A MULTIPLICATION FORMULA FOR MODULE SUBCATEGORIES OF EXT-SYMMETRY

JIE XIAO AND FAN XU

(Communicated by Martin Lorenz)

ABSTRACT. We define evaluation forms associated to objects in a module subcategory of Ext-symmetry generated by finitely many simple modules over a path algebra with relations and prove a multiplication formula for the product of two evaluation forms. It is analogous to a multiplication formula for the product of two evaluation forms associated to modules over a preprojective algebra given by Geiss, Leclerc and Schröer in Compositio Math. 143 (2007), 1313–1334.

Introduction

Let Λ be the preprojective algebra associated to a connected quiver without loops (see e.g. [12]) and let $\operatorname{mod}(\Lambda)$ be the category of finite-dimensional nilpotent left Λ -modules. We denote by $\Lambda_{\underline{e}}$ the variety of finite-dimensional nilpotent left Λ -modules with dimension vector \underline{e} . For any $x \in \Lambda_{\underline{e}}$, there is an evaluation form δ_x associated to x satisfying that there is a finite subset $R(\underline{e})$ of $\Lambda_{\underline{e}}$ such that $\Lambda_{\underline{e}} = \bigsqcup_{x \in R(\underline{e})} \langle x \rangle$, where $\langle x \rangle := \{ y \in \Lambda_{\underline{e}} \mid \delta_x = \delta_y \}$ [7, Section 1.2]. Inspired by the Caldero-Keller cluster multiplication theorem for finite type [4], Geiss, Leclerc and Schröer [7] proved a multiplication formula (the Geiss-Leclerc-Schröer multiplication formula) as follows:

$$\chi(\mathbb{P}\mathrm{Ext}\,^1_\Lambda(x',x''))\,\delta_{x'\oplus x''} = \sum_{x\in R(\underline{e})} \left(\chi(\mathbb{P}\mathrm{Ext}\,^1_\Lambda(x',x'')_{\langle x\rangle}) + \chi(\mathbb{P}\mathrm{Ext}\,^1_\Lambda(x'',x')_{\langle x\rangle})\right)\delta_x,$$

where $x' \in \Lambda_{\underline{e}'}$, $x'' \in \Lambda_{\underline{e}''}$, $\underline{e} = \underline{e}' + \underline{e}''$, $\mathbb{P}\mathrm{Ext}_{\Lambda}^{1}(x', x'')_{\langle x \rangle}$ is the constructible subset of $\mathbb{P}\mathrm{Ext}_{\Lambda}^{1}(x', x'')$ with the middle terms belonging to $\langle x \rangle$, and $\mathbb{P}\mathrm{Ext}_{\Lambda}^{1}(x'', x')_{\langle x \rangle}$ is defined similarly.

The proof of the formula depends heavily on the fact that the category $\operatorname{mod}(\Lambda)$ is of Ext-symmetry. A category $\mathcal C$ is of Ext-symmetry if there is a bifunctorial isomorphism: $\operatorname{Ext}^1_{\mathcal C}(M,N)\cong\operatorname{DExt}^1_{\mathcal C}(N,M)$ for any objects $M,N\in\mathcal C$.

Let Q be a finite quiver and A be a quotient algebra $\mathbb{C}Q/\mathcal{I}$ by an ideal \mathcal{I} . We denote by $\operatorname{mod}(A)$ the category of finite-dimensional left A-modules. We call A an algebra of Ext-symmetry if $\operatorname{mod}(A)$ is of Ext-symmetry. It is proved that preprojective algebras and deformed preprojective algebras are of Ext-symmetry (see [7, Theorem 3] and Section 3 in this paper).

Received by the editors January 18, 2008, and, in revised form, September 26, 2008. 2000 Mathematics Subject Classification. Primary 16G20, 14M99; Secondary 20G05. Key words and phrases. Ext-symmetry, module variety, flag variety, composition series. The research was supported in part by NSF of China (No. 10631010).

In this paper, we focus on the module subcategories of Ext-symmetry of $\operatorname{mod}(A)$. Let $\mathcal{S} = \{S_1, \dots, S_n\}$ be a finite subset of finite-dimensional simple A-modules. We denote by $\mathcal{C}(\mathcal{S})$ the full subcategory of $\operatorname{mod}(A)$ consisting of modules M satisfying that the isomorphism classes of the composition factors of M belong to \mathcal{S} . We associate to modules in $\mathcal{C}(\mathcal{S})$ some evaluation forms and prove that if $\mathcal{C}(\mathcal{S})$ is of Ext-symmetry, then the product of two evaluation forms satisfies an identity (Theorem 2.3). The identity is analogous to the Geiss-Leclerc-Schröer multiplication formula. There are no known examples of algebras of Ext-symmetry, apart from preprojective and deformed preprojective algebras (see Section 3), and it is an open question whether further examples exist. However, other examples of module subcategories of Ext-symmetry can be easily constructed, and we give an example in Section 3.

1. The product of two evaluation forms

1.1. Module varieties. Let $Q = (Q_0, Q_1, s, t)$ be a finite connected quiver, where Q_0 and Q_1 are the sets of vertices and arrows, respectively, and $s, t : Q_1 \to Q_0$ are maps such that any arrow α starts at $s(\alpha)$ and terminates at $t(\alpha)$. The space spanned by all paths of nonzero length is a graded ideal of $\mathbb{C}Q$, and we will denote it by \mathcal{J} . A relation for Q is a linear combination $\sum_{i=1}^r \lambda_i p_i$, where $\lambda_i \in \mathbb{C}$ and the p_i are paths with $s(p_i) = s(p_j)$ and $t(p_i) = t(p_j)$ for any $1 \le i, j \le r$. Here if p_i is a vertex in Q_0 , then $s(p_i) = t(p_i) = p_i$. Let $A = \mathbb{C}Q/\mathcal{I}$, where \mathcal{I} is an ideal generated by a finite set of relations. We don't assume that \mathcal{I} is admissible, i.e. $\mathcal{I} \subset \mathcal{J}^2$.

A dimension vector for A is a map $\underline{d}: Q_0 \to \mathbb{N}$. We write d_i instead of d(i) for any $i \in Q_0$. For any dimension vector $\underline{d} = (d_i)_{i \in Q_0}$, we consider the affine space over \mathbb{C} ,

$$\mathbb{E}_{\underline{d}}(Q) = \bigoplus_{\alpha \in Q_1} \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^{d_{s(\alpha)}}, \mathbb{C}^{d_{t(\alpha)}}).$$

Any element $x=(x_{\alpha})_{\alpha\in Q_1}$ in $\mathbb{E}_{\underline{d}}(Q)$ defines a representation $(\mathbb{C}^{\underline{d}}, x)$, where $\mathbb{C}^{\underline{d}}=\bigoplus_{i\in Q_0}\mathbb{C}^{d_i}$. For any $x=(x_{\alpha})_{\alpha\in Q_1}\in \mathbb{E}_{\underline{d}}(Q)$ and any path $p=\alpha_1\alpha_2\cdots\alpha_m$ in Q, we set $x_p=x_{\alpha_1}x_{\alpha_2}\cdots x_{\alpha_m}$. Then x satisfies a relation $\sum_{i=1}^r\lambda_i p_i$ if $\sum_{i=1}^r\lambda_i x_{p_i}=0$. Here if p_i is a vertex in Q_0 , then x_{p_i} is the identity matrix. Let R be a finite set of relations generating the ideal \mathcal{I} . Then we denote by $\mathbb{E}_{\underline{d}}(A)$ the closed subvariety of $\mathbb{E}_{\underline{d}}(Q)$ which consists of elements satisfying all relations in R.

