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A MULTIPLICATION FORMULA
FOR MODULE SUBCATEGORIES OF EXT-SYMMETRY

JIE XIAO AND FAN XU

(Communicated by Martin Lorenz)

Abstract. We define evaluation forms associated to objects in a module sub-
category of Ext-symmetry generated by finitely many simple modules over a
path algebra with relations and prove a multiplication formula for the product
of two evaluation forms. It is analogous to a multiplication formula for the
product of two evaluation forms associated to modules over a preprojective

algebra given by Geiss, Leclerc and Schröer in Compositio Math. 143 (2007),
1313–1334.

Introduction

Let Λ be the preprojective algebra associated to a connected quiver without loops
(see e.g. [12]) and let mod(Λ) be the category of finite-dimensional nilpotent left Λ-
modules. We denote by Λe the variety of finite-dimensional nilpotent left Λ-modules
with dimension vector e. For any x ∈ Λe, there is an evaluation form δx associated
to x satisfying that there is a finite subset R(e) of Λe such that Λe =

⊔
x∈R(e)〈x〉,

where 〈x〉 := {y ∈ Λe | δx = δy} [7, Section 1.2]. Inspired by the Caldero-Keller
cluster multiplication theorem for finite type [4], Geiss, Leclerc and Schröer [7]
proved a multiplication formula (the Geiss-Leclerc-Schröer multiplication formula)
as follows:

χ(PExt 1
Λ(x′, x′′)) δx′⊕x′′ =

∑
x∈R(e)

(
χ(PExt 1

Λ(x′, x′′)〈x〉) + χ(PExt 1
Λ(x′′, x′)〈x〉)

)
δx,

where x′ ∈ Λe′ , x′′ ∈ Λe′′ , e = e′ + e′′, PExt 1
Λ(x′, x′′)〈x〉 is the constructible subset

of PExt 1
Λ(x′, x′′) with the middle terms belonging to 〈x〉, and PExt 1

Λ(x′′, x′)〈x〉 is
defined similarly.

The proof of the formula depends heavily on the fact that the category mod(Λ)
is of Ext-symmetry. A category C is of Ext-symmetry if there is a bifunctorial
isomorphism: Ext1C(M, N) ∼= DExt1C(N, M) for any objects M, N ∈ C.

Let Q be a finite quiver and A be a quotient algebra CQ/I by an ideal I.
We denote by mod(A) the category of finite-dimensional left A-modules. We call
A an algebra of Ext-symmetry if mod(A) is of Ext-symmetry. It is proved that
preprojective algebras and deformed preprojective algebras are of Ext-symmetry
(see [7, Theorem 3] and Section 3 in this paper).
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In this paper, we focus on the module subcategories of Ext-symmetry of mod(A).
Let S = {S1, · · · , Sn} be a finite subset of finite-dimensional simple A-modules. We
denote by C(S) the full subcategory of mod(A) consisting of modules M satisfying
that the isomorphism classes of the composition factors of M belong to S. We
associate to modules in C(S) some evaluation forms and prove that if C(S) is of Ext-
symmetry, then the product of two evaluation forms satisfies an identity (Theorem
2.3). The identity is analogous to the Geiss-Leclerc-Schröer multiplication formula.
There are no known examples of algebras of Ext-symmetry, apart from preprojective
and deformed preprojective algebras (see Section 3), and it is an open question
whether further examples exist. However, other examples of module subcategories
of Ext-symmetry can be easily constructed, and we give an example in Section 3.

1. The product of two evaluation forms

1.1. Module varieties. Let Q = (Q0, Q1, s, t) be a finite connected quiver, where
Q0 and Q1 are the sets of vertices and arrows, respectively, and s, t : Q1 → Q0

are maps such that any arrow α starts at s(α) and terminates at t(α). The space
spanned by all paths of nonzero length is a graded ideal of CQ, and we will denote
it by J . A relation for Q is a linear combination

∑r
i=1 λipi, where λi ∈ C and the

pi are paths with s(pi) = s(pj) and t(pi) = t(pj) for any 1 ≤ i, j ≤ r. Here if pi is a
vertex in Q0, then s(pi) = t(pi) = pi. Let A = CQ/I, where I is an ideal generated
by a finite set of relations. We don’t assume that I is admissible, i.e. I ⊂ J 2.

