A MULTIPLICATION FORMULA FOR MODULE SUBCATEGORIES OF EXT-SYMMETRY

JIE XIAO AND FAN XU

(Communicated by Martin Lorenz)

Abstract

We define evaluation forms associated to objects in a module subcategory of Ext-symmetry generated by finitely many simple modules over a path algebra with relations and prove a multiplication formula for the product of two evaluation forms. It is analogous to a multiplication formula for the product of two evaluation forms associated to modules over a preprojective algebra given by Geiss, Leclerc and Schröer in Compositio Math. 143 (2007), 1313-1334.

Introduction

Let Λ be the preprojective algebra associated to a connected quiver without loops (see e.g. [12]) and let $\bmod (\Lambda)$ be the category of finite-dimensional nilpotent left Λ modules. We denote by $\Lambda_{\underline{e}}$ the variety of finite-dimensional nilpotent left Λ-modules with dimension vector \underline{e}. For any $x \in \Lambda_{\underline{e}}$, there is an evaluation form δ_{x} associated to x satisfying that there is a finite subset $R(\underline{e})$ of $\Lambda_{\underline{e}}$ such that $\Lambda_{\underline{e}}=\bigsqcup_{x \in R(\underline{e})}\langle x\rangle$, where $\langle x\rangle:=\left\{y \in \Lambda_{\underline{e}} \mid \delta_{x}=\delta_{y}\right\}$ [7, Section 1.2]. Inspired by the Caldero-Keller cluster multiplication theorem for finite type [4], Geiss, Leclerc and Schröer [7] proved a multiplication formula (the Geiss-Leclerc-Schröer multiplication formula) as follows:

$$
\chi\left(\mathbb{P} \operatorname{Ext}_{\Lambda}^{1}\left(x^{\prime}, x^{\prime \prime}\right)\right) \delta_{x^{\prime} \oplus x^{\prime \prime}}=\sum_{x \in R(\underline{e})}\left(\chi\left(\mathbb{P E x t}_{\Lambda}^{1}\left(x^{\prime}, x^{\prime \prime}\right)_{\langle x\rangle}\right)+\chi\left(\mathbb{P E x t}_{\Lambda}^{1}\left(x^{\prime \prime}, x^{\prime}\right)_{\langle x\rangle}\right)\right) \delta_{x}
$$

where $x^{\prime} \in \Lambda_{\underline{e}^{\prime}}, x^{\prime \prime} \in \Lambda_{\underline{e}^{\prime \prime}}, \underline{e}=\underline{e}^{\prime}+\underline{e}^{\prime \prime}, \mathbb{P E x t}_{\Lambda}^{1}\left(x^{\prime}, x^{\prime \prime}\right)_{\langle x\rangle}$ is the constructible subset of $\mathbb{P E x t}{ }_{\Lambda}^{1}\left(x^{\prime}, x^{\prime \prime}\right)$ with the middle terms belonging to $\langle x\rangle$, and $\mathbb{P E x t}_{\Lambda}^{1}\left(x^{\prime \prime}, x^{\prime}\right)_{\langle x\rangle}$ is defined similarly.

The proof of the formula depends heavily on the fact that the category $\bmod (\Lambda)$ is of Ext-symmetry. A category \mathcal{C} is of Ext-symmetry if there is a bifunctorial isomorphism: $\operatorname{Ext}_{\mathcal{C}}^{1}(M, N) \cong \operatorname{DExt}_{\mathcal{C}}^{1}(N, M)$ for any objects $M, N \in \mathcal{C}$.

Let Q be a finite quiver and A be a quotient algebra $\mathbb{C} Q / \mathcal{I}$ by an ideal \mathcal{I}. We denote by $\bmod (A)$ the category of finite-dimensional left A-modules. We call A an algebra of Ext-symmetry if $\bmod (A)$ is of Ext-symmetry. It is proved that preprojective algebras and deformed preprojective algebras are of Ext-symmetry (see [7, Theorem 3] and Section 3 in this paper).

[^0](C)2009 American Mathematical Society

In this paper, we focus on the module subcategories of Ext-symmetry of $\bmod (A)$. Let $\mathcal{S}=\left\{S_{1}, \cdots, S_{n}\right\}$ be a finite subset of finite-dimensional simple A-modules. We denote by $\mathcal{C}(\mathcal{S})$ the full subcategory of $\bmod (A)$ consisting of modules M satisfying that the isomorphism classes of the composition factors of M belong to \mathcal{S}. We associate to modules in $\mathcal{C}(\mathcal{S})$ some evaluation forms and prove that if $\mathcal{C}(\mathcal{S})$ is of Extsymmetry, then the product of two evaluation forms satisfies an identity (Theorem 2.3). The identity is analogous to the Geiss-Leclerc-Schröer multiplication formula. There are no known examples of algebras of Ext-symmetry, apart from preprojective and deformed preprojective algebras (see Section 3), and it is an open question whether further examples exist. However, other examples of module subcategories of Ext-symmetry can be easily constructed, and we give an example in Section 3.

1. The product of two evaluation forms

1.1. Module varieties. Let $Q=\left(Q_{0}, Q_{1}, s, t\right)$ be a finite connected quiver, where Q_{0} and Q_{1} are the sets of vertices and arrows, respectively, and $s, t: Q_{1} \rightarrow Q_{0}$ are maps such that any arrow α starts at $s(\alpha)$ and terminates at $t(\alpha)$. The space spanned by all paths of nonzero length is a graded ideal of $\mathbb{C} Q$, and we will denote it by \mathcal{J}. A relation for Q is a linear combination $\sum_{i=1}^{r} \lambda_{i} p_{i}$, where $\lambda_{i} \in \mathbb{C}$ and the p_{i} are paths with $s\left(p_{i}\right)=s\left(p_{j}\right)$ and $t\left(p_{i}\right)=t\left(p_{j}\right)$ for any $1 \leq i, j \leq r$. Here if p_{i} is a vertex in Q_{0}, then $s\left(p_{i}\right)=t\left(p_{i}\right)=p_{i}$. Let $A=\mathbb{C} Q / \mathcal{I}$, where \mathcal{I} is an ideal generated by a finite set of relations. We don't assume that \mathcal{I} is admissible, i.e. $\mathcal{I} \subset \mathcal{J}^{2}$.

A dimension vector for A is a map $\underline{d}: Q_{0} \rightarrow \mathbb{N}$. We write d_{i} instead of $d(i)$ for any $i \in Q_{0}$. For any dimension vector $\underline{d}=\left(d_{i}\right)_{i \in Q_{0}}$, we consider the affine space over \mathbb{C},

$$
\mathbb{E}_{\underline{d}}(Q)=\bigoplus_{\alpha \in Q_{1}} \operatorname{Hom}_{\mathbb{C}}\left(\mathbb{C}^{d_{s(\alpha)}}, \mathbb{C}^{d_{t(\alpha)}}\right)
$$

Any element $x=\left(x_{\alpha}\right)_{\alpha \in Q_{1}}$ in $\mathbb{E}_{\underline{d}}(Q)$ defines a representation $(\mathbb{C} \underline{d}, x)$, where $\mathbb{C} \underline{d}=$ $\bigoplus_{i \in Q_{0}} \mathbb{C}^{d_{i}}$. For any $x=\left(x_{\alpha}\right)_{\alpha \in Q_{1}} \in \mathbb{E}_{\underline{d}}(Q)$ and any path $p=\alpha_{1} \alpha_{2} \cdots \alpha_{m}$ in Q, we set $x_{p}=x_{\alpha_{1}} x_{\alpha_{2}} \cdots x_{\alpha_{m}}$. Then x satisfies a relation $\sum_{i=1}^{r} \lambda_{i} p_{i}$ if $\sum_{i=1}^{r} \lambda_{i} x_{p_{i}}=0$. Here if p_{i} is a vertex in Q_{0}, then $x_{p_{i}}$ is the identity matrix. Let R be a finite set of relations generating the ideal \mathcal{I}. Then we denote by $\mathbb{E}_{\underline{d}}(A)$ the closed subvariety of $\mathbb{E}_{\underline{d}}(Q)$ which consists of elements satisfying all relations in R.