Let $S = \{S_1, \dots, S_n\}$ be a finite subset of finite-dimensional simple A-modules and $\mathcal{C}(S)$ be a module subcategory of Ext-symmetry of $\operatorname{mod}(A)$. We denote by $A_{\underline{d}}(S)$ the constructible subset of $\mathbb{E}_{\underline{d}}(A)$ consisting of modules in $\mathcal{C}(S)$. In the sequel, we will fix the finite set S and write $A_{\underline{d}}$ instead of $A_{\underline{d}}(S)$. The algebraic group $G_{\underline{d}} := G_{\underline{d}}(Q) = \prod_{i \in Q_0} \operatorname{GL}_{d_i}(\mathbb{C})$ acts on $\mathbb{E}_{\underline{d}}(Q)$ by $(x_{\alpha})_{\alpha \in Q_1}^g = (g_{t(\alpha)}x_{\alpha}g_{s(\alpha)}^{-1})_{\alpha \in Q_1}$ for $g \in G_{\underline{d}}$ and $(x_{\alpha})_{\alpha \in Q_1} \in \mathbb{E}_{\underline{d}}(Q)$. It naturally induces the action of $G_{\underline{d}}$ on $A_{\underline{d}}(S)$. The orbit space is denoted by $\overline{A_{\underline{d}}}(S)$. A constructible function over $\mathbb{E}_{\underline{d}}(A)$ is a function $f : \mathbb{E}_{\underline{d}}(A) \to \mathbb{C}$ such that $f(\mathbb{E}_{\underline{d}}(A))$ is a finite subset of \mathbb{C} and $f^{-1}(c)$ is a constructible subset of $\mathbb{E}_{\underline{d}}(A)$ for any $c \in Q$.

Throughout this paper, we always assume that $\mathcal{C}(\mathcal{S})$ is of Ext-symmetry and that constructible functions over $\mathbb{E}_{\underline{d}}(A)$ are $G_{\underline{d}}$ -invariant for any dimension vector \underline{d} unless particularly stated.

1.2. Euler characteristics. Let χ denote the Euler characteristic in compactly supported cohomology. Let X be a complex algebraic variety and \mathcal{O} a constructible

subset as the disjoint union of finitely many locally closed subsets X_i for $i = 1, \dots, m$. Define $\chi(\mathcal{O}) = \sum_{i=1}^{m} \chi(X_i)$. We note that it is well-defined. The following properties will be applied to compute Euler characteristics.

Proposition 1.1 ([11] and [9]). Let X, Y be algebraic varieties over \mathbb{C} . Then

(1) If an algebraic variety X is the disjoint union of finitely many constructible sets X_1, \dots, X_r , then

$$\chi(X) = \sum_{i=1}^{r} \chi(X_i).$$

- (2) If $\varphi: X \longrightarrow Y$ is a morphism with the property that all fibers have the same Euler characteristic χ , then $\chi(X) = \chi \cdot \chi(Y)$. In particular, if φ is a locally trivial fibration in the analytic topology with fibre F, then $\chi(Z) = \chi(F) \cdot \chi(Y)$.
- (3) $\chi(\mathbb{C}^n) = 1$ and $\chi(\mathbb{P}^n) = n + 1$ for all $n \ge 0$.

We recall the *pushforward* functor from the category of algebraic varieties over \mathbb{C} and the category of \mathbb{C} -vector spaces (see [10] and [9]). Let $\phi: X \to Y$ be a morphism of varieties. Write M(X) for the \mathbb{C} -vector space of constructible functions on X. For $f \in M(X)$ and $y \in Y$, define

$$\phi_*(f)(y) = \sum_{c \neq 0} c\chi(f^{-1}(c) \cap \phi^{-1}(y)).$$

Theorem 1.2 ([5],[9]). Let X,Y and Z be algebraic varieties over \mathbb{C} , $\phi:X\to Y$ and $\psi:Y\to Z$ be morphisms of varieties, and $f\in M(X)$. Then $\phi_*(f)$ is constructible, $\phi_*:M(X)\to M(Y)$ is a \mathbb{C} -linear map and $(\psi\circ\phi)_*=(\psi)_*\circ(\phi)_*$ as \mathbb{C} -linear maps from M(X) to M(Z).

1.3. The actions of \mathbb{C}^* on the extensions and flags. Let $A = \mathbb{C}Q/\langle R \rangle$ be an algebra as in Section 1.1. For any A-modules X,Y, let D(X,Y) be the vector space over \mathbb{C} of all tuples $d=(d(\alpha))_{\alpha\in Q_1}$ such that linear maps $d(\alpha)\in \mathrm{Hom}_{\mathbb{C}}(X_{s(\alpha)},Y_{t(\alpha)})$ and the matrices $L(d)_{\alpha}=\begin{pmatrix} Y_{\alpha} & d(\alpha) \\ 0 & X_{\alpha} \end{pmatrix}$ satisfy the relations in R. Define $\pi:D(X,Y)\to\mathrm{Ext}^1(X,Y)$ by sending d to the equivalence class of the following short exact sequence:

$$\varepsilon: \quad 0 \longrightarrow Y \xrightarrow{\left(\begin{array}{c} 1 \\ 0 \end{array}\right)} L(d) \xrightarrow{\left(\begin{array}{c} 0 & 1 \end{array}\right)} X \longrightarrow 0$$

where, as a vector space, $L(d) = (L(d)_{\alpha})_{\alpha \in Q_1}$ is the direct sum of Y and X. The direct computation shows that $\operatorname{Ker}\pi$ is the subspace of D(X,Y) consisting of all tuples $d = (d(\alpha))_{\alpha \in Q_1}$ such that there exist $(\phi_i)_{i \in Q_0} \in \bigoplus_{i \in Q_0} \operatorname{Hom}_{\mathbb{C}}(X_i,Y_i)$ satisfying $d(\alpha) = \phi_{t(\alpha)} X_{\alpha} - Y_{\alpha} \phi_{s(\alpha)}$ for all $\alpha \in Q_1$ (see [7, Section 5.1] for a similar discussion).