A dimension vector for A is a map d : Q0 → N. We write di instead of d(i) for
any i ∈ Q0. For any dimension vector d = (di)i∈Q0 , we consider the affine space
over C,

Ed(Q) =
⊕

α∈Q1

HomC(Cds(α) , Cdt(α)).

Any element x = (xα)α∈Q1 in Ed(Q) defines a representation (Cd, x), where Cd =⊕
i∈Q0

Cdi . For any x = (xα)α∈Q1 ∈ Ed(Q) and any path p = α1α2 · · ·αm in Q, we
set xp = xα1xα2 · · ·xαm

. Then x satisfies a relation
∑r

i=1 λipi if
∑r

i=1 λixpi
= 0.

Here if pi is a vertex in Q0, then xpi
is the identity matrix. Let R be a finite set of

relations generating the ideal I. Then we denote by Ed(A) the closed subvariety of
Ed(Q) which consists of elements satisfying all relations in R.

Let S = {S1, · · · , Sn} be a finite subset of finite-dimensional simple A-modules
and C(S) be a module subcategory of Ext-symmetry of mod(A). We denote by
Ad(S) the constructible subset of Ed(A) consisting of modules in C(S). In the se-
quel, we will fix the finite set S and write Ad instead of Ad(S). The algebraic group
Gd := Gd(Q) =

∏
i∈Q0

GLdi
(C) acts on Ed(Q) by (xα)g

α∈Q1
= (gt(α)xαg−1

s(α))α∈Q1

for g ∈ Gd and (xα)α∈Q1 ∈ Ed(Q). It naturally induces the action of Gd on Ad(S).
The orbit space is denoted by Ad(S). A constructible function over Ed(A) is a
function f : Ed(A) → C such that f(Ed(A)) is a finite subset of C and f−1(c) is a
constructible subset of Ed(A) for any c ∈ Q.

Throughout this paper, we always assume that C(S) is of Ext-symmetry and
that constructible functions over Ed(A) are Gd-invariant for any dimension vector
d unless particularly stated.

1.2. Euler characteristics. Let χ denote the Euler characteristic in compactly
supported cohomology. Let X be a complex algebraic variety and O a constructible
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subset as the disjoint union of finitely many locally closed subsets Xi for i =
1, · · · , m. Define χ(O) =

∑m
i=1 χ(Xi). We note that it is well-defined. The following

properties will be applied to compute Euler characteristics.

Proposition 1.1 ([11] and [9]). Let X, Y be algebraic varieties over C. Then

(1) If an algebraic variety X is the disjoint union of finitely many constructible
sets X1, · · · , Xr, then

χ(X) =
r∑

i=1

χ(Xi).

(2) If ϕ : X −→ Y is a morphism with the property that all fibers have the
same Euler characteristic χ, then χ(X) = χ · χ(Y ). In particular, if ϕ is
a locally trivial fibration in the analytic topology with fibre F, then χ(Z) =
χ(F ) · χ(Y ).

(3) χ(Cn) = 1 and χ(Pn) = n + 1 for all n ≥ 0.

We recall the pushforward functor from the category of algebraic varieties over C

and the category of C-vector spaces (see [10] and [9]). Let φ : X → Y be a morphism
of varieties. Write M(X) for the C-vector space of constructible functions on X.
For f ∈ M(X) and y ∈ Y, define

φ∗(f)(y) =
∑
c�=0

cχ(f−1(c) ∩ φ−1(y)).

Theorem 1.2 ([5],[9]). Let X, Y and Z be algebraic varieties over C, φ : X →
Y and ψ : Y → Z be morphisms of varieties, and f ∈ M(X). Then φ∗(f) is
constructible, φ∗ : M(X) → M(Y ) is a C-linear map and (ψ ◦ φ)∗ = (ψ)∗ ◦ (φ)∗ as
C-linear maps from M(X) to M(Z).