Let $\mathcal{S}=\left\{S_{1}, \cdots, S_{n}\right\}$ be a finite subset of finite-dimensional simple A-modules and $\mathcal{C}(\mathcal{S})$ be a module subcategory of Ext-symmetry of $\bmod (A)$. We denote by $A_{\underline{d}}(\mathcal{S})$ the constructible subset of $\mathbb{E}_{\underline{d}}(A)$ consisting of modules in $\mathcal{C}(\mathcal{S})$. In the sequel, we will fix the finite set \mathcal{S} and write $A_{\underline{d}}$ instead of $A_{\underline{d}}(\mathcal{S})$. The algebraic group $G_{\underline{d}}:=G_{\underline{d}}(Q)=\prod_{i \in Q_{0}} \mathrm{GL}_{d_{i}}(\mathbb{C})$ acts on $\mathbb{E}_{\underline{d}}(Q)$ by $\left(x_{\alpha}\right)_{\alpha \in Q_{1}}^{g}=\left(g_{t(\alpha)} x_{\alpha} g_{s(\alpha)}^{-1}\right)_{\alpha \in Q_{1}}$ for $g \in G_{\underline{d}}$ and $\left(x_{\alpha}\right)_{\alpha \in Q_{1}} \in \mathbb{E}_{\underline{d}}(Q)$. It naturally induces the action of $G_{\underline{d}}$ on $A_{\underline{d}}(\mathcal{S})$. The orbit space is denoted by $\bar{A}_{\underline{d}}(\mathcal{S})$. A constructible function over $\mathbb{E}_{\underline{d}}(A)$ is a function $f: \mathbb{E}_{\underline{d}}(A) \rightarrow \mathbb{C}$ such that $f\left(\mathbb{E}_{\underline{d}}(A)\right)$ is a finite subset of \mathbb{C} and $f^{-1}(c)$ is a constructible subset of $\mathbb{E}_{\underline{d}}(A)$ for any $c \in Q$.

Throughout this paper, we always assume that $\mathcal{C}(\mathcal{S})$ is of Ext-symmetry and that constructible functions over $\mathbb{E}_{\underline{d}}(A)$ are $G_{\underline{d}}$-invariant for any dimension vector \underline{d} unless particularly stated.
1.2. Euler characteristics. Let χ denote the Euler characteristic in compactly supported cohomology. Let X be a complex algebraic variety and \mathcal{O} a constructible
subset as the disjoint union of finitely many locally closed subsets X_{i} for $i=$ $1, \cdots, m$. Define $\chi(\mathcal{O})=\sum_{i=1}^{m} \chi\left(X_{i}\right)$. We note that it is well-defined. The following properties will be applied to compute Euler characteristics.

Proposition 1.1 ([11] and 9]). Let X, Y be algebraic varieties over \mathbb{C}. Then
(1) If an algebraic variety X is the disjoint union of finitely many constructible sets X_{1}, \cdots, X_{r}, then

$$
\chi(X)=\sum_{i=1}^{r} \chi\left(X_{i}\right)
$$

(2) If $\varphi: X \longrightarrow Y$ is a morphism with the property that all fibers have the same Euler characteristic χ, then $\chi(X)=\chi \cdot \chi(Y)$. In particular, if φ is a locally trivial fibration in the analytic topology with fibre F, then $\chi(Z)=$ $\chi(F) \cdot \chi(Y)$.
(3) $\chi\left(\mathbb{C}^{n}\right)=1$ and $\chi\left(\mathbb{P}^{n}\right)=n+1$ for all $n \geq 0$.

We recall the pushforward functor from the category of algebraic varieties over \mathbb{C} and the category of \mathbb{C}-vector spaces (see [10] and [9]). Let $\phi: X \rightarrow Y$ be a morphism of varieties. Write $M(X)$ for the \mathbb{C}-vector space of constructible functions on X. For $f \in M(X)$ and $y \in Y$, define

$$
\phi_{*}(f)(y)=\sum_{c \neq 0} c \chi\left(f^{-1}(c) \cap \phi^{-1}(y)\right)
$$

Theorem $1.2([5], 9])$. Let X, Y and Z be algebraic varieties over $\mathbb{C}, \phi: X \rightarrow$ Y and $\psi: Y \rightarrow Z$ be morphisms of varieties, and $f \in M(X)$. Then $\phi_{*}(f)$ is constructible, $\phi_{*}: M(X) \rightarrow M(Y)$ is a \mathbb{C}-linear map and $(\psi \circ \phi)_{*}=(\psi)_{*} \circ(\phi)_{*}$ as \mathbb{C}-linear maps from $M(X)$ to $M(Z)$.
1.3. The actions of \mathbb{C}^{*} on the extensions and flags. Let $A=\mathbb{C} Q /\langle R\rangle$ be an algebra as in Section 1.1. For any A-modules X, Y, let $D(X, Y)$ be the vector space over \mathbb{C} of all tuples $d=(d(\alpha))_{\alpha \in Q_{1}}$ such that linear maps $d(\alpha) \in \operatorname{Hom}_{\mathbb{C}}\left(X_{s(\alpha)}, Y_{t(\alpha)}\right)$ and the matrices $L(d)_{\alpha}=\left(\begin{array}{cc}Y_{\alpha} & d(\alpha) \\ 0 & X_{\alpha}\end{array}\right)$ satisfy the relations in R. Define π : $D(X, Y) \rightarrow \operatorname{Ext}^{1}(X, Y)$ by sending d to the equivalence class of the following short exact sequence:

$$
\varepsilon: 0 \longrightarrow Y \xrightarrow{\binom{1}{0}} L(d) \xrightarrow{\left(\begin{array}{ll}
0 & 1
\end{array}\right)} X \longrightarrow 0
$$

where, as a vector space, $L(d)=\left(L(d)_{\alpha}\right)_{\alpha \in Q_{1}}$ is the direct sum of Y and X. The direct computation shows that $\operatorname{Ker} \pi$ is the subspace of $D(X, Y)$ consisting of all tuples $d=(d(\alpha))_{\alpha \in Q_{1}}$ such that there exist $\left(\phi_{i}\right)_{i \in Q_{0}} \in \bigoplus_{i \in Q_{0}} \operatorname{Hom}_{\mathbb{C}}\left(X_{i}, Y_{i}\right)$ satisfying $d(\alpha)=\phi_{t(\alpha)} X_{\alpha}-Y_{\alpha} \phi_{s(\alpha)}$ for all $\alpha \in Q_{1}$ (see [7. Section 5.1] for a similar discussion).