Fix a vector space decomposition $D(X,Y) = \text{Ker}\pi \oplus E(X,Y)$. We can identify $\text{Ext}_A^1(X,Y)$ with E(X,Y) ([11], [6], [7]). Let $\text{Ext}_A^1(X,Y)_L$ be the subset of $\text{Ext}_A^1(X,Y)$ with the middle term isomorphic to L. Then $\text{Ext}^1(X,Y)_L$ can be viewed as a constructible subset of $\text{Ext}_A^1(X,Y)$ by the identification between

 $\operatorname{Ext}_A^1(X,Y)$ and E(X,Y). There is a natural \mathbb{C}^* -action on $E(X,Y)\setminus\{0\}$ by $t.d=(td(\alpha))$ for any $t\in\mathbb{C}^*$. This induces the action of \mathbb{C}^* on $\operatorname{Ext}_A^1(X,Y)\setminus\{0\}$. For any $t\in\mathbb{C}^*$, we have that $t.\varepsilon$ is the following short exact sequence:

$$0 \longrightarrow Y \xrightarrow{\left(\begin{array}{c} 1\\ 0 \end{array}\right)} L(t.d) \xrightarrow{\left(\begin{array}{c} 0 & 1 \end{array}\right)} X \longrightarrow 0,$$

where $L(t.d)_{\alpha} = \begin{pmatrix} Y_{\alpha} & td(\alpha) \\ 0 & X_{\alpha} \end{pmatrix}$ for any $\alpha \in Q_1$. The orbit space is denoted by $\mathbb{P}\text{Ext}_A^1(X,Y)$ and the orbit of $\varepsilon \in \text{Ext}_A^1(X,Y)$ is denoted by $\mathbb{P}\varepsilon$. For a $G_{\underline{d}}$ -invariant constructible subset \mathcal{O} of $\mathbb{E}_{\underline{d}}(A)$, we set $\text{Ext}_A^1(X,Y)_{\mathcal{O}}$ to be the subset of $\text{Ext}_A^1(X,Y)$ consisting of the equivalence classes of extensions with middle terms belonging to \mathcal{O} .

The above \mathbb{C}^* -action on the extensions induces an action on the middle terms. As a vector space, $L = Y \oplus X$. So we can define t.(y,x) = (ty,x) for any $t \in \mathbb{C}^*$ and $x \in X, y \in Y$ [7, Section 5.4] or [11, Lemma 1]. For any $L_1 \subseteq L$, this action yields a submodule $t.L_1$ of L isomorphic to L_1 . In general, if $\mathfrak{f}_L = (L \supseteq L_1 \supseteq L_2 \supseteq \cdots \supseteq L_m = 0)$ is a flag of submodules of L, then $t.\mathfrak{f}_L = (L \supseteq t.L_1 \supseteq t.L_2 \supseteq \cdots \supseteq t.L_m = 0)$. Hence, we obtain an action of \mathbb{C}^* on the flag of L.

1.4. The product of two evaluation forms. Let $A_{\underline{d}} := A_{\underline{d}}(S)$ be the constructible subset of $\mathbb{E}_{\underline{d}}(A)$ as in Section 1.1. For any module $M \in \mathbb{E}_{\underline{d}}(A)$, let $Gr_{\underline{e}}(M)$ be the subvariety of $Gr_{\underline{e}}(\mathbb{C}^{\underline{d}}) := \prod_{i \in Q_0} Gr_{e_i}(\mathbb{C}^{d_i})$ consisting of submodules of M with dimension vector $\underline{e} = (e_i)_{i \in Q_0}$, and let $Gr_{\underline{e}}(\mathbb{E}_{\underline{d}}(A))$ be the constructible subset of $\mathbb{E}_{\underline{d}}(A) \times Gr_{\underline{e}}(\mathbb{C}^{\underline{d}})$ consisting of pairs (M, M_1) such that $M_1 \in Gr_{\underline{e}}(M)$.

Proposition 1.3. Let \underline{d} and \underline{e} be two dimension vectors. Then the function $gr(\underline{e},\underline{d}): \mathbb{E}_{\underline{d}}(A) \to \mathbb{C}$ sending M to $\chi(Gr_{\underline{e}}(M))$ is a $G_{\underline{d}}$ -invariant constructible function.

Proof. Consider the projection: $\phi: Gr_{\underline{e}}(\mathbb{E}_{\underline{d}}(A)) \to \mathbb{E}_{\underline{d}}(A)$ mapping (M, M_1) to M. It is clear that ϕ is a morphism of varieties. By Theorem 1.2, $gr(\underline{e}, \underline{d}) = \phi_*(1_{Gr_e}(\mathbb{E}_{\underline{d}}(A)))$ is constructible.

For fixed \underline{d} , we can make finitely many choices of \underline{e} such that $Gr_{\underline{e}}(\mathbb{E}_{\underline{d}}(A))$ is nonempty. This implies the following corollary.

Corollary 1.4. There is a finite subset $S(\underline{d})$ of $A_{\underline{d}}$ such that $A_{\underline{d}} = \bigcup_{i \in S(\underline{d})} \mathcal{O}(\underline{d})_i$, where all $\mathcal{O}(\underline{d})_i$ are constructible subsets of $A_{\underline{d}}$ satisfying that for any $M, M' \in \mathcal{O}(\underline{d})_i$, $\chi(Gr_e(M)) = \chi(Gr_e(M'))$ for any \underline{e} .

Let $\mathcal{M}(\underline{d})$ be the vector space over $\mathbb C$ spanned by the constructible functions $gr(\underline{e},\underline{d})$ for any dimension vector \underline{e} . For any $M\in A_{\underline{d}}$, we define the evaluation form $\delta_M:\mathcal{M}(\underline{d})\to\mathbb C$ which maps the constructible function $gr(\underline{e})$ to $\chi(Gr_{\underline{e}}(M))=gr(\underline{e})(M)$. Using the notation in [7], we set $\langle L\rangle:=\mathcal{O}(\underline{d})_i$ for arbitrary $L\in\mathcal{O}(\underline{d})_i$. Indeed, $\delta_L=\delta_{L'}$ for any $L,L'\in\mathcal{O}(\underline{d})_i$. By abuse of notation, we have $A_{\underline{d}}=\bigcup_{L\in S(\underline{d})}\langle L\rangle$.

Let M, N be A-modules and $\underline{e}_1, \underline{e}_2$ be dimension vectors. Fixing $M_1 \in Gr_{\underline{e}_1}(M)$, $N_1 \in Gr_{\underline{e}_2}(N)$, we consider the natural map

$$\beta_{N_1,M_1}: \operatorname{Ext}_A^1(N,M_1) \to \operatorname{Ext}_A^1(N,M) \oplus \operatorname{Ext}_A^1(N_1,M_1)$$

mapping $\varepsilon_* \in \operatorname{Ext}_A^1(N, M_1)$ to $(\varepsilon, \varepsilon')$ such that the following diagram commutes:

$$\varepsilon': \qquad 0 \longrightarrow M_1 \longrightarrow L'' \longrightarrow N_1 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\varepsilon_*: \qquad 0 \longrightarrow M_1 \longrightarrow L' \longrightarrow N \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\varepsilon: \qquad 0 \longrightarrow M \xrightarrow{i} L \xrightarrow{\pi} N \longrightarrow 0$$

where L and L'' are the pushout and pullback, respectively. Define

$$EF^g_{\underline{e}_1,\underline{e}_2}(N,M) = \{ (M_1,N_1,\varepsilon,L_1) \mid M_1 \in Gr_{\underline{e}_1}(M), N_1 \in Gr_{\underline{e}_2}(N), \ \varepsilon \neq 0 \in \operatorname{Ext}^1_A(N,M)_L \cap \operatorname{Im}\beta_{N_1,M_1}, L_1 \in Gr_{\underline{e}_1+\underline{e}_2}(L), L_1 \cap i(M) = i(M_1), \pi(L_1) = N_1 \}$$

and $EF_{\underline{e}}^g(N,M)=\bigcup_{\underline{e}_1+\underline{e}_2=\underline{e}}EF_{\underline{e}_1,\underline{e}_2}^g(N,M)$. By the discussion in Section 1.3, the action of \mathbb{C}^* on $\operatorname{Ext}^1_A(N,M)\setminus\{0\}$ naturally induces the action on $EF_{\underline{e}}^g(N,M)$ by setting

$$t.(M_1, N_1, \varepsilon, L_1) = (M_1, N_1, t.\varepsilon, t.L_1)$$

for $(M_1,N_1,\varepsilon,L_1)\in EF^g_{\underline{e}}(N,M)$ and $t\in\mathbb{C}^*$. We denote its orbit space by $\mathbb{P}EF^g_{\underline{e}}(N,M)$. We also set the evaluation form $\delta:\mathcal{M}\to\mathbb{C}$ mapping $gr(\underline{e})$ to $\chi(\mathbb{P}EF^g_{\underline{e}}(N,M))$.