1.3. The actions of C
∗ on the extensions and flags. Let A = CQ/〈R〉 be an

algebra as in Section 1.1. For any A-modules X, Y, let D(X, Y ) be the vector space
over C of all tuples d = (d(α))α∈Q1 such that linear maps d(α) ∈ HomC(Xs(α), Yt(α))

and the matrices L(d)α =
(

Yα d(α)
0 Xα

)
satisfy the relations in R. Define π :

D(X, Y ) → Ext1(X, Y ) by sending d to the equivalence class of the following short
exact sequence:

ε : 0 �� Y

⎛
⎝ 1

0

⎞
⎠

�� L(d)

(
0 1

)
�� X �� 0 ,

where, as a vector space, L(d) = (L(d)α)α∈Q1 is the direct sum of Y and X.
The direct computation shows that Kerπ is the subspace of D(X, Y ) consisting of
all tuples d = (d(α))α∈Q1 such that there exist (φi)i∈Q0 ∈

⊕
i∈Q0

HomC(Xi, Yi)
satisfying d(α) = φt(α)Xα −Yαφs(α) for all α ∈ Q1 (see [7, Section 5.1] for a similar
discussion).

Fix a vector space decomposition D(X, Y ) = Kerπ ⊕ E(X, Y ). We can iden-
tify Ext1A(X, Y ) with E(X, Y ) ([11], [6], [7]). Let Ext1A(X, Y )L be the subset
of Ext1A(X, Y ) with the middle term isomorphic to L. Then Ext1(X, Y )L can
be viewed as a constructible subset of Ext1A(X, Y ) by the identification between
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Ext1A(X, Y ) and E(X, Y ). There is a natural C∗-action on E(X, Y ) \ {0} by t.d =
(td(α)) for any t ∈ C

∗. This induces the action of C
∗ on Ext1A(X, Y ) \ {0}. For any

t ∈ C∗, we have that t.ε is the following short exact sequence:

0 �� Y

⎛
⎝ 1

0

⎞
⎠

�� L(t.d)

(
0 1

)
�� X �� 0,

where L(t.d)α =
(

Yα td(α)
0 Xα

)
for any α ∈ Q1. The orbit space is denoted by

PExt 1
A(X, Y ) and the orbit of ε ∈ Ext 1

A(X, Y ) is denoted by Pε. For a Gd-invariant
constructible subset O of Ed(A), we set Ext1A(X, Y )O to be the subset of Ext1A(X, Y )
consisting of the equivalence classes of extensions with middle terms belonging to
O.

The above C
∗-action on the extensions induces an action on the middle terms.

As a vector space, L = Y ⊕ X. So we can define t.(y, x) = (ty, x) for any t ∈ C∗

and x ∈ X, y ∈ Y [7, Section 5.4] or [11, Lemma 1]. For any L1 ⊆ L, this action
yields a submodule t.L1 of L isomorphic to L1. In general, if fL = (L ⊇ L1 ⊇ L2 ⊇
· · · ⊇ Lm = 0) is a flag of submodules of L, then t.fL = (L ⊇ t.L1 ⊇ t.L2 ⊇ · · · ⊇
t.Lm = 0). Hence, we obtain an action of C∗ on the flag of L.

1.4. The product of two evaluation forms. Let Ad := Ad(S) be the con-
structible subset of Ed(A) as in Section 1.1. For any module M ∈ Ed(A), let
Gre(M) be the subvariety of Gre(Cd) :=

∏
i∈Q0

Grei
(Cdi) consisting of submodules

of M with dimension vector e = (ei)i∈Q0 , and let Gre(Ed(A)) be the constructible
subset of Ed(A) × Gre(Cd) consisting of pairs (M, M1) such that M1 ∈ Gre(M).

Proposition 1.3. Let d and e be two dimension vectors. Then the function
gr(e, d) : Ed(A) → C sending M to χ(Gre(M)) is a Gd-invariant constructible
function.

Proof. Consider the projection: φ : Gre(Ed(A)) → Ed(A) mapping (M, M1) to
M. It is clear that φ is a morphism of varieties. By Theorem 1.2, gr(e, d) =
φ∗(1Gre(Ed(A))) is constructible. �

For fixed d, we can make finitely many choices of e such that Gre(Ed(A)) is
nonempty. This implies the following corollary.

Corollary 1.4. There is a finite subset S(d) of Ad such that Ad =
⋃

i∈S(d) O(d)i,
where all O(d)i are constructible subsets of Ad satisfying that for any M, M ′ ∈
O(d)i, χ(Gre(M)) = χ(Gre(M ′)) for any e.