Fix a vector space decomposition $D(X, Y)=\operatorname{Ker} \pi \oplus E(X, Y)$. We can identify $\operatorname{Ext}_{A}^{1}(X, Y)$ with $E(X, Y)([11, ~[6], ~ 7])$. Let $\operatorname{Ext}_{A}^{1}(X, Y)_{L}$ be the subset of $\operatorname{Ext}_{A}^{1}(X, Y)$ with the middle term isomorphic to L. Then $\operatorname{Ext}^{1}(X, Y)_{L}$ can be viewed as a constructible subset of $\operatorname{Ext}_{A}^{1}(X, Y)$ by the identification between
$\operatorname{Ext}_{A}^{1}(X, Y)$ and $E(X, Y)$. There is a natural \mathbb{C}^{*}-action on $E(X, Y) \backslash\{0\}$ by $t . d=$ $(t d(\alpha))$ for any $t \in \mathbb{C}^{*}$. This induces the action of \mathbb{C}^{*} on $\operatorname{Ext}_{A}^{1}(X, Y) \backslash\{0\}$. For any $t \in \mathbb{C}^{*}$, we have that $t . \varepsilon$ is the following short exact sequence:

$$
0 \longrightarrow Y \xrightarrow{\binom{1}{0}} L(t . d) \xrightarrow{\left(\begin{array}{ll}
0 & 1
\end{array}\right)} X \longrightarrow 0
$$

where $L(t . d)_{\alpha}=\left(\begin{array}{cc}Y_{\alpha} & t d(\alpha) \\ 0 & X_{\alpha}\end{array}\right)$ for any $\alpha \in Q_{1}$. The orbit space is denoted by $\mathbb{P E x t}{ }_{A}^{1}(X, Y)$ and the orbit of $\varepsilon \in \operatorname{Ext}{ }_{A}^{1}(X, Y)$ is denoted by $\mathbb{P} \varepsilon$. For a $G_{\underline{d}}$-invariant constructible subset \mathcal{O} of $\mathbb{E}_{\underline{d}}(A)$, we set $\operatorname{Ext}_{A}^{1}(X, Y)_{\mathcal{O}}$ to be the subset of $\operatorname{Ext}_{A}^{1}(X, Y)$ consisting of the equivalence classes of extensions with middle terms belonging to \mathcal{O}.

The above \mathbb{C}^{*}-action on the extensions induces an action on the middle terms. As a vector space, $L=Y \oplus X$. So we can define $t .(y, x)=(t y, x)$ for any $t \in \mathbb{C}^{*}$ and $x \in X, y \in Y$ [7, Section 5.4] or [11, Lemma 1]. For any $L_{1} \subseteq L$, this action yields a submodule $t . L_{1}$ of L isomorphic to L_{1}. In general, if $\mathfrak{f}_{L}=\left(L \supseteq L_{1} \supseteq L_{2} \supseteq\right.$ $\left.\cdots \supseteq L_{m}=0\right)$ is a flag of submodules of L, then $t \cdot \mathfrak{f}_{L}=\left(L \supseteq t . L_{1} \supseteq t \cdot L_{2} \supseteq \cdots \supseteq\right.$ $t . L_{m}=0$). Hence, we obtain an action of \mathbb{C}^{*} on the flag of L.
1.4. The product of two evaluation forms. Let $A_{\underline{d}}:=A_{\underline{d}}(\mathcal{S})$ be the constructible subset of $\mathbb{E}_{\underline{d}}(A)$ as in Section 1.1. For any module $M \in \mathbb{E}_{\underline{d}}(A)$, let $G r_{\underline{e}}(M)$ be the subvariety of $G r_{\underline{e}}(\mathbb{C} \underline{d}):=\prod_{i \in Q_{0}} G r_{e_{i}}\left(\mathbb{C}^{d_{i}}\right)$ consisting of submodules of M with dimension vector $\underline{e}=\left(e_{i}\right)_{i \in Q_{0}}$, and let $G r_{\underline{e}}\left(\mathbb{E}_{\underline{d}}(A)\right)$ be the constructible subset of $\mathbb{E}_{\underline{d}}(A) \times G r_{\underline{e}}(\mathbb{C} \underline{d})$ consisting of pairs $\left(M, M_{1}\right)$ such that $M_{1} \in G r_{\underline{e}}(M)$.

Proposition 1.3. Let \underline{d} and \underline{e} be two dimension vectors. Then the function $\operatorname{gr}(\underline{e}, \underline{d}): \mathbb{E}_{\underline{d}}(A) \rightarrow \mathbb{C}$ sending M to $\chi\left(G r_{\underline{e}}(M)\right)$ is a $G_{\underline{d}}$-invariant constructible function.

Proof. Consider the projection: $\phi: G r_{\underline{e}}\left(\mathbb{E}_{\underline{d}}(A)\right) \rightarrow \mathbb{E}_{\underline{d}}(A)$ mapping $\left(M, M_{1}\right)$ to M. It is clear that ϕ is a morphism of varieties. By Theorem 1.2, $\operatorname{gr}(\underline{e}, \underline{d})=$ $\phi_{*}\left(1_{G r_{\underline{\underline{e}}}\left(\mathbb{E}_{\underline{\underline{d}}}(A)\right)}\right)$ is constructible.

For fixed \underline{d}, we can make finitely many choices of \underline{e} such that $G r_{\underline{e}}\left(\mathbb{E}_{\underline{d}}(A)\right)$ is nonempty. This implies the following corollary.

Corollary 1.4. There is a finite subset $S(\underline{d})$ of $A_{\underline{d}}$ such that $A_{\underline{d}}=\bigcup_{i \in S(\underline{d})} \mathcal{O}(\underline{d})_{i}$, where all $\mathcal{O}(\underline{d})_{i}$ are constructible subsets of $A_{\underline{d}}$ satisfying that for any $M, M^{\prime} \in$ $\mathcal{O}(\underline{d})_{i}, \chi\left(G r_{\underline{e}}(M)\right)=\chi\left(G r_{\underline{e}}\left(M^{\prime}\right)\right)$ for any \underline{e}.

Let $\mathcal{M}(\underline{d})$ be the vector space over \mathbb{C} spanned by the constructible functions $\operatorname{gr}(\underline{e}, \underline{d})$ for any dimension vector \underline{e}. For any $M \in A_{\underline{d}}$, we define the evaluation form $\delta_{M}: \mathcal{M}(\underline{d}) \rightarrow \mathbb{C}$ which maps the constructible function $\operatorname{gr}(\underline{e})$ to $\chi\left(G r_{\underline{e}}(M)\right)=$ $\operatorname{gr}(\underline{e})(M)$. Using the notation in [7], we set $\langle L\rangle:=\mathcal{O}(\underline{d})_{i}$ for arbitrary $L \in \mathcal{O}(\underline{d})_{i}$. Indeed, $\delta_{L}=\delta_{L^{\prime}}$ for any $L, L^{\prime} \in \mathcal{O}(\underline{d})_{i}$. By abuse of notation, we have $A_{\underline{d}}=$ $\bigcup_{L \in S(\underline{d})}\langle L\rangle$.

Let M, N be A-modules and $\underline{e}_{1}, \underline{e}_{2}$ be dimension vectors. Fixing $M_{1} \in G \underline{\underline{e}}_{1}(M)$, $N_{1} \in G r_{\underline{e}_{2}}(N)$, we consider the natural map

$$
\beta_{N_{1}, M_{1}}: \operatorname{Ext}_{A}^{1}\left(N, M_{1}\right) \rightarrow \operatorname{Ext}_{A}^{1}(N, M) \oplus \operatorname{Ext}_{A}^{1}\left(N_{1}, M_{1}\right)
$$

mapping $\varepsilon_{*} \in \operatorname{Ext}{ }_{A}^{1}\left(N, M_{1}\right)$ to $\left(\varepsilon, \varepsilon^{\prime}\right)$ such that the following diagram commutes:

where L and $L^{\prime \prime}$ are the pushout and pullback, respectively. Define