Theorem 1.5. Let $M, N \in \mathcal{C}(\mathcal{S})$. We have

$$\chi(\mathbb{P}\mathrm{Ext}_A^1(M,N))\delta_{M\oplus N} = \sum_{L\in S(d)} \chi(\mathbb{P}\mathrm{Ext}_A^1(M,N)_{\langle L\rangle})\delta_L + \delta.$$

Proof. Since (for example, see [1] or [6])

$$\chi(Gr_{\underline{e}}(M \oplus N)) = \sum_{\underline{e}_1 + \underline{e}_2 = \underline{e}} \chi(Gr_{\underline{e}_1}(M)) \cdot \chi(Gr_{\underline{e}_2}(N)),$$

the above formula has the following reformulation:

$$\begin{split} &\chi(\mathbb{P}\mathrm{Ext}\,_{A}^{1}(M,N)) \sum_{\underline{e}_{1} + \underline{e}_{2} = \underline{e}} \chi(Gr_{\underline{e}_{1}}(M)) \cdot \chi(Gr_{\underline{e}_{2}}(N)) \\ &= \sum_{L \in S(\underline{d})} \chi(\mathbb{P}\mathrm{Ext}\,_{A}^{1}(M,N)_{\langle L \rangle}) \chi(Gr_{\underline{e}}(L)) + \chi(\mathbb{P}EF_{\underline{e}}^{g}(N,M)). \end{split}$$

Now we prove the above reformulation. Define

$$EF(M,N) = \{(\varepsilon, L_1) \mid \varepsilon \in \operatorname{Ext}_A^1(M,N)_L \setminus \{0\}, L_1 \in Gr_{\underline{e}}(L)\}.$$

The action of \mathbb{C}^* on $\operatorname{Ext}^1_A(M,N)$ naturally induces the action on EF(M,N) [7, section 5.4]. Under the action of \mathbb{C}^* , it has the geometric quotient:

$$\pi: EF(M,N) \to \mathbb{P}EF(M,N).$$

We have the natural projection:

$$p: \mathbb{P}EF(M,N) \to \mathbb{P}Ext_A^1(M,N).$$

Using Proposition 1.1, we have

$$\chi(\mathbb{P}EF(M,N)) = \sum_{L \in S(d)} \chi(\mathbb{P}\mathrm{Ext}\,_A^1(M,N)_{\langle L \rangle}) \chi(Gr_{\underline{e}}(L)).$$

Given $(\varepsilon, L_1) \in EF(M, N)$, let ε be the equivalence class of the following short exact sequence:

$$\varepsilon: \quad 0 \longrightarrow N \xrightarrow{\left(\begin{array}{c} 1 \\ 0 \end{array}\right)} L \xrightarrow{\left(\begin{array}{c} 0 & 1 \end{array}\right)} M \longrightarrow 0 \ .$$

As a vector space, $L = N \oplus M$ and L_1 is the subspace of L. We put $M_1 = (0,1)(L_1)$ and $N_1 = (1,0)(L_1)$. It is clear that M_1 and N_1 are the submodules of M and N, respectively. Then there is a natural morphism

$$\phi_0: EF(M,N) \to \bigcup_{\underline{e_1} + \underline{e_2} = \underline{e}} Gr_{\underline{e_1}}(M) \times Gr_{\underline{e_2}}(N)$$

defined by mapping (ε, L_1) to (M_1, N_1) . Furthermore, we have

$$\phi_0((\varepsilon, L_1)) = \phi_0(t.(\varepsilon, L_1))$$

for any $(\varepsilon, L_1) \in EF(M, N)$ and $t \in \mathbb{C}^*$. This induces the morphism

$$\phi: \mathbb{P}EF(M,N) \to \bigcup_{\underline{e}_1 + \underline{e}_2 = \underline{e}} Gr_{\underline{e}_1}(M) \times Gr_{\underline{e}_2}(N).$$

Now we compute the fibre of this morphism for $M_1 \in Gr_{\underline{e}_1}(M)$ and $N_1 \in Gr_{\underline{e}_2}(N)$. Consider the following linear map dual to β_{M_1,N_1} :

$$\beta'_{M_1,N_1}:\operatorname{Ext}\nolimits^1_A(M,N)\oplus\operatorname{Ext}\nolimits^1_A(M_1,N_1)\to\operatorname{Ext}\nolimits^1(M_1,N)$$

mapping $(\varepsilon, \varepsilon')$ to $\varepsilon_{M_1} - \varepsilon'_N$, where ε_{M_1} and ε'_N are induced by the inclusions $M_1 \subseteq M$ and $N_1 \subseteq N$, respectively, as follows:

$$\varepsilon_{M_1}: \qquad 0 \longrightarrow N \longrightarrow L_1 \longrightarrow M_1 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\varepsilon: \qquad 0 \longrightarrow N \longrightarrow L \stackrel{\pi}{\longrightarrow} M \longrightarrow 0$$

where L_1 is the pullback, and

$$\varepsilon': \qquad 0 \longrightarrow N_1 \longrightarrow L' \longrightarrow M_1 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\varepsilon'_N: \qquad 0 \longrightarrow N \longrightarrow L'_1 \longrightarrow M_1 \longrightarrow 0$$

where L_1' is the pushout. It is clear that $\varepsilon, \varepsilon'$ and M_1, N_1 induce the inclusions $L_1 \subseteq L$ and $L' \subseteq L_1'$ and

$$p_0:\operatorname{Ext}\nolimits^1_A(M,N)\oplus\operatorname{Ext}\nolimits^1_A(M_1,N_1)\to\operatorname{Ext}\nolimits^1_A(M,N)$$

is a projection. By a similar discussion as in [7, Lemma 2.4.2], we know that

$$p(\phi^{-1}((M_1, N_1))) = \mathbb{P}(p_0(\text{Ker}(\beta'_{M_1, N_1}))).$$

Moreover, by [8, Lemma 7], for fixed $\varepsilon \in p_0(\operatorname{Ker}(\beta'_{M_1,N_1}))$, let $\mathbb{P}\varepsilon$ be its orbit in $\mathbb{P}(p_0(\operatorname{Ker}(\beta'_{M_1,N_1})))$. Then we have

$$p^{-1}(\mathbb{P}\varepsilon) \cap \phi^{-1}((M_1, N_1)) \cong \operatorname{Hom}(M_1, N/N_1).$$