Let M(d) be the vector space over C spanned by the constructible functions
gr(e, d) for any dimension vector e. For any M ∈ Ad, we define the evaluation form
δM : M(d) → C which maps the constructible function gr(e) to χ(Gre(M)) =
gr(e)(M). Using the notation in [7], we set 〈L〉 := O(d)i for arbitrary L ∈ O(d)i.
Indeed, δL = δL′ for any L, L′ ∈ O(d)i. By abuse of notation, we have Ad =⋃

L∈S(d)〈L〉.
Let M, N be A-modules and e1, e2 be dimension vectors. Fixing M1 ∈ Gre1

(M),
N1 ∈ Gre2

(N), we consider the natural map

βN1,M1 : Ext 1
A(N, M1) → Ext 1

A(N, M) ⊕ Ext 1
A(N1, M1)
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mapping ε∗ ∈ Ext 1
A(N, M1) to (ε, ε′) such that the following diagram commutes:

ε′ : 0 �� M1
�� L′′ ��

��

N1
��

��

0

ε∗ : 0 �� M1
��

��

L′ ��

��

N �� 0

ε : 0 �� M
i �� L

π �� N �� 0

where L and L′′ are the pushout and pullback, respectively. Define

EF g
e1,e2

(N, M) = {(M1, N1, ε, L1) | M1 ∈ Gre1
(M), N1 ∈ Gre2

(N), ε �= 0 ∈
Ext 1

A(N, M)L ∩ ImβN1,M1 , L1 ∈ Gre1+e2
(L), L1 ∩ i(M) = i(M1), π(L1) = N1}

and EF g
e (N, M) =

⋃
e1+e2=e EF g

e1,e2
(N, M). By the discussion in Section 1.3, the

action of C∗ on Ext 1
A(N, M) \ {0} naturally induces the action on EF g

e (N, M) by
setting

t.(M1, N1, ε, L1) = (M1, N1, t.ε, t.L1)
for (M1, N1, ε, L1) ∈ EF g

e (N, M) and t ∈ C∗. We denote its orbit space by
PEF g

e (N, M). We also set the evaluation form δ : M → C mapping gr(e) to
χ(PEF g

e (N, M)).

Theorem 1.5. Let M, N ∈ C(S). We have

χ(PExt1A(M, N))δM⊕N =
∑

L∈S(d)

χ(PExt1A(M, N)〈L〉)δL + δ.

Proof. Since (for example, see [1] or [6])

χ(Gre(M ⊕ N)) =
∑

e1+e2=e

χ(Gre1
(M)) · χ(Gre2

(N)),

the above formula has the following reformulation:

χ(PExt 1
A(M, N))

∑
e1+e2=e

χ(Gre1
(M)) · χ(Gre2

(N))

=
∑

L∈S(d)

χ(PExt 1
A(M, N)〈L〉)χ(Gre(L)) + χ(PEF g

e (N, M)).

Now we prove the above reformulation. Define

EF (M, N) = {(ε, L1) | ε ∈ Ext 1
A(M, N)L \ {0}, L1 ∈ Gre(L)}.

The action of C
∗ on Ext 1

A(M, N) naturally induces the action on EF (M, N) [7,
section 5.4 ]. Under the action of C∗, it has the geometric quotient:

π : EF (M, N) → PEF (M, N).

We have the natural projection:

p : PEF (M, N) → PExt 1
A(M, N).

Using Proposition 1.1, we have

χ(PEF (M, N)) =
∑

L∈S(d)

χ(PExt 1
A(M, N)〈L〉)χ(Gre(L)).
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Given (ε, L1) ∈ EF (M, N), let ε be the equivalence class of the following short
exact sequence:

ε : 0 �� N

⎛
⎝ 1

0

⎞
⎠

�� L

(
0 1

)
�� M �� 0 .

As a vector space, L = N ⊕M and L1 is the subspace of L. We put M1 = (0, 1)(L1)
and N1 = (1, 0)(L1). It is clear that M1 and N1 are the submodules of M and N ,
respectively. Then there is a natural morphism

φ0 : EF (M, N) →
⋃

e1+e2=e

Gre1
(M) × Gre2

(N)

defined by mapping (ε, L1) to (M1, N1). Furthermore, we have

φ0((ε, L1)) = φ0(t.(ε, L1))

for any (ε, L1) ∈ EF (M, N) and t ∈ C
∗. This induces the morphism

φ : PEF (M, N) →
⋃

e1+e2=e

Gre1
(M) × Gre2

(N).