$$
\begin{aligned}
& E F_{\underline{e}_{1}, \underline{e}_{2}}^{g}(N, M)=\left\{\left(M_{1}, N_{1}, \varepsilon, L_{1}\right) \mid M_{1} \in G r_{\underline{e}_{1}}(M), N_{1} \in G r_{\underline{e}_{2}}(N), \varepsilon \neq 0 \in\right. \\
& \left.\operatorname{Ext}_{A}^{1}(N, M)_{L} \cap \operatorname{Im} \beta_{N_{1}, M_{1}}, L_{1} \in G r_{\underline{e}_{1}+\underline{e}_{2}}(L), L_{1} \cap i(M)=i\left(M_{1}\right), \pi\left(L_{1}\right)=N_{1}\right\}
\end{aligned}
$$

and $E F_{\underline{e}}^{g}(N, M)=\bigcup_{\underline{e}_{1}+\underline{e}_{2}=\underline{e}} E F_{\underline{e}_{1}, \underline{e}_{2}}^{g}(N, M)$. By the discussion in Section 1.3, the action of \mathbb{C}^{*} on $\operatorname{Ext}_{A}^{1}(N, M) \backslash\{0\}$ naturally induces the action on $E F_{\underline{e}}^{g}(N, M)$ by setting

$$
t .\left(M_{1}, N_{1}, \varepsilon, L_{1}\right)=\left(M_{1}, N_{1}, t . \varepsilon, t . L_{1}\right)
$$

for $\left(M_{1}, N_{1}, \varepsilon, L_{1}\right) \in E F_{\underline{e}}^{g}(N, M)$ and $t \in \mathbb{C}^{*}$. We denote its orbit space by $\mathbb{P} E F_{\underline{e}}^{g}(N, M)$. We also set the evaluation form $\delta: \mathcal{M} \rightarrow \mathbb{C}$ mapping $\operatorname{gr}(\underline{e})$ to $\chi\left(\mathbb{P} \bar{E} F_{\underline{e}}^{g}(N, M)\right)$.
Theorem 1.5. Let $M, N \in \mathcal{C}(\mathcal{S})$. We have

$$
\chi\left(\mathbb{P E x t}{ }_{A}^{1}(M, N)\right) \delta_{M \oplus N}=\sum_{L \in S(\underline{d})} \chi\left(\mathbb{P E x t}_{A}^{1}(M, N)_{\langle L\rangle}\right) \delta_{L}+\delta .
$$

Proof. Since (for example, see [1] or [6])

$$
\chi\left(G r_{\underline{e}}(M \oplus N)\right)=\sum_{\underline{e}_{1}+\underline{e}_{2}=\underline{e}} \chi\left(G r_{\underline{e}_{1}}(M)\right) \cdot \chi\left(G \underline{\underline{e}}_{2}(N)\right)
$$

the above formula has the following reformulation:

$$
\begin{aligned}
\chi & \left(\mathbb{P E x t}{ }_{A}^{1}(M, N)\right) \sum_{\underline{e}_{1}+\underline{e}_{2}=\underline{e}} \chi\left(G r_{\underline{e}_{1}}(M)\right) \cdot \chi\left(G r_{\underline{e}_{2}}(N)\right) \\
& =\sum_{L \in S(\underline{d})} \chi\left(\mathbb{P E x t}{ }_{A}^{1}(M, N)_{\langle L\rangle}\right) \chi\left(G r_{\underline{e}}(L)\right)+\chi\left(\mathbb{P} E F_{\underline{e}}^{g}(N, M)\right) .
\end{aligned}
$$

Now we prove the above reformulation. Define

$$
E F(M, N)=\left\{\left(\varepsilon, L_{1}\right) \mid \varepsilon \in \operatorname{Ext}_{A}^{1}(M, N)_{L} \backslash\{0\}, L_{1} \in G r_{\underline{e}}(L)\right\}
$$

The action of \mathbb{C}^{*} on $\operatorname{Ext}_{A}^{1}(M, N)$ naturally induces the action on $E F(M, N)$ 7, section 5.4]. Under the action of \mathbb{C}^{*}, it has the geometric quotient:

$$
\pi: E F(M, N) \rightarrow \mathbb{P} E F(M, N)
$$

We have the natural projection:

$$
p: \mathbb{P} E F(M, N) \rightarrow \mathbb{P} \operatorname{Ext}_{A}^{1}(M, N)
$$

Using Proposition 1.1, we have

$$
\chi(\mathbb{P} E F(M, N))=\sum_{L \in S(\underline{d})} \chi\left(\mathbb{P} \operatorname{Ext}_{A}^{1}(M, N)_{\langle L\rangle}\right) \chi\left(G r_{\underline{e}}(L)\right)
$$

Given $\left(\varepsilon, L_{1}\right) \in E F(M, N)$, let ε be the equivalence class of the following short exact sequence:

$$
\varepsilon: 0 \longrightarrow N \xrightarrow{\binom{1}{0}} L \xrightarrow{\left(\begin{array}{ll}
0 & 1
\end{array}\right)} M \longrightarrow 0
$$

As a vector space, $L=N \oplus M$ and L_{1} is the subspace of L. We put $M_{1}=(0,1)\left(L_{1}\right)$ and $N_{1}=(1,0)\left(L_{1}\right)$. It is clear that M_{1} and N_{1} are the submodules of M and N, respectively. Then there is a natural morphism

$$
\phi_{0}: E F(M, N) \rightarrow \bigcup_{\underline{e}_{1}+\underline{e}_{2}=\underline{e}} G r_{\underline{e}_{1}}(M) \times G r_{\underline{e}_{2}}(N)
$$

defined by mapping $\left(\varepsilon, L_{1}\right)$ to $\left(M_{1}, N_{1}\right)$. Furthermore, we have

$$
\phi_{0}\left(\left(\varepsilon, L_{1}\right)\right)=\phi_{0}\left(t .\left(\varepsilon, L_{1}\right)\right)
$$

for any $\left(\varepsilon, L_{1}\right) \in E F(M, N)$ and $t \in \mathbb{C}^{*}$. This induces the morphism

$$
\phi: \mathbb{P} E F(M, N) \rightarrow \bigcup_{\underline{e}_{1}+\underline{e}_{2}=\underline{e}} G r_{\underline{e}_{1}}(M) \times G r_{\underline{e}_{2}}(N)
$$

Now we compute the fibre of this morphism for $M_{1} \in G r_{\underline{e}_{1}}(M)$ and $N_{1} \in G r_{\underline{e}_{2}}(N)$. Consider the following linear map dual to $\beta_{M_{1}, N_{1}}$:

$$
\beta_{M_{1}, N_{1}}^{\prime}: \operatorname{Ext}_{A}^{1}(M, N) \oplus \operatorname{Ext}_{A}^{1}\left(M_{1}, N_{1}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{1}, N\right)
$$

mapping $\left(\varepsilon, \varepsilon^{\prime}\right)$ to $\varepsilon_{M_{1}}-\varepsilon_{N}^{\prime}$, where $\varepsilon_{M_{1}}$ and ε_{N}^{\prime} are induced by the inclusions $M_{1} \subseteq M$ and $N_{1} \subseteq N$, respectively, as follows:

where L_{1} is the pullback, and

where L_{1}^{\prime} is the pushout. It is clear that $\varepsilon, \varepsilon^{\prime}$ and M_{1}, N_{1} induce the inclusions $L_{1} \subseteq L$ and $L^{\prime} \subseteq L_{1}^{\prime}$ and

$$
p_{0}: \operatorname{Ext}_{A}^{1}(M, N) \oplus \operatorname{Ext}_{A}^{1}\left(M_{1}, N_{1}\right) \rightarrow \operatorname{Ext}_{A}^{1}(M, N)
$$

is a projection. By a similar discussion as in [7, Lemma 2.4.2], we know that

$$
p\left(\phi^{-1}\left(\left(M_{1}, N_{1}\right)\right)\right)=\mathbb{P}\left(p_{0}\left(\operatorname{Ker}\left(\beta_{M_{1}, N_{1}}^{\prime}\right)\right)\right)
$$