Using Proposition 1.1, we get

$$\chi(\phi^{-1}((M_1, N_1))) = \chi(\mathbb{P}(p_0(\text{Ker}(\beta'_{M_1, N_1}))) = \dim_{\mathbb{C}} p_0(\text{Ker}(\beta'_{M_1, N_1})).$$

In the same way, we consider the projection

$$\varphi: \mathbb{P}EF_{\underline{e}}^g(N,M) \to \bigcup_{\underline{e}_1 + \underline{e}_2 = \underline{e}} Gr_{\underline{e}_1}(M) \times Gr_{\underline{e}_2}(N).$$

Then

$$\chi(\varphi^{-1}((M_1, N_1))) = \dim_{\mathbb{C}} \operatorname{Ext}_{A}^{1}(N, M) \cap \operatorname{Im} \beta_{N_1, M_1}.$$

Now, depending on the fact that $\mathcal{C}(\mathcal{S})$ is of Ext-symmetry, we have

$$\dim_{\mathbb{C}} p_0(\operatorname{Ker}(\beta'_{M_1,N_1})) + \dim_{\mathbb{C}} \operatorname{Ext}^1_A(N,M) \cap \operatorname{Im} \beta_{N_1,M_1} = \dim_{\mathbb{C}} \operatorname{Ext}^1_A(M,N).$$

Using Proposition 1.1 again, we complete the proof of the theorem.

2. The multiplication formula

The formula in the last section is not so 'symmetric' as the Geiss-Leclerc-Schröer formula. In order to overcome this difficulty, we should consider flags of composition series instead of Grassmannians of submodules as in [7]. In this section, we prove a multiplication formula as an analog of the Geiss-Leclerc-Schröer formula in [7].

Let $A = \mathbb{C}Q/\mathcal{I}$ be an algebra associated to a finite and connected quiver Q and let $S = \{S_1, \dots, S_n\}$ be a finite set of finite-dimensional simple A-modules. Let $\mathcal{C}(S)$ be a full subcategory of Ext-symmetry of mod(A) associated to S.

Let $A_{\underline{d}}$ be the constructible subset of $\mathbb{E}_{\underline{d}}(A)$ consisting of A-modules in $\mathcal{C}(\mathcal{S})$ with dimension vector \underline{d} . Let \mathcal{X} be the set of pairs (\mathbf{j}, \mathbf{c}) where $\mathbf{c} = (c_1, \dots, c_m) \in \{0, 1\}^m$ and $\mathbf{j} = (j_1, \dots, j_m)$ is a sequence of integers such that $S_{j_k} \in \mathcal{S}$ for $1 \leq k \leq m$. Given $x \in A_{\underline{d}}$ and $(\mathbf{j}, \mathbf{c}) \in \mathcal{X}$, we define an x-stable flag of type (\mathbf{j}, \mathbf{c}) as a composition series of x,

$$\mathfrak{f}_x = (V = (\mathbb{C}^{\underline{d}}, x) \supseteq V^1 \supseteq \cdots \supseteq V^m = 0),$$

of A-submodules of V such that $|V^{k-1}/V^k| = c_k S_{j_k}$, where S_{j_k} is the simple module in S. Let $\Phi_{\mathbf{j},\mathbf{c},x}$ be the variety of x-stable flags of type (\mathbf{j},\mathbf{c}) . We simply write $\Phi_{\mathbf{j},x}$ when $\mathbf{c} = (1,1,\cdots,1)$. Define

$$\Phi_{\mathbf{i}}(A_d) = \{(x, \mathfrak{f}) \mid x \in A_d, \mathfrak{f} \in \Phi_{\mathbf{i}, x}\}.$$

As in Proposition 1.3, we consider a projection: $p:\Phi_{\mathbf{j}}(A_{\underline{d}})\to A_{\underline{d}}$. The function $p_*(1_{\Phi_{\mathbf{j}}(A_{\underline{d}})})$ is constructible by Theorem 1.2.

Proposition 2.1. For any type j, the function $A_{\underline{d}} \to \mathbb{C}$ mapping x to $\chi(\Phi_{j,x})$ is constructible.

Let $d_{\mathbf{j},\mathbf{c}}: \mathbb{E}_{\underline{d}}(A) \to \mathbb{C}$ be the function defined by $d_{\mathbf{j},\mathbf{c}}(x) = \chi(\Phi_{\mathbf{j},\mathbf{c},x})$ for $x \in \mathbb{E}_{\underline{d}}(A)$. It is a constructible function as in Proposition 2.1. We simply write $d_{\mathbf{j}}$ if $\mathbf{c} = (1, \dots, 1)$. Define $\mathcal{M}(\underline{d})$ to be the vector space spanned by $d_{\mathbf{j}}$. For fixed $A_{\underline{d}}$, there are finitely many types \mathbf{j} such that $\Phi_{\mathbf{j}}(A_{\underline{d}})$ is not empty. Hence, there exists a finite subset $S(\underline{d})$ of $A_{\underline{d}}$ such that

$$A_{\underline{d}} = \bigcup_{M \in S(\underline{d})} \langle M \rangle,$$

where $\langle M \rangle = \{ M' \in A_{\underline{d}} \mid \chi(\Phi_{\mathbf{j},M'}) = \chi(\Phi_{\mathbf{j},M}) \text{ for any type } \mathbf{j} \}.$

For any $M \in A_{\underline{d}}$, we define the evaluation form $\delta_M : \mathcal{M}(\underline{d}) \to \mathbb{C}$ mapping a constructible function $f \in \mathcal{M}(\underline{d})$ to f(M). We have

$$\langle M \rangle = \{ M' \in A_{\underline{d}} \mid \delta_{M'} = \delta_M \}.$$

Lemma 2.2. For $M, N \in \mathcal{C}(S)$, we have $\delta_{M \oplus N} = \delta_M \cdot \delta_N$.

The lemma is equivalent to showing that

$$\chi(\Phi_{\mathbf{j},M\oplus N}) = \sum_{\mathbf{c}'+\mathbf{c}''\sim 1} \chi(\Phi_{\mathbf{j},\mathbf{c}',M}) \cdot \chi(\Phi_{\mathbf{j},\mathbf{c}'',N}).$$

Here, $\mathbf{c}' + \mathbf{c}'' \sim 1$ means that $c_k' + c_k'' = 1$ for $k = 1, \dots, m$. The proof of the lemma depends on the fact that under the action of \mathbb{C}^* , $\Phi_{\mathbf{j},M\oplus N}$ and its stable subset have the same Euler characteristic. We refer to [6] for details.

The following formula is just the multiplication formula in [7, Theorem 1] when A is a preprojective algebra and S is the set of all simple A-modules.

Theorem 2.3. With the above notation, for $M, N \in \mathcal{C}(S)$, we have

$$\chi(\mathbb{P}\mathrm{Ext}_A^1(M,N))\delta_{M\oplus N} = \sum_{L\in S(\underline{e})} (\chi(\mathbb{P}\mathrm{Ext}_A^1(M,N)_{\langle L\rangle}) + \chi(\mathbb{P}\mathrm{Ext}_A^1(N,M)_{\langle L\rangle}))\delta_L,$$

where $e = \dim M + \dim N$.