Now we compute the fibre of this morphism for M1 ∈ Gre1
(M) and N1 ∈ Gre2

(N).
Consider the following linear map dual to βM1,N1 :

β′
M1,N1

: Ext 1
A(M, N) ⊕ Ext 1

A(M1, N1) → Ext 1(M1, N)

mapping (ε, ε′) to εM1 − ε′N , where εM1 and ε′N are induced by the inclusions
M1 ⊆ M and N1 ⊆ N, respectively, as follows:

εM1 : 0 �� N �� L1
��

��

M1
��

��

0

ε : 0 �� N �� L
π �� M �� 0

where L1 is the pullback, and

ε′ : 0 �� N1
��

��

L′ ��

��

M1
�� 0

ε′N : 0 �� N �� L′
1

�� M1
�� 0

where L′
1 is the pushout. It is clear that ε, ε′ and M1, N1 induce the inclusions

L1 ⊆ L and L′ ⊆ L′
1 and

p0 : Ext 1
A(M, N) ⊕ Ext 1

A(M1, N1) → Ext 1
A(M, N)

is a projection. By a similar discussion as in [7, Lemma 2.4.2], we know that

p(φ−1((M1, N1))) = P(p0(Ker(β′
M1,N1

))).

Moreover, by [8, Lemma 7], for fixed ε ∈ p0(Ker(β′
M1,N1

)), let Pε be its orbit in
P(p0(Ker(β′

M1,N1
))). Then we have

p−1(Pε) ∩ φ−1((M1, N1)) ∼= Hom(M1, N/N1).

Using Proposition 1.1, we get

χ(φ−1((M1, N1))) = χ(P(p0(Ker(β′
M1,N1

))) = dim Cp0(Ker(β′
M1,N1

)).
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In the same way, we consider the projection

ϕ : PEF g
e (N, M) →

⋃
e1+e2=e

Gre1
(M) × Gre2

(N).

Then
χ(ϕ−1((M1, N1))) = dimCExt 1

A(N, M) ∩ ImβN1,M1 .

Now, depending on the fact that C(S) is of Ext-symmetry, we have

dim Cp0(Ker(β′
M1,N1

)) + dimCExt 1
A(N, M) ∩ ImβN1,M1 = dimCExt 1

A(M, N).

Using Proposition 1.1 again, we complete the proof of the theorem. �

2. The multiplication formula

The formula in the last section is not so ‘symmetric’ as the Geiss-Leclerc-Schröer
formula. In order to overcome this difficulty, we should consider flags of composition
series instead of Grassmannians of submodules as in [7]. In this section, we prove
a multiplication formula as an analog of the Geiss-Leclerc-Schröer formula in [7].

Let A = CQ/I be an algebra associated to a finite and connected quiver Q and
let S = {S1, · · · , Sn} be a finite set of finite-dimensional simple A-modules. Let
C(S) be a full subcategory of Ext-symmetry of mod(A) associated to S.

Let Ad be the constructible subset of Ed(A) consisting of A-modules in C(S) with
dimension vector d. Let X be the set of pairs (j, c) where c = (c1, · · · , cm) ∈ {0, 1}m

and j = (j1, · · · , jm) is a sequence of integers such that Sjk
∈ S for 1 ≤ k ≤ m.

Given x ∈ Ad and (j, c) ∈ X , we define an x-stable flag of type (j, c) as a composition
series of x,

fx =
(
V = (Cd, x) ⊇ V 1 ⊇ · · · ⊇ V m = 0

)
,

of A-submodules of V such that |V k−1/V k| = ckSjk
, where Sjk

is the simple module
in S. Let Φj,c,x be the variety of x-stable flags of type (j, c). We simply write Φj,x

when c = (1, 1, · · · , 1). Define

Φj(Ad) = {(x, f) | x ∈ Ad, f ∈ Φj,x}.
As in Proposition 1.3, we consider a projection: p : Φj(Ad) → Ad. The function
p∗(1Φj(Ad)) is constructible by Theorem 1.2.

Proposition 2.1. For any type j, the function Ad → C mapping x to χ(Φj,x) is
constructible.