Moreover, by [8, Lemma 7], for fixed $\varepsilon \in p_{0}\left(\operatorname{Ker}\left(\beta_{M_{1}, N_{1}}^{\prime}\right)\right)$, let $\mathbb{P} \varepsilon$ be its orbit in $\mathbb{P}\left(p_{0}\left(\operatorname{Ker}\left(\beta_{M_{1}, N_{1}}^{\prime}\right)\right)\right)$. Then we have

$$
p^{-1}(\mathbb{P} \varepsilon) \cap \phi^{-1}\left(\left(M_{1}, N_{1}\right)\right) \cong \operatorname{Hom}\left(M_{1}, N / N_{1}\right) .
$$

Using Proposition 1.1 we get

$$
\chi\left(\phi^{-1}\left(\left(M_{1}, N_{1}\right)\right)\right)=\chi\left(\mathbb{P}\left(p_{0}\left(\operatorname{Ker}\left(\beta_{M_{1}, N_{1}}^{\prime}\right)\right)\right)=\operatorname{dim}_{\mathbb{C}} p_{0}\left(\operatorname{Ker}\left(\beta_{M_{1}, N_{1}}^{\prime}\right)\right)\right.
$$

In the same way, we consider the projection

$$
\varphi: \mathbb{P} E F_{\underline{e}}^{g}(N, M) \rightarrow \bigcup_{\underline{e}_{1}+\underline{e}_{2}=\underline{e}} G r_{\underline{e}_{1}}(M) \times G r_{\underline{e}_{2}}(N)
$$

Then

$$
\chi\left(\varphi^{-1}\left(\left(M_{1}, N_{1}\right)\right)\right)=\operatorname{dim}_{\mathbb{C}} \operatorname{Ext}_{A}^{1}(N, M) \cap \operatorname{Im} \beta_{N_{1}, M_{1}} .
$$

Now, depending on the fact that $\mathcal{C}(\mathcal{S})$ is of Ext-symmetry, we have

$$
\operatorname{dim}_{\mathbb{C}} p_{0}\left(\operatorname{Ker}\left(\beta_{M_{1}, N_{1}}^{\prime}\right)\right)+\operatorname{dim}_{\mathbb{C}} \operatorname{Ext}_{A}^{1}(N, M) \cap \operatorname{Im} \beta_{N_{1}, M_{1}}=\operatorname{dim}_{\mathbb{C}} \operatorname{Ext}_{A}^{1}(M, N)
$$

Using Proposition 1.1 again, we complete the proof of the theorem.

2. The multiplication formula

The formula in the last section is not so 'symmetric' as the Geiss-Leclerc-Schröer formula. In order to overcome this difficulty, we should consider flags of composition series instead of Grassmannians of submodules as in [7]. In this section, we prove a multiplication formula as an analog of the Geiss-Leclerc-Schröer formula in [7].

Let $A=\mathbb{C} Q / \mathcal{I}$ be an algebra associated to a finite and connected quiver Q and let $\mathcal{S}=\left\{S_{1}, \cdots, S_{n}\right\}$ be a finite set of finite-dimensional simple A-modules. Let $\mathcal{C}(\mathcal{S})$ be a full subcategory of Ext-symmetry of $\bmod (A)$ associated to \mathcal{S}.

Let $A_{\underline{d}}$ be the constructible subset of $\mathbb{E}_{\underline{d}}(A)$ consisting of A-modules in $\mathcal{C}(\mathcal{S})$ with dimension vector \underline{d}. Let \mathcal{X} be the set of pairs (\mathbf{j}, \mathbf{c}) where $\mathbf{c}=\left(c_{1}, \cdots, c_{m}\right) \in\{0,1\}^{m}$ and $\mathbf{j}=\left(j_{1}, \cdots, j_{m}\right)$ is a sequence of integers such that $S_{j_{k}} \in \mathcal{S}$ for $1 \leq k \leq m$. Given $x \in A_{\underline{d}}$ and $(\mathbf{j}, \mathbf{c}) \in \mathcal{X}$, we define an x-stable flag of type (\mathbf{j}, \mathbf{c}) as a composition series of x,

$$
\mathfrak{f}_{x}=\left(V=\left(\mathbb{C}^{\underline{d}}, x\right) \supseteq V^{1} \supseteq \cdots \supseteq V^{m}=0\right),
$$

of A-submodules of V such that $\left|V^{k-1} / V^{k}\right|=c_{k} S_{j_{k}}$, where $S_{j_{k}}$ is the simple module in \mathcal{S}. Let $\Phi_{\mathbf{j}, \mathbf{c}, x}$ be the variety of x-stable flags of type (\mathbf{j}, \mathbf{c}). We simply write $\Phi_{\mathbf{j}, x}$ when $\mathbf{c}=(1,1, \cdots, 1)$. Define

$$
\Phi_{\mathbf{j}}\left(A_{\underline{d}}\right)=\left\{(x, \mathfrak{f}) \mid x \in A_{\underline{d}}, \mathfrak{f} \in \Phi_{\mathbf{j}, x}\right\} .
$$

As in Proposition 1.3, we consider a projection: $p: \Phi_{\mathbf{j}}\left(A_{\underline{d}}\right) \rightarrow A_{\underline{d}}$. The function $p_{*}\left(1_{\Phi_{\mathbf{j}}\left(A_{\underline{d}}\right)}\right)$ is constructible by Theorem 1.2
Proposition 2.1. For any type \boldsymbol{j}, the function $A_{\underline{d}} \rightarrow \mathbb{C}$ mapping x to $\chi\left(\Phi_{j, x}\right)$ is constructible.

Let $d_{\mathbf{j}, \mathbf{c}}: \mathbb{E}_{\underline{d}}(A) \rightarrow \mathbb{C}$ be the function defined by $d_{\mathbf{j}, \mathbf{c}}(x)=\chi\left(\Phi_{\mathbf{j}, \mathbf{c}, x}\right)$ for $x \in$ $\mathbb{E}_{\underline{d}}(A)$. It is a constructible function as in Proposition 2.1. We simply write $d_{\mathbf{j}}$ if $\mathbf{c}=(1, \cdots, 1)$. Define $\mathcal{M}(\underline{d})$ to be the vector space spanned by $d_{\mathbf{j}}$. For fixed $A_{\underline{d}}$, there are finitely many types \mathbf{j} such that $\Phi_{\mathbf{j}}\left(A_{\underline{d}}\right)$ is not empty. Hence, there exists a finite subset $S(\underline{d})$ of $A_{\underline{d}}$ such that

$$
A_{\underline{d}}=\bigcup_{M \in S(\underline{d})}\langle M\rangle,
$$

where $\langle M\rangle=\left\{M^{\prime} \in A_{\underline{d}} \mid \chi\left(\Phi_{\mathbf{j}, M^{\prime}}\right)=\chi\left(\Phi_{\mathbf{j}, M}\right)\right.$ for any type $\left.\mathbf{j}\right\}$.
For any $M \in A_{\underline{d}}$, we define the evaluation form $\delta_{M}: \mathcal{M}(\underline{d}) \rightarrow \mathbb{C}$ mapping a constructible function $f \in \mathcal{M}(\underline{d})$ to $f(M)$. We have

$$
\langle M\rangle=\left\{M^{\prime} \in A_{\underline{d}} \mid \delta_{M^{\prime}}=\delta_{M}\right\}
$$

Lemma 2.2. For $M, N \in \mathcal{C}(\mathcal{S})$, we have $\delta_{M \oplus N}=\delta_{M} \cdot \delta_{N}$.