In the proof of Theorem 1.5, a key point is to consider the linear maps β_{M_1,N_1} and β'_{M_1,N_1} dual to each other by the property of Ext-symmetry. Now we extend this idea to the present situation as in [7]. Let

$$\mathfrak{f}_M = (M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_m = 0)$$

be a flag of type $(\mathbf{j}, \mathbf{c}')$ and let

$$\mathfrak{f}_N = (N = N_0 \supseteq N_1 \supseteq \cdots \supseteq N_m = 0)$$

be a flag of type $(\mathbf{j}, \mathbf{c}'')$ such that $c_k' + c_k'' = 1$ for $k = 1, \dots, m$. We write $\mathbf{c}' + \mathbf{c}'' \sim 1$. For $k = 1, \dots, m$, let $\iota_{M,k}$ and $\iota_{N,k}$ be the inclusion maps $M_k \to M_{k-1}$ and $N_k \to N_{k-1}$, respectively. Define [7, Section 2]

$$\beta_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_{M},\mathfrak{f}_{N}}:\bigoplus_{k=0}^{m-2}\operatorname{Ext}_{A}^{1}(N_{k},M_{k+1})\to\bigoplus_{k=0}^{m-2}\operatorname{Ext}_{A}^{1}(N_{k},M_{k})$$

by the following map:

$$\begin{array}{c|c}
N_k & \xrightarrow{\varepsilon_k} M_{k+1}[1] \\
\downarrow^{\iota_{N,k}} & & \downarrow^{\iota_{M,k+1}} \\
N_{k-1} & \xrightarrow{\varepsilon_{k-1}} M_k[1]
\end{array}$$

satisfying

$$\beta_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_{M},\mathfrak{f}_{N}}(\varepsilon_{0},\cdots,\varepsilon_{m-2})=\iota_{M,1}\circ\varepsilon_{0}+\sum_{k=1}^{m-2}(\iota_{M,k+1}\circ\varepsilon_{k}-\varepsilon_{k-1}\circ\iota_{N,k}).$$

Depending on the fact that $\mathcal{C}(\mathcal{S})$ is of Ext-symmetry, we can write its dual

$$\beta'_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_{M},\mathfrak{f}_{N}}: \bigoplus_{k=0}^{m-2} \operatorname{Ext}_{A}^{1}(M_{k},N_{k}) \to \bigoplus_{k=0}^{m-2} \operatorname{Ext}_{A}^{1}(M_{k+1},N_{k})$$

by the following map:

$$M_{k+1} \xrightarrow{\eta_{k+1}} N_{k+1}[1]$$

$$\downarrow^{\iota_{M,k+1}} \qquad \qquad \downarrow^{\iota_{N,k+1}}$$

$$M_k \xrightarrow{\eta_k} N_k[1]$$

satisfying

$$\beta'_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_{M},\mathfrak{f}_{N}}(\eta_{0},\cdots,\eta_{m-2}) = \sum_{k=0}^{m-3} (\eta_{k} \circ \iota_{M,k+1} - \iota_{N,k+1} \circ \eta_{k+1}) + \eta_{m-2} \circ \iota_{M,m-1}.$$

Now, we prove Theorem 2.3.

Proof. Define

$$EF_{\mathbf{i}}(M, N) = \{(\varepsilon, \mathfrak{f}) \mid \varepsilon \in \operatorname{Ext}_{A}^{1}(M, N)_{L}, L \in A_{e}, \mathfrak{f} \in \Phi_{\mathbf{i}, L}\}.$$

The action of \mathbb{C}^* on $\operatorname{Ext}_A^1(M,N)$ induces an action on $EF_{\mathbf{i}}(M,N)$. The orbit space under the action of \mathbb{C}^* is denoted by $\mathbb{P}EF_{\mathbf{j}}(M,N)$, and the orbit of $(\varepsilon,\mathfrak{f})$ is denoted by $\mathbb{P}(\varepsilon,\mathfrak{f})$. We have the natural projection

$$p: \mathbb{P}EF_{\mathbf{j}}(M, N) \to \mathbb{P}Ext_A^1(M, N).$$

The fibre for any $\mathbb{P}\varepsilon \in \mathbb{P}\mathrm{Ext}_{A}^{1}(M,N)_{L}$ is isomorphic to $\Phi_{\mathbf{j},L}$. By Theorem 1.1, we have

$$\chi(\mathbb{P}EF_{\mathbf{j}}(M,N)) = \sum_{L \in S(\underline{e})} \chi(\mathbb{P}\mathrm{Ext}\,{}_A^1(M,N)_{\langle L \rangle}) \chi(\Phi_{\mathbf{j},L}).$$

We also have the natural morphism

$$\phi: \mathbb{P}EF_{\mathbf{j}}(M,N) \to \bigcup_{\mathbf{c}'+\mathbf{c}''\sim 1} \Phi_{\mathbf{j},\mathbf{c}',M} \times \Phi_{\mathbf{j},\mathbf{c}'',N}$$

mapping $\mathbb{P}(\varepsilon,\mathfrak{f})$ to $(\mathfrak{f}_M,\mathfrak{f}_N)$, where $(\mathfrak{f}_M,\mathfrak{f}_N)$ is naturally induced by ε and \mathfrak{f} and $t.(\varepsilon,\mathfrak{f})$ induces the same $(\mathfrak{f}_M,\mathfrak{f}_N)$ for any $t\in\mathbb{C}^*$. By [7, Lemma 2.4.2], we know that

$$p(\phi^{-1}(\mathfrak{f}_M,\mathfrak{f}_N)) = \mathbb{P}(p_0(\operatorname{Ker}(\beta'_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N}))),$$

 $p(\phi^{-1}(\mathfrak{f}_M,\mathfrak{f}_N))=\mathbb{P}(p_0(\operatorname{Ker}(\beta'_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N}))),$ where $p_0:\bigoplus_{k=0}^{m-2}\operatorname{Ext}^1_A(M_k,N_k)\to\operatorname{Ext}^1_A(M,N)$ is a projection. On the other hand, by [8, Lemma 7], the morphism

$$p \mid_{\phi^{-1}(\mathfrak{f}_M,\mathfrak{f}_N)}: \phi^{-1}(\mathfrak{f}_M,\mathfrak{f}_N) \to \mathbb{P}(p_0(\operatorname{Ker}(\beta'_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N})))$$

has fibres isomorphic to an affine space. Hence, by Theorem 1.1, we have

$$\chi(\phi^{-1}(\mathfrak{f}_M,\mathfrak{f}_N)) = \chi(\mathbb{P}(p_0(\operatorname{Ker}(\beta'_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N})))).$$

Dually, we define

$$EF_{\mathbf{j}}(N,M) = \{(\varepsilon,\mathfrak{f}) \mid \varepsilon \in \operatorname{Ext}_{A}^{1}(N,M)_{L}, L \in A_{\underline{e}}, \mathfrak{f} \in \Phi_{\mathbf{j},L} \}.$$