Let dj,c : Ed(A) → C be the function defined by dj,c(x) = χ(Φj,c,x) for x ∈
Ed(A). It is a constructible function as in Proposition 2.1. We simply write dj if
c = (1, · · · , 1). Define M(d) to be the vector space spanned by dj. For fixed Ad,
there are finitely many types j such that Φj(Ad) is not empty. Hence, there exists
a finite subset S(d) of Ad such that

Ad =
⋃

M∈S(d)

〈M〉,

where 〈M〉 = {M ′ ∈ Ad | χ(Φj,M ′) = χ(Φj,M ) for any type j}.
For any M ∈ Ad, we define the evaluation form δM : M(d) → C mapping a

constructible function f ∈ M(d) to f(M). We have

〈M〉 = {M ′ ∈ Ad | δM ′ = δM}.

Lemma 2.2. For M, N ∈ C(S), we have δM⊕N = δM · δN .
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The lemma is equivalent to showing that

χ(Φj,M⊕N ) =
∑

c′+c′′∼1

χ(Φj,c′,M ) · χ(Φj,c′′,N ).

Here, c′ + c′′ ∼ 1 means that c′k + c′′k = 1 for k = 1, · · · , m. The proof of the lemma
depends on the fact that under the action of C∗, Φj,M⊕N and its stable subset have
the same Euler characteristic. We refer to [6] for details.

The following formula is just the multiplication formula in [7, Theorem 1] when
A is a preprojective algebra and S is the set of all simple A-modules.

Theorem 2.3. With the above notation, for M, N ∈ C(S), we have

χ(PExt1A(M, N))δM⊕N =
∑

L∈S(e)

(χ(PExt1A(M, N)〈L〉) + χ(PExt1A(N, M)〈L〉))δL,

where e = dimM + dimN.

In the proof of Theorem 1.5, a key point is to consider the linear maps βM1,N1

and β′
M1,N1

dual to each other by the property of Ext-symmetry. Now we extend
this idea to the present situation as in [7]. Let

fM = (M = M0 ⊇ M1 ⊇ · · · ⊇ Mm = 0)

be a flag of type (j, c′) and let

fN = (N = N0 ⊇ N1 ⊇ · · · ⊇ Nm = 0)

be a flag of type (j, c′′) such that c′k +c′′k = 1 for k = 1, · · · , m. We write c′+c′′ ∼ 1.
For k = 1, · · · , m, let ιM,k and ιN,k be the inclusion maps Mk → Mk−1 and
Nk → Nk−1, respectively. Define [7, Section 2]

βj,c′,c′′,fM ,fN
:

m−2⊕
k=0

Ext 1
A(Nk, Mk+1) →

m−2⊕
k=0

Ext 1
A(Nk, Mk)

by the following map:

Nk
εk ��

ιN,k

�� �����
�����

��
Mk+1[1]

ιM,k+1

��
Nk−1

εk−1 �� Mk[1]

satisfying

βj,c′,c′′,fM ,fN
(ε0, · · · , εm−2) = ιM,1 ◦ ε0 +

m−2∑
k=1

(ιM,k+1 ◦ εk − εk−1 ◦ ιN,k).

Depending on the fact that C(S) is of Ext-symmetry, we can write its dual

β′
j,c′,c′′,fM ,fN

:
m−2⊕
k=0

Ext 1
A(Mk, Nk) →

m−2⊕
k=0

Ext 1
A(Mk+1, Nk)

by the following map:

Mk+1
ηk+1 ��

ιM,k+1

�� ����������� Nk+1[1]

ιN,k+1

��
Mk

ηk �� Nk[1]
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satisfying

β′
j,c′,c′′,fM ,fN

(η0, · · · , ηm−2) =
m−3∑
k=0

(ηk ◦ ιM,k+1 − ιN,k+1 ◦ ηk+1) + ηm−2 ◦ ιM,m−1.

Now, we prove Theorem 2.3.

Proof. Define

EFj(M, N) = {(ε, f) | ε ∈ Ext 1
A(M, N)L, L ∈ Ae, f ∈ Φj,L}.

The action of C
∗ on Ext1A(M, N) induces an action on EFj(M, N). The orbit space

under the action of C∗ is denoted by PEFj(M, N), and the orbit of (ε, f) is denoted
by P(ε, f). We have the natural projection

p : PEFj(M, N) → PExt 1
A(M, N).

