegativity of L for the radial function u = η(r):

0 ≤
∫ R

0

(η′(r))2l(r)dr − 4H2

∫ R

0

η2(r)l(r)dr + 2
∫ R

0

K′(r)η2(r)dr.

Hence, following the ideas in [2] and using (3.3) and the boundary values of η, we
have ∫ R

0

(4H2η2 − η′2)ldr ≤ 2

([
K(r)η2(r)

]R

0
−

∫ R

0

K(r)(η2(r))′dr

)

= −2
∫ R

0

K(r)(η2(r))′dr

= −2
∫ R

0

(2π − l′(r))(η2(r))′dr

= 4π + 2
∫ R

0

(η2(r))′l′(r)dr

= 4π +
[
2(η2(r))′l(r)

]R

0
− 2

∫ R

0

(η2(r))′′l(r)dr

= 4π − 2
∫ R

0

(η2(r))′′l(r)dr.

Thus we obtain

(3.4)
∫ R

0

(
4H2η2 − η′2 + 2(η2)′′

)
ldr ≤ 4π.

We shall apply this equation to the function η(r) = cos
πr

2R
. In this case we have

η′2 =
π2

4R2
sin2 πr

2R
,

(η2)′′ = − π2

2R2

(
cos2

πr

2R
− sin2 πr

2R

)
.

Thus

4H2η2 − η′2 + 2(η2)′′ = (4H2 − π2

R2
) cos2

πr

2R
+

3π2

4R2
sin2 πr

2R
.
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As R ≥ π
2H , 4H2η2 − η′2 + 2(η2)′′ is nonnegative and, by (3.2),(

4H2η2 − η′2 + 2(η2)′′
)

l ≥
(

(4H2 − π2

R2
) cos2

πr

2R
+

3π2

4R2
sin2 πr

2R

)
2π

H
sin Hr

≥ π

H

(
(4H2 − π2

4R2
) sin Hr + (4H2 − 7π2

4R2
)
1

2

(
sin(

π

R
+ H)r − sin(

π

R
− H)r

))

Thus integrating in (3.4), we obtain (we recall that R < π/H)

4π ≥ π

H

(
(4H2 − π2

4R2
)

1

H
(1 − cos HR)

+(4H2 − 7π2

4R2
)
1

2

(
R

π + HR
(1 − cos(π + HR)) − R

π − HR
(1 − cos(π − HR))

))
.

After some simplifications in the above expression, we obtain

4π ≥ π
(−32H2R4 + 24π2H2R2 − π4) − (10π2H2R2 − π4) cosHR

4H2R2(π2 − H2R2)
.

Now, passing 4π on the right-hand side of the above inequality and simplifying by
π, we get

F (R) :=
−(4H2R2 − π2)2 − (10π2H2R2 − π4) cosHR

4H2R2(π2 − H2R2)
≤ 0.

If we write R = π/(2H) + x, we compute the Taylor expansion of F and obtain

F (
π

2H
+ x) = 2Hx + o(x),

which is positive if x > 0. Thus, if R0 > π/(2H), we get a contradiction and the
inequality (3.1) is proved.

Now if R0 = π/(2H), we have in fact equality all along the computation, so
l(r) = (2π/H) sin Hr and K(r) = 2π−l′(r) = 2π(1−cos Hr). But we also know that
the sectional curvature is less than H2; thus K(r) ≤ H2

∫ r

0
l(u)du = 2π(1−cos Hr).

Since this inequality is in fact an equality, the sectional curvature is in fact H2 at
every point. Thus the principal curvatures of a point in Σ are H and H; i.e. there
are only umbilical points. Hence Σ is a piece of a sphere of radius 1/H and, since
dΣ(p, ∂Σ) = π

2H , it contains the hemisphere of pole p. A hemisphere cannot be
strictly contained in a stable subdomain of the sphere, so Σ is a hemisphere. �

With this result we have an important corollary.

Corollary 3.2. Let H ≥ 0 and κ ∈ R such that H2 + κ > 0. Let Σ be a stable
contant mean curvature H surface in M

3(κ). Then for p ∈ Σ, we have

dΣ(p, ∂Σ) ≤ π

2
√

H2 + κ
.

Moreover, if the equality is satisfied, Σ is a geodesical hemisphere of M
3(κ).

The proof is based on the Lawson correspondence between constant mean cur-
vature surfaces in space forms (see [5]).

Proof. First, the case κ = 0 is Theorem 3.1.
Let Π : Σ̃ → Σ be the universal cover of Σ. We then have a constant mean

curvature immersion of Σ̃ in M
3(κ). Let L = −∆ − 2κ − |A|2 be the stability

operator on Σ̃. Σ is stable, so there exists a positive function g on Σ such that
L(g) = −∆g − (2κ + |A|2)g = 0. Thus the function g̃ = g ◦Π is a positive function
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on Σ̃ satisfying L(g̃) = 0. Hence Σ̃ is stable. Let I and S be respectively the
first fundamental form and the shape operator on Σ̃. They satisfy the Gauss and
Codazzi equations for M

3(κ).
We define S′ = S + (−H +

√
H2 + κ)id on Σ̃. Then I and S′ satisfy the Gauss

and Codazzi equations for M
3(0) = R

3 (see [5]). Hence there exists an immersion f

of Σ̃ in R
3 with first fundamental form I and shape operator S′ (we notice that the

induced metric is the same). Its mean curvature is then H + (−H +
√

H2 + κ) =√
H2 + κ; i.e. the immersion has constant mean curvature. The stability operator

is

Lf = −∆ − ‖S′‖2

= −∆ − (‖S‖2 + 4H(−H +
√

H2 + κ) + 2(−H +
√

H2 + κ)2)

= −∆ − (‖S‖2 + 2κ)
= L.

Hence the surface f(Σ̃) is stable. So, from Theorem 3.1, we have

dΣ(p, ∂Σ) = dΣ̃(p̃, ∂Σ̃) ≤ π

2
√

H2 + κ
,

where Π(p̃) = p.
The equality case comes from the equality case in Theorem 3.1 and since the

Lawson correspondence sends spheres into spheres. �
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