The orbit space under \mathbb{C}^* -action is denoted by $\mathbb{P}EF_{\mathbf{i}}(N,M)$. We have the natural projection

$$q: \mathbb{P}EF_{\mathbf{j}}(N, M) \to \mathbb{P}\mathrm{Ext}\,_{A}^{1}(N, M).$$

The fibre for any $\mathbb{P}\varepsilon \in \mathbb{P}\mathrm{Ext}_{A}^{1}(N,M)_{L}$ is isomorphic to $\Phi_{\mathbf{j},L}$. By Theorem 1.1, we have

$$\chi(\mathbb{P}EF_{\mathbf{j}}(N,M)) = \sum_{L \in S(\underline{e})} \chi(\mathbb{P}\mathrm{Ext}\,{}_A^1(N,M)_{\langle L \rangle}) \chi(\Phi_{\mathbf{j},L}).$$

As in the proof of Theorem 1.5, there is a natural morphism

$$\varphi_0: EF_{\mathbf{j}}(N, M) \to \bigcup_{\mathbf{c}' + \mathbf{c}'' \sim 1} \Phi_{\mathbf{j}, \mathbf{c}', M} \times \Phi_{\mathbf{j}, \mathbf{c}'', N}$$

such that

$$\varphi_0((\varepsilon,\mathfrak{f})) = \varphi_0(t.(\varepsilon,\mathfrak{f}))$$

for any $(\varepsilon, \mathfrak{f}) \in EF_{\mathbf{i}}(N, M)$ and $t \in \mathbb{C}^*$. Hence, we have the morphism

$$\varphi: \mathbb{P}EF_{\mathbf{j}}(N,M) \to \bigcup_{\mathbf{c}'+\mathbf{c}''\sim 1} \Phi_{\mathbf{j},\mathbf{c}',M} \times \Phi_{\mathbf{j},\mathbf{c}'',N}.$$

By [7, Lemma 2.4.3], we know that

$$q(\varphi^{-1}(\mathfrak{f}_M,\mathfrak{f}_N)) = \mathbb{P}\mathrm{Ext}_A^1(N,M) \cap \mathrm{Im}(\beta_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N}).$$

Similar to the above dual situation, by [8, Lemma 7], the morphism

$$q \mid_{\varphi^{-1}(\mathfrak{f}_M,\mathfrak{f}_N)}: \varphi^{-1}(\mathfrak{f}_M,\mathfrak{f}_N) \to \mathbb{P}\mathrm{Ext}_A^1(N,M) \cap \mathrm{Im}(\beta_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N})$$

has fibres isomorphic to an affine space. Hence, by Proposition 1.1, we have

$$\chi(\varphi^{-1}(\mathfrak{f}_M,\mathfrak{f}_N)) = \chi(\mathbb{P}\mathrm{Ext}_A^1(N,M) \cap \mathrm{Im}(\beta_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N})).$$

However, since $\beta_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N}$ and $\beta'_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N}$ are dual to each other, we have

$$(p_0(\operatorname{Ker}(\beta'_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N})))^{\perp} = \operatorname{Ext}^1_A(N,M) \cap \operatorname{Im}(\beta_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N}).$$

Thus we have

$$\chi(\mathbb{P}(p_0(\operatorname{Ker}(\beta'_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N})))) + \chi(\mathbb{P}\operatorname{Ext}^1_A(N,M) \cap \operatorname{Im}(\beta_{\mathbf{j},\mathbf{c}',\mathbf{c}'',\mathfrak{f}_M,\mathfrak{f}_N}))$$

$$= \dim_{\mathbb{C}}\operatorname{Ext}^1_A(M,N).$$

Therefore, using Proposition 1.1, we obtain

$$\mathbb{P}EF_{\mathbf{j}}(M,N) + \mathbb{P}EF_{\mathbf{j}}(N,M) = \dim_{\mathbb{C}}\mathrm{Ext}^{\,1}(M,N) \cdot \sum_{\mathbf{c}' + \mathbf{c}'' \sim 1} \chi(\Phi_{\mathbf{j},\mathbf{c}',M}) \cdot \chi(\Phi_{\mathbf{j},\mathbf{c}'',N}).$$

Now, we have obtained the identity

$$\begin{split} &\dim_{\mathbb{C}} \mathrm{Ext}^{\,1}(M,N) \cdot \sum_{\mathbf{c}' + \mathbf{c}'' \sim 1} \chi(\Phi_{\mathbf{j},\mathbf{c}',M}) \cdot \chi(\Phi_{\mathbf{j},\mathbf{c}'',N}) \\ &= \sum_{L \in S(e)} \chi(\mathbb{P} \mathrm{Ext}^{\,1}_{\,A}(M,N)_{\langle L \rangle}) \chi(\Phi_{\mathbf{j},L}) + \sum_{L \in S(e)} \chi(\mathbb{P} \mathrm{Ext}^{\,1}_{\,A}(N,M)_{\langle L \rangle}) \chi(\Phi_{\mathbf{j},L}) \end{split}$$

for any type **j**. Using Lemma 2.2 and Proposition 1.1, we finish the proof of Theorem 2.3. \Box

3. Examples

In this section, we give some examples of module subcategories of Ext-symmetry. (I) Let A be a preprojective algebra associated to a connected quiver Q without loops. Let $\mathcal S$ be the set of all simple A-modules. Then $\mathcal C(\mathcal S)$ is of Ext-symmetry [7, Theorem 3].

(II) Let $A = \mathbb{C}Q/\langle \alpha\alpha^* - \alpha^*\alpha \rangle$ be an associative algebra associated to the following quiver:

$$Q:=\ \alpha \bigcirc \bullet \bigcirc \alpha^*\ .$$

Let $M=(\mathbb{C}^m,X_\alpha,X_{\alpha^*})$ and $N=(\mathbb{C}^n,Y_\alpha,Y_{\alpha^*})$ be two finite-dimensional A-modules. Following the characterization of $\operatorname{Ext}^1_A(M,N)$ in Section 1.3, we consider the following isomorphism between complexes (see [3, Lemma 1] or [7, Section 8.2]):

$$\begin{split} \operatorname{Hom}_{\mathbb{C}}(M_{\bullet}, N_{\bullet}) & \xrightarrow{d^{0}_{M,N}} \operatorname{Hom}_{\mathbb{C}}(M_{\bullet}, N_{\bullet}) \bigoplus \operatorname{Hom}_{\mathbb{C}}(M_{\bullet}, N_{\bullet}) \xrightarrow{d^{1}_{M,N}} \operatorname{Hom}_{\mathbb{C}}(M_{\bullet}, N_{\bullet}) \;, \\ \downarrow \mathbf{1} & \downarrow (\mathbf{1}, -\mathbf{1}) & \downarrow -\mathbf{1} \\ \operatorname{Hom}_{\mathbb{C}}(M_{\bullet}, N_{\bullet}) \xrightarrow{d^{0,*}_{N,M}} \operatorname{Hom}_{\mathbb{C}}(M_{\bullet}, N_{\bullet}) \bigoplus \operatorname{Hom}_{\mathbb{C}}(M_{\bullet}, N_{\bullet}) \xrightarrow{d^{0,*}_{N,M}} \operatorname{Hom}_{\mathbb{C}}(M_{\bullet}, N_{\bullet}) \end{split}$$