The fibre for any Pε ∈ PExt 1
A(M, N)L is isomorphic to Φj,L. By Theorem 1.1, we

have
χ(PEFj(M, N)) =

∑
L∈S(e)

χ(PExt 1
A(M, N)〈L〉)χ(Φj,L).

We also have the natural morphism

φ : PEFj(M, N) →
⋃

c′+c′′∼1

Φj,c′,M × Φj,c′′,N

mapping P(ε, f) to (fM , fN ), where (fM , fN ) is naturally induced by ε and f and
t.(ε, f) induces the same (fM , fN ) for any t ∈ C∗. By [7, Lemma 2.4.2], we know
that

p(φ−1(fM , fN )) = P(p0(Ker(β′
j,c′,c′′,fM ,fN

))),

where p0 :
⊕m−2

k=0 Ext 1
A(Mk, Nk) → Ext 1

A(M, N) is a projection. On the other
hand, by [8, Lemma 7], the morphism

p |φ−1(fM ,fN ): φ−1(fM , fN ) → P(p0(Ker(β′
j,c′,c′′,fM ,fN

)))

has fibres isomorphic to an affine space. Hence, by Theorem 1.1, we have

χ(φ−1(fM , fN )) = χ(P(p0(Ker(β′
j,c′,c′′,fM ,fN

)))).

Dually, we define

EFj(N, M) = {(ε, f) | ε ∈ Ext 1
A(N, M)L, L ∈ Ae, f ∈ Φj,L}.

The orbit space under C∗-action is denoted by PEFj(N, M). We have the natural
projection

q : PEFj(N, M) → PExt 1
A(N, M).

The fibre for any Pε ∈ PExt 1
A(N, M)L is isomorphic to Φj,L. By Theorem 1.1, we

have
χ(PEFj(N, M)) =

∑
L∈S(e)

χ(PExt 1
A(N, M)〈L〉)χ(Φj,L).

As in the proof of Theorem 1.5, there is a natural morphism

ϕ0 : EFj(N, M) →
⋃

c′+c′′∼1

Φj,c′,M × Φj,c′′,N

such that
ϕ0((ε, f)) = ϕ0(t.(ε, f))
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for any (ε, f) ∈ EFj(N, M) and t ∈ C∗. Hence, we have the morphism

ϕ : PEFj(N, M) →
⋃

c′+c′′∼1

Φj,c′,M × Φj,c′′,N .

By [7, Lemma 2.4.3], we know that

q(ϕ−1(fM , fN )) = PExt 1
A(N, M) ∩ Im(βj,c′,c′′,fM ,fN

).

Similar to the above dual situation, by [8, Lemma 7], the morphism

q |ϕ−1(fM ,fN ): ϕ−1(fM , fN ) → PExt 1
A(N, M) ∩ Im(βj,c′,c′′,fM ,fN

)

has fibres isomorphic to an affine space. Hence, by Proposition 1.1, we have

χ(ϕ−1(fM , fN )) = χ(PExt 1
A(N, M) ∩ Im(βj,c′,c′′,fM ,fN

)).

However, since βj,c′,c′′,fM ,fN
and β′

j,c′,c′′,fM ,fN
are dual to each other, we have

(p0(Ker(β′
j,c′,c′′,fM ,fN

)))⊥ = Ext 1
A(N, M) ∩ Im(βj,c′,c′′,fM ,fN

).

Thus we have

χ(P(p0(Ker(β′
j,c′,c′′,fM ,fN

)))) + χ(PExt 1
A(N, M) ∩ Im(βj,c′,c′′,fM ,fN

))

= dimCExt 1
A(M, N).

Therefore, using Proposition 1.1, we obtain

PEFj(M, N) + PEFj(N, M) = dimCExt 1(M, N) ·
∑

c′+c′′∼1

χ(Φj,c′,M ) · χ(Φj,c′′,N ).