The lemma is equivalent to showing that

$$
\chi\left(\Phi_{\mathbf{j}, M \oplus N}\right)=\sum_{\mathbf{c}^{\prime}+\mathbf{c}^{\prime \prime} \sim 1} \chi\left(\Phi_{\mathbf{j}, \mathbf{c}^{\prime}, M}\right) \cdot \chi\left(\Phi_{\mathbf{j}, \mathbf{c}^{\prime \prime}, N}\right) .
$$

Here, $\mathbf{c}^{\prime}+\mathbf{c}^{\prime \prime} \sim 1$ means that $c_{k}^{\prime}+c_{k}^{\prime \prime}=1$ for $k=1, \cdots, m$. The proof of the lemma depends on the fact that under the action of $\mathbb{C}^{*}, \Phi_{\mathbf{j}, M \oplus N}$ and its stable subset have the same Euler characteristic. We refer to [6] for details.

The following formula is just the multiplication formula in [7, Theorem 1] when A is a preprojective algebra and \mathcal{S} is the set of all simple A-modules.
Theorem 2.3. With the above notation, for $M, N \in \mathcal{C}(\mathcal{S})$, we have

$$
\chi\left(\mathbb{P E x t}_{A}^{1}(M, N)\right) \delta_{M \oplus N}=\sum_{L \in S(\underline{e})}\left(\chi\left(\mathbb{P E x t}_{A}^{1}(M, N)_{\langle L\rangle}\right)+\chi\left(\mathbb{P E x t}_{A}^{1}(N, M)_{\langle L\rangle}\right)\right) \delta_{L}
$$

where $\underline{e}=\underline{\operatorname{dim}} M+\underline{\operatorname{dim}} N$.
In the proof of Theorem 1.5, a key point is to consider the linear maps $\beta_{M_{1}, N_{1}}$ and $\beta_{M_{1}, N_{1}}^{\prime}$ dual to each other by the property of Ext-symmetry. Now we extend this idea to the present situation as in [7]. Let

$$
\mathfrak{f}_{M}=\left(M=M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{m}=0\right)
$$

be a flag of type ($\mathbf{j}, \mathbf{c}^{\prime}$) and let

$$
\mathfrak{f}_{N}=\left(N=N_{0} \supseteq N_{1} \supseteq \cdots \supseteq N_{m}=0\right)
$$

be a flag of type $\left(\mathbf{j}, \mathbf{c}^{\prime \prime}\right)$ such that $c_{k}^{\prime}+c_{k}^{\prime \prime}=1$ for $k=1, \cdots, m$. We write $\mathbf{c}^{\prime}+\mathbf{c}^{\prime \prime} \sim 1$. For $k=1, \cdots, m$, let $\iota_{M, k}$ and $\iota_{N, k}$ be the inclusion maps $M_{k} \rightarrow M_{k-1}$ and $N_{k} \rightarrow N_{k-1}$, respectively. Define [7, Section 2]

$$
\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}: \bigoplus_{k=0}^{m-2} \operatorname{Ext}_{A}^{1}\left(N_{k}, M_{k+1}\right) \rightarrow \bigoplus_{k=0}^{m-2} \operatorname{Ext}_{A}^{1}\left(N_{k}, M_{k}\right)
$$

by the following map:

satisfying

$$
\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}\left(\varepsilon_{0}, \cdots, \varepsilon_{m-2}\right)=\iota_{M, 1} \circ \varepsilon_{0}+\sum_{k=1}^{m-2}\left(\iota_{M, k+1} \circ \varepsilon_{k}-\varepsilon_{k-1} \circ \iota_{N, k}\right) .
$$

Depending on the fact that $\mathcal{C}(\mathcal{S})$ is of Ext-symmetry, we can write its dual

$$
\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}^{\prime}: \bigoplus_{k=0}^{m-2} \operatorname{Ext}_{A}^{1}\left(M_{k}, N_{k}\right) \rightarrow \bigoplus_{k=0}^{m-2} \operatorname{Ext}_{A}^{1}\left(M_{k+1}, N_{k}\right)
$$

by the following map:

satisfying

$$
\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, f_{M}, f_{N}}^{\prime}\left(\eta_{0}, \cdots, \eta_{m-2}\right)=\sum_{k=0}^{m-3}\left(\eta_{k} \circ \iota_{M, k+1}-\iota_{N, k+1} \circ \eta_{k+1}\right)+\eta_{m-2} \circ \iota_{M, m-1} .
$$

Now, we prove Theorem [2.3
Proof. Define

$$
E F_{\mathbf{j}}(M, N)=\left\{(\varepsilon, \mathfrak{f}) \mid \varepsilon \in \operatorname{Ext}_{A}^{1}(M, N)_{L}, L \in A_{\underline{e}}, \mathfrak{f} \in \Phi_{\mathbf{j}, L}\right\} .
$$

The action of \mathbb{C}^{*} on $\operatorname{Ext}_{A}^{1}(M, N)$ induces an action on $E F_{\mathbf{j}}(M, N)$. The orbit space under the action of \mathbb{C}^{*} is denoted by $\mathbb{P} E F_{\mathbf{j}}(M, N)$, and the orbit of $(\varepsilon, \mathfrak{f})$ is denoted by $\mathbb{P}(\varepsilon, \mathfrak{f})$. We have the natural projection

$$
p: \mathbb{P E F} F_{\mathbf{j}}(M, N) \rightarrow \mathbb{P E x t}{ }_{A}^{1}(M, N) .
$$

The fibre for any $\mathbb{P} \varepsilon \in \mathbb{P E x t}_{A}^{1}(M, N)_{L}$ is isomorphic to $\Phi_{\mathbf{j}, L}$. By Theorem 1.1, we have

$$
\chi\left(\mathbb{P E} F_{\mathbf{j}}(M, N)\right)=\sum_{L \in S(\underline{e})} \chi\left(\mathbb{P E x t}_{A}^{1}(M, N)_{\langle L\rangle}\right) \chi\left(\Phi_{\mathbf{j}, L}\right) .
$$

We also have the natural morphism

$$
\phi: \mathbb{P} E F_{\mathbf{j}}(M, N) \rightarrow \bigcup_{\mathbf{c}^{\prime}+\mathbf{c}^{\prime \prime} \sim 1} \Phi_{\mathbf{j}, \mathbf{c}^{\prime}, M} \times \Phi_{\mathbf{j}, \mathbf{c}^{\prime \prime}, N}
$$

mapping $\mathbb{P}(\varepsilon, \mathfrak{f})$ to $\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right)$, where $\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right)$ is naturally induced by ε and \mathfrak{f} and $t .(\varepsilon, \mathfrak{f})$ induces the same $\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right)$ for any $t \in \mathbb{C}^{*}$. By [7 Lemma 2.4.2], we know that

$$
p\left(\phi^{-1}\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right)\right)=\mathbb{P}\left(p_{0}\left(\operatorname{Ker}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, f_{M}, \mathfrak{f}_{N}}^{\prime}\right)\right)\right),
$$

where $p_{0}: \oplus_{k=0}^{m-2} \operatorname{Ext}_{A}^{1}\left(M_{k}, N_{k}\right) \rightarrow \operatorname{Ext}_{A}^{1}(M, N)$ is a projection. On the other hand, by [8, Lemma 7], the morphism

$$
\left.p\right|_{\phi^{-1}\left(f_{M}, f_{N}\right)}: \phi^{-1}\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right) \rightarrow \mathbb{P}\left(p_{0}\left(\operatorname{Ker}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, f_{M}, f_{N}}^{\prime}\right)\right)\right)
$$

has fibres isomorphic to an affine space. Hence, by Theorem [1.1] we have

$$
\chi\left(\phi^{-1}\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right)\right)=\chi\left(\mathbb{P}\left(p_{0}\left(\operatorname{Ker}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}^{\prime}\right)\right)\right)\right) .
$$