where $M_{\bullet} = \mathbb{C}^m, N_{\bullet} = \mathbb{C}^n$. Here, we define

$$\begin{split} d^0_{M,N}(A) &= (Y_{\alpha}A - AX_{\alpha}, Y_{\alpha^*}A - AX_{\alpha^*}), d^1_{M,N}(B, B^*) \\ &= Y_{\alpha^*}B + B^*X_{\alpha} - Y_{\alpha}B^* - BX_{\alpha^*}, \\ d^{0,*}_{N,M}(B, B^*) &= BX_{\alpha^*} + B^*X_{\alpha} - Y_{\alpha^*}B - Y_{\alpha}B^*, d^{1,*}_{N,M}(A) \\ &= (Y_{\alpha}A - AX_{\alpha}, -Y_{\alpha^*}A + AX_{\alpha^*}) \end{split}$$

for any $n \times m$ matrices A, B and B*. The second complex is dual to the complex

$$\operatorname{Hom}_{\mathbb{C}}(N_{\bullet}, M_{\bullet}) \xrightarrow{d^0_{N,M}} \operatorname{Hom}_{\mathbb{C}}(N_{\bullet}, M_{\bullet}) \bigoplus \operatorname{Hom}_{\mathbb{C}}(N_{\bullet}, M_{\bullet}) \xrightarrow{d^1_{N,M}} \operatorname{Hom}_{\mathbb{C}}(N_{\bullet}, M_{\bullet})$$

with respect to the nondegenerate bilinear form

$$\Phi: \operatorname{Hom}_{\mathbb{C}}(N_{\bullet}, M_{\bullet}) \times \operatorname{Hom}_{\mathbb{C}}(N_{\bullet}, M_{\bullet}) \to \mathbb{C}$$

mapping (X,Y) to tr(XY). As in Section 1.3, we have functorially

$$\operatorname{Ext}_A^1(M,N) = \operatorname{Ker}(d_{M,N}^1) / \operatorname{Im}(d_{M,N}^0) \text{ and } \operatorname{DExt}_A^1(N,M) = \operatorname{Ker}(d_{N,M}^{0,*}) / \operatorname{Im}(d_{N,M}^{1,*}).$$

Hence, we have a bifunctorial isomorphism:

$$\operatorname{Ext}_A^1(M,N) \cong \operatorname{DExt}_A^1(N,M).$$

(III) Deformed preprojective algebras were introduced by Crawley-Boevey and Holland in [4]. Fix $\lambda = (\lambda_i)_{i \in Q_0}$ where $\lambda_i \in \mathbb{C}$. The deformed preprojective algebra of weight λ is an associative algebra

$$A(\lambda) = \mathbb{C}\overline{Q}/\langle \sum_{\alpha \in Q_1} (\alpha \alpha^* - \alpha^* \alpha) - \sum_{i \in Q_0} \lambda_i e_i \rangle,$$

where $\overline{Q} = Q \cup Q^*$ is the double of a quiver Q without loops. Let M, N be finite-dimensional A-modules. As in Section 1.3, we know D(M, N) is just the kernel of the following linear map:

$$\bigoplus_{\alpha \in \overline{Q}_1} \operatorname{Hom}_{\mathbb{C}}(M_{s(\alpha)}, N_{t(\alpha)}) \xrightarrow{d^1_{M,N}} \bigoplus_{i \in Q_0} \operatorname{Hom}_{\mathbb{C}}(M_i, N_i),$$

where $d_{M,N}^1$ maps $(f_{\alpha})_{\alpha \in \overline{Q}_1}$ to $(g_i)_{i \in Q_0}$ such that

$$g_i = \sum_{\alpha \in Q_1, s(\alpha) = i} (N_{\alpha^*} f_\alpha + f_{\alpha^*} M_\alpha) - \sum_{\alpha \in Q_1, t(\alpha) = i} (N_\alpha f_{\alpha^*} + f_\alpha M_{\alpha^*}).$$

In the same way as in [7, Section 8.2], we obtain a bifunctorial isomorphism

$$\operatorname{Ext}_A^1(M,N) \cong \operatorname{DExt}_A^1(N,M).$$

(IV) It is easy to construct examples of module subcategories of Ext-symmetry over an algebra which is not of Ext-symmetry. Let $A = \mathbb{C}Q/\langle\beta\beta^* - \beta^*\beta\rangle$ be a quotient algebra associated to the quiver

$$Q := 1 \xrightarrow{\alpha} 2 \underbrace{\beta}_{\beta^*} 3.$$

Let S_1, S_2 and S_3 be finite-dimensional simple A-modules associated to three vertices, respectively. Since $\dim_{\mathbb{C}} \operatorname{Ext}^1(S_1, S_2) = 1$ and $\operatorname{Ext}^1(S_2, S_1) = 0$, A is not an algebra of Ext-symmetry. However, for $S = \{S_1, S_3\}$ or $\{S_2, S_3\}$, C(S) is of Ext-symmetry.

ACKNOWLEDGMENTS

We are grateful to the referee for many helpful comments. In particular, Section 3 was added following the comments. Furthermore, the second author would like to thank the Max Planck Institute for Mathematics in Bonn for a three-month research stay in 2008.

References

- P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comm. Math. Helv. 81 (2006), 595–616. MR2250855 (2008b:16015)
- P. Caldero, B. Keller, From triangulated categories to cluster algebras, Inv. Math. 172 (2008), 169–211. MR2385670
- W. Crawley-Boevey, On the exceptional fibres of Kleinian singularities, Amer. J. Math. 122 (2000), no. 5, 1027–1037. MR1781930 (2001f:14009)
- W. Crawley-Boevey, M. Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J. 92 (1998), no. 3, 605–635. MR1620538 (99f:14003)
- A. Dimca, Sheaves in topology. Universitext. Springer-Verlag, Berlin, 2004. MR2050072 (2005j:55002)
- $6.\ M.\ Ding,\ J.\ Xiao,\ F.\ Xu,\ Realizing enveloping algebras via varieties of modules, arXiv:math/0604560.$
- C. Geiss, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras, II: A multiplication formula, Compositio Mathematica 143 (2007), 1313–1334. MR2360317 (2009b:17031)
- 8. A. Hubery, Acyclic cluster algebras via Ringel-Hall algebras, preprint.
- D. Joyce, Constructible functions on Artin stacks, J. London Math. Soc. (2) 74 (2006), 583–606. MR2286434 (2008b:14001)
- R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR0361141 (50:13587)
- Ch. Riedtmann, Lie algebras generated by indecomposables, J. Algebra 170 (1994), 526–546.
 MR1302854 (96e:16013)
- C. M. Ringel, The preprojective algebra of a quiver. In: Algebras and modules II (Geiranger, 1996), 467–480, CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, 1998. MR1648647 (99i:16031)

Department of Mathematics, Tsinghua University, Beijing 100084, People's Republic of China

 $E\text{-}mail\ address: \verb"jxiao@math.tsinghua.edu.cn"$

Department of Mathematics, Tsinghua University, Beijing 100084, People's Republic of China

 $E ext{-}mail\ address: fanxu@mail.tsinghua.edu.cn}$