Now, we have obtained the identity

dimCExt 1(M, N) ·
∑

c′+c′′∼1

χ(Φj,c′,M ) · χ(Φj,c′′,N )

=
∑

L∈S(e)

χ(PExt 1
A(M, N)〈L〉)χ(Φj,L) +

∑
L∈S(e)

χ(PExt 1
A(N, M)〈L〉)χ(Φj,L)

for any type j. Using Lemma 2.2 and Proposition 1.1, we finish the proof of Theo-
rem 2.3. �

3. Examples

In this section, we give some examples of module subcategories of Ext-symmetry.
(I) Let A be a preprojective algebra associated to a connected quiver Q without
loops. Let S be the set of all simple A-modules. Then C(S) is of Ext-symmetry [7,
Theorem 3].
(II) Let A = CQ/〈αα∗−α∗α〉 be an associative algebra associated to the following
quiver:

Q := •α �� α∗�� .

Let M = (Cm, Xα, Xα∗) and N = (Cn, Yα, Yα∗) be two finite-dimensional A-
modules. Following the characterization of Ext1A(M, N) in Section 1.3, we consider
the following isomorphism between complexes (see [3, Lemma 1] or [7, Section 8.2]):

HomC(M•, N•)
d0

M,N ��

11
��

HomC(M•, N•)
⊕

HomC(M•, N•)
d1

M,N ��

(11,−11)
��

HomC(M•, N•)

−11
��

HomC(M•, N•)
d1,∗

N,M �� HomC(M•, N•)
⊕

HomC(M•, N•)
d0,∗

N,M �� HomC(M•, N•)

,
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where M• = Cm, N• = Cn. Here, we define

d0
M,N (A) = (YαA − AXα, Yα∗A − AXα∗), d1

M,N (B, B∗)

= Yα∗B + B∗Xα − YαB∗ − BXα∗ ,

d0,∗
N,M (B, B∗) = BXα∗ + B∗Xα − Yα∗B − YαB∗, d1,∗

N,M (A)

= (YαA − AXα,−Yα∗A + AXα∗)

for any n × m matrices A, B and B∗. The second complex is dual to the complex

HomC(N•, M•)
d0

N,M �� HomC(N•, M•)
⊕

HomC(N•, M•)
d1

N,M �� HomC(N•, M•)

with respect to the nondegenerate bilinear form

Φ : HomC(N•, M•) × HomC(N•, M•) → C

mapping (X, Y ) to tr(XY ). As in Section 1.3, we have functorially

Ext1A(M, N) = Ker(d1
M,N )/Im(d0

M,N ) and DExt1A(N, M) = Ker(d0,∗
N,M )/Im(d1,∗

N,M ).

Hence, we have a bifunctorial isomorphism:

Ext1A(M, N) ∼= DExt1A(N, M).

(III) Deformed preprojective algebras were introduced by Crawley-Boevey and Hol-
land in [4]. Fix λ = (λi)i∈Q0 where λi ∈ C. The deformed preprojective algebra of
weight λ is an associative algebra

A(λ) = CQ/〈
∑

α∈Q1

(αα∗ − α∗α) −
∑
i∈Q0

λiei〉,

where Q = Q ∪ Q∗ is the double of a quiver Q without loops. Let M, N be finite-
dimensional A-modules. As in Section 1.3, we know D(M, N) is just the kernel of
the following linear map:

⊕
α∈Q1

HomC(Ms(α), Nt(α))
d1

M,N−−−→
⊕
i∈Q0

HomC(Mi, Ni),

where d1
M,N maps (fα)α∈Q1

to (gi)i∈Q0 such that

gi =
∑

α∈Q1,s(α)=i

(Nα∗fα + fα∗Mα) −
∑

α∈Q1,t(α)=i

(Nαfα∗ + fαMα∗).

In the same way as in [7, Section 8.2], we obtain a bifunctorial isomorphism

Ext1A(M, N) ∼= DExt1A(N, M).

(IV) It is easy to construct examples of module subcategories of Ext-symmetry over
an algebra which is not of Ext-symmetry. Let A = CQ/〈ββ∗ − β∗β〉 be a quotient
algebra associated to the quiver

Q := 1
α �� 2

β
��
3

β∗
�� .

Let S1, S2 and S3 be finite-dimensional simple A-modules associated to three ver-
tices, respectively. Since dimCExt1(S1, S2) = 1 and Ext1(S2, S1) = 0, A is not
an algebra of Ext-symmetry. However, for S = {S1, S3} or {S2, S3}, C(S) is of
Ext-symmetry.
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