Dually, we define

$$
E F_{\mathbf{j}}(N, M)=\left\{(\varepsilon, \mathfrak{f}) \mid \varepsilon \in \operatorname{Ext}_{A}^{1}(N, M)_{L}, L \in A_{\underline{e}}, \mathfrak{f} \in \Phi_{\mathbf{j}, L}\right\} .
$$

The orbit space under \mathbb{C}^{*}-action is denoted by $\mathbb{P E F} F_{\mathbf{j}}(N, M)$. We have the natural projection

$$
q: \mathbb{P} E F_{\mathbf{j}}(N, M) \rightarrow \mathbb{P} \operatorname{Ext}_{A}^{1}(N, M) .
$$

The fibre for any $\mathbb{P} \varepsilon \in \mathbb{P} E x t{ }_{A}^{1}(N, M)_{L}$ is isomorphic to $\Phi_{\mathbf{j}, L}$. By Theorem 1.1, we have

$$
\chi\left(\mathbb{P E} F_{\mathbf{j}}(N, M)\right)=\sum_{L \in S(\underline{e})} \chi\left(\mathbb{P E x t}_{A}^{1}(N, M)_{\langle L\rangle}\right) \chi\left(\Phi_{\mathbf{j}, L}\right) .
$$

As in the proof of Theorem [1.5, there is a natural morphism

$$
\varphi_{0}: E F_{\mathbf{j}}(N, M) \rightarrow \bigcup_{\mathbf{c}^{\prime}+\mathbf{c}^{\prime \prime} \sim 1} \Phi_{\mathbf{j}, \mathbf{c}^{\prime}, M} \times \Phi_{\mathbf{j}, \mathbf{c}^{\prime \prime}, N}
$$

such that

$$
\varphi_{0}((\varepsilon, \mathfrak{f}))=\varphi_{0}(t .(\varepsilon, \mathfrak{f}))
$$

for any $(\varepsilon, \mathfrak{f}) \in E F_{\mathbf{j}}(N, M)$ and $t \in \mathbb{C}^{*}$. Hence, we have the morphism

$$
\varphi: \mathbb{P} E F_{\mathbf{j}}(N, M) \rightarrow \bigcup_{\mathbf{c}^{\prime}+\mathbf{c}^{\prime \prime} \sim 1} \Phi_{\mathbf{j}, \mathbf{c}^{\prime}, M} \times \Phi_{\mathbf{j}, \mathbf{c}^{\prime \prime}, N}
$$

By [7, Lemma 2.4.3], we know that

$$
q\left(\varphi^{-1}\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right)\right)=\operatorname{PExt}_{A}^{1}(N, M) \cap \operatorname{Im}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}\right)
$$

Similar to the above dual situation, by [8, Lemma 7], the morphism

$$
\left.q\right|_{\varphi^{-1}\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right)}: \varphi^{-1}\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right) \rightarrow \operatorname{PExt}_{A}^{1}(N, M) \cap \operatorname{Im}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}\right)
$$

has fibres isomorphic to an affine space. Hence, by Proposition 1.1, we have

$$
\chi\left(\varphi^{-1}\left(\mathfrak{f}_{M}, \mathfrak{f}_{N}\right)\right)=\chi\left(\mathbb{P} \operatorname{Ext}_{A}^{1}(N, M) \cap \operatorname{Im}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}\right)\right)
$$

However, since $\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}$ and $\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}^{\prime}$ are dual to each other, we have

$$
\left(p_{0}\left(\operatorname{Ker}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}^{\prime}\right)\right)\right)^{\perp}=\operatorname{Ext}_{A}^{1}(N, M) \cap \operatorname{Im}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}\right)
$$

Thus we have

$$
\begin{aligned}
& \chi\left(\mathbb{P}\left(p_{0}\left(\operatorname{Ker}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}\right)\right)\right)\right)+\chi\left(\mathbb{P} \operatorname{Ext}_{A}^{1}(N, M) \cap \operatorname{Im}\left(\beta_{\mathbf{j}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}, \mathfrak{f}_{M}, \mathfrak{f}_{N}}\right)\right) \\
= & \operatorname{dim}_{\mathbb{C}} \operatorname{Ext}_{A}^{1}(M, N) .
\end{aligned}
$$

Therefore, using Proposition 1.1, we obtain

$$
\mathbb{P} E F_{\mathbf{j}}(M, N)+\mathbb{P} E F_{\mathbf{j}}(N, M)=\operatorname{dim}_{\mathbb{C}} \operatorname{Ext}^{1}(M, N) \cdot \sum_{\mathbf{c}^{\prime}+\mathbf{c}^{\prime \prime} \sim 1} \chi\left(\Phi_{\mathbf{j}, \mathbf{c}^{\prime}, M}\right) \cdot \chi\left(\Phi_{\mathbf{j}, \mathbf{c}^{\prime \prime}, N}\right)
$$

Now, we have obtained the identity

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{C}} \operatorname{Ext}^{1}(M, N) \cdot \sum_{\mathbf{c}^{\prime}+\mathbf{c}^{\prime \prime} \sim 1} \chi\left(\Phi_{\mathbf{j}, \mathbf{c}^{\prime}, M}\right) \cdot \chi\left(\Phi_{\mathbf{j}, \mathbf{c}^{\prime \prime}, N}\right) \\
& =\sum_{L \in S(\underline{e})} \chi\left(\mathbb{P} \operatorname{Ext}_{A}^{1}(M, N)_{\langle L\rangle}\right) \chi\left(\Phi_{\mathbf{j}, L}\right)+\sum_{L \in S(\underline{e})} \chi\left(\mathbb{P E x t}_{A}^{1}(N, M)_{\langle L\rangle}\right) \chi\left(\Phi_{\mathbf{j}, L}\right)
\end{aligned}
$$

for any type \mathbf{j}. Using Lemma 2.2 and Proposition 1.1, we finish the proof of Theorem 2.3

3. Examples

In this section, we give some examples of module subcategories of Ext-symmetry. (I) Let A be a preprojective algebra associated to a connected quiver Q without loops. Let \mathcal{S} be the set of all simple A-modules. Then $\mathcal{C}(\mathcal{S})$ is of Ext-symmetry [7, Theorem 3].
(II) Let $A=\mathbb{C} Q /\left\langle\alpha \alpha^{*}-\alpha^{*} \alpha\right\rangle$ be an associative algebra associated to the following quiver:

$$
Q:=\alpha \bigcirc \bigcirc \alpha^{*} .
$$

Let $M=\left(\mathbb{C}^{m}, X_{\alpha}, X_{\alpha^{*}}\right)$ and $N=\left(\mathbb{C}^{n}, Y_{\alpha}, Y_{\alpha^{*}}\right)$ be two finite-dimensional A modules. Following the characterization of $\operatorname{Ext}_{A}^{1}(M, N)$ in Section 1.3, we consider the following isomorphism between complexes (see [3, Lemma 1] or [7, Section 8.2]):

where $M_{\bullet}=\mathbb{C}^{m}, N_{\bullet}=\mathbb{C}^{n}$. Here, we define

$$
\begin{aligned}
d_{M, N}^{0}(A) & =\left(Y_{\alpha} A-A X_{\alpha}, Y_{\alpha^{*}} A-A X_{\alpha^{*}}\right), d_{M, N}^{1}\left(B, B^{*}\right) \\
& =Y_{\alpha^{*}} B+B^{*} X_{\alpha}-Y_{\alpha} B^{*}-B X_{\alpha^{*}}, \\
d_{N, M}^{0, *}\left(B, B^{*}\right) & =B X_{\alpha^{*}}+B^{*} X_{\alpha}-Y_{\alpha^{*}} B-Y_{\alpha} B^{*}, d_{N, M}^{1, *}(A) \\
& =\left(Y_{\alpha} A-A X_{\alpha},-Y_{\alpha^{*}} A+A X_{\alpha^{*}}\right)
\end{aligned}
$$

for any $n \times m$ matrices A, B and B^{*}. The second complex is dual to the complex

$$
\operatorname{Hom}_{\mathbb{C}}\left(N_{\bullet}, M_{\bullet}\right) \xrightarrow{d_{N, M}^{0}} \operatorname{Hom}_{\mathbb{C}}\left(N_{\bullet}, M_{\bullet}\right) \bigoplus \operatorname{Hom}_{\mathbb{C}}\left(N_{\bullet}, M_{\bullet}\right) \xrightarrow{d_{N, M}^{1}} \operatorname{Hom}_{\mathbb{C}}\left(N_{\bullet}, M_{\bullet}\right)
$$

with respect to the nondegenerate bilinear form

$$
\Phi: \operatorname{Hom}_{\mathbb{C}}\left(N_{\bullet}, M_{\bullet}\right) \times \operatorname{Hom}_{\mathbb{C}}\left(N_{\bullet}, M_{\bullet}\right) \rightarrow \mathbb{C}
$$

mapping (X, Y) to $\operatorname{tr}(X Y)$. As in Section 1.3, we have functorially
$\operatorname{Ext}_{A}^{1}(M, N)=\operatorname{Ker}\left(d_{M, N}^{1}\right) / \operatorname{Im}\left(d_{M, N}^{0}\right)$ and $\operatorname{DExt}_{A}^{1}(N, M)=\operatorname{Ker}\left(d_{N, M}^{0, *}\right) / \operatorname{Im}\left(d_{N, M}^{1, *}\right)$.
Hence, we have a bifunctorial isomorphism:

$$
\operatorname{Ext}_{A}^{1}(M, N) \cong \operatorname{DExt}_{A}^{1}(N, M)
$$

(III) Deformed preprojective algebras were introduced by Crawley-Boevey and Holland in [4]. Fix $\lambda=\left(\lambda_{i}\right)_{i \in Q_{0}}$ where $\lambda_{i} \in \mathbb{C}$. The deformed preprojective algebra of weight λ is an associative algebra

$$
A(\lambda)=\mathbb{C} \bar{Q} /\left\langle\sum_{\alpha \in Q_{1}}\left(\alpha \alpha^{*}-\alpha^{*} \alpha\right)-\sum_{i \in Q_{0}} \lambda_{i} e_{i}\right\rangle
$$

where $\bar{Q}=Q \cup Q^{*}$ is the double of a quiver Q without loops. Let M, N be finitedimensional A-modules. As in Section [1.3, we know $D(M, N)$ is just the kernel of the following linear map:

$$
\bigoplus_{\alpha \in \bar{Q}_{1}} \operatorname{Hom}_{\mathbb{C}}\left(M_{s(\alpha)}, N_{t(\alpha)}\right) \xrightarrow{d_{M, N}^{1}} \bigoplus_{i \in Q_{0}} \operatorname{Hom}_{\mathbb{C}}\left(M_{i}, N_{i}\right),
$$

where $d_{M, N}^{1}$ maps $\left(f_{\alpha}\right)_{\alpha \in \bar{Q}_{1}}$ to $\left(g_{i}\right)_{i \in Q_{0}}$ such that

$$
g_{i}=\sum_{\alpha \in Q_{1}, s(\alpha)=i}\left(N_{\alpha^{*}} f_{\alpha}+f_{\alpha^{*}} M_{\alpha}\right)-\sum_{\alpha \in Q_{1}, t(\alpha)=i}\left(N_{\alpha} f_{\alpha^{*}}+f_{\alpha} M_{\alpha^{*}}\right) .
$$

In the same way as in [7, Section 8.2], we obtain a bifunctorial isomorphism

$$
\operatorname{Ext}_{A}^{1}(M, N) \cong \operatorname{DExt}_{A}^{1}(N, M)
$$

(IV) It is easy to construct examples of module subcategories of Ext-symmetry over an algebra which is not of Ext-symmetry. Let $A=\mathbb{C} Q /\left\langle\beta \beta^{*}-\beta^{*} \beta\right\rangle$ be a quotient algebra associated to the quiver

$$
Q:=1 \xrightarrow{\alpha} 2 \underset{\beta^{*}}{\stackrel{\beta}{\longrightarrow}} 3 .
$$

Let S_{1}, S_{2} and S_{3} be finite-dimensional simple A-modules associated to three vertices, respectively. Since $\operatorname{dim}_{\mathbb{C}} \operatorname{Ext}^{1}\left(S_{1}, S_{2}\right)=1$ and $\operatorname{Ext}^{1}\left(S_{2}, S_{1}\right)=0, A$ is not an algebra of Ext-symmetry. However, for $\mathcal{S}=\left\{S_{1}, S_{3}\right\}$ or $\left\{S_{2}, S_{3}\right\}, \mathcal{C}(\mathcal{S})$ is of Ext-symmetry.

Acknowledgments

We are grateful to the referee for many helpful comments. In particular, Section 3 was added following the comments. Furthermore, the second author would like to thank the Max Planck Institute for Mathematics in Bonn for a three-month research stay in 2008.

References

1. P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comm. Math. Helv. 81 (2006), 595-616. MR2250855 (2008b:16015)
2. P. Caldero, B. Keller, From triangulated categories to cluster algebras, Inv. Math. 172 (2008), 169-211. MR2385670
3. W. Crawley-Boevey, On the exceptional fibres of Kleinian singularities, Amer. J. Math. 122 (2000), no. 5, 1027-1037. MR 1781930 (2001f:14009)
4. W. Crawley-Boevey, M. Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J. 92 (1998), no. 3, 605-635. MR1620538 (99f:14003)
5. A. Dimca, Sheaves in topology. Universitext. Springer-Verlag, Berlin, 2004. MR2050072 (2005j:55002)
6. M. Ding, J. Xiao, F. Xu, Realizing enveloping algebras via varieties of modules, arXiv:math/0604560.
7. C. Geiss, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras, II: A multiplication formula, Compositio Mathematica 143 (2007), 1313-1334. MR2360317 (2009b:17031)
8. A. Hubery, Acyclic cluster algebras via Ringel-Hall algebras, preprint.
9. D. Joyce, Constructible functions on Artin stacks, J. London Math. Soc. (2) $\mathbf{7 4}$ (2006), 583606. MR2286434 (2008b:14001)
10. R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423-432. MR0361141 (50:13587)
11. Ch. Riedtmann, Lie algebras generated by indecomposables, J. Algebra 170 (1994), 526-546. MR. 1302854 (96e:16013)
12. C. M. Ringel, The preprojective algebra of a quiver. In: Algebras and modules II (Geiranger, 1996), 467-480, CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, 1998. MR 1648647 (99i:16031)

Department of Mathematics, Tsinghua University, Beijing 100084, People's Republic of China

E-mail address: jxiao@math.tsinghua.edu.cn
Department of Mathematics, Tsinghua University, Beijing 100084, People's Republic of China

E-mail address: fanxu@mail.tsinghua.edu.cn

[^0]: Received by the editors January 18, 2008, and, in revised form, September 26, 2008.
 2000 Mathematics Subject Classification. Primary 16G20, 14M99; Secondary 20 G 05.
 Key words and phrases. Ext-symmetry, module variety, flag variety, composition series.
 The research was supported in part by NSF of China (No. 10631010).

