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LAGRANGIAN BONNET PAIRS IN CP?
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ABSTRACT. In this paper we introduce Lagrangian Bonnet pairs in the complex
projective plane CP? and derive a Lawson-Tribuzy type theorem. We also
present examples of compact Lagrangian Bonnet pairs with genus one in CP2.

1. INTRODUCTION

A classical question in the surface theory of R? is which data are sufficient to
determine a surface up to rigidity motions. According to the Bonnet theorem, a
surface is determined by its first and second fundamental forms up to congruence.
But this description is too redundant, because the first and second fundamental
forms must satisfy the Gauss-Codazzi equations. Bonnet suggested that mean
curvature and metric should be sufficient to determine a surface generically [2].
It follows from the local theory (without umbilic points) by Bonnet [2], Cartan
[4] and Chern [0] that there are only three exceptions: constant mean curvature
surfaces, Bonnet surfaces and Bonnet pairs. Constant mean curvature surfaces have
been investigated intensively by various methods. Bonnet surfaces were studied by
many mathematicians and recently have been generalized to the homogeneous 3-
manifold with a 4-dimensional isometry group [§]. However, much less is known
about Bonnet pairs, which are exactly two noncongruent isometric surfaces with the
same mean curvature function. The theory of Bonnet pairs in R3 is closely related
to isothermic surfaces in S® [9] and can be studied in the framework of the theory
of integrable systems [I]. On the other hand, Lawson and Tribuzy [10] showed that
for compact oriented surfaces in R® with nonconstant mean curvature, there are
at most two surfaces with the given metric and mean curvature. Moreover, they
proved that there are no Bonnet pairs of genus zero in R?. Up to now, it is still an
open question whether compact Bonnet pairs exist. Refer to a well-written short
survey [I5] for more details.

So far, the known results on Bonnet pairs are limited to surfaces in R? and the
3-dimensional sphere S [15]. By the investigation of Lagrangian surfaces in the
complex projective plane CP2?, we introduce a new concept of Lagrangian Bon-
net pairs in CP? in a similar spirit and derive the following Lawson-Tribuzy type
theorem:
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Theorem 1.1. Let M be a compact oriented Lagrangian surface in CP2. If M is
not twistor harmonic, then there exist at most two noncongruent isometric immer-
sions of M in CP? with the mean curvature form ®.

Similar to the R3-theory, there is no Lagrangian Bonnet pair of genus zero in
CP?. However, there exist compact Lagrangian Bonnet pairs of genus one in CP2.
This differs from the R? case but is the same as the S? case [15].

2. PRELIMINARIES

Let (CP?,w) be the complex projective plane endowed with the Fubini-Study
metric of constant holomorphic sectional curvature 4, where w is the Kéhler form.
Let f: M — CP? be a Lagrangian immersion of an oriented surface, i.e., f*w = 0.
The induced metric on M generates a complex structure with respect to which the
metric is g = 2e"dzdz, where z = x 4 iy is a local complex coordinate on M and
u is a real-valued function defined on M locally. For such a Lagrangian immersion
f, there always exists a local horizontal lift F': U — S® such that

(2.1) F,-F=F,-F=0.
where U is an open set of M. In fact, generally, it follows from M being Lagrangian
that dF - F' is a closed one-form for any local lift F'. So there exists n € C*°(U)
such that dn = dF - F. Then F = e~™F is a horizontal lift for f to S°.

The metric g being conformal gives
(2.2) F, F;=0,
(2.3) F.-F,=F; F, =e".

Thus the vectors F,, F; as well as F' define a Hermitian orthogonal moving frame
on the surface, which due to ([2I)), (22 and (23] satisfies the following equations:

(2.4) o, =0l, oz=0V, o= (FF,Fs),
0 0 —e" 0 —e" 0
(2.5) U=11 u+¢ -9 |, V=0 —¢ —e" |,
0 e ¢ 1 ¢ wus—2¢
where
(26) ¢ = e_uFZE 'Ev ¢ =F,, E

The one-form ® = ¢dz and the cubic differential ¥ = 1)dz3 are globally defined
on M so as to be independent of the choice of the local lift. We call ® and ¥ the
mean curvature form and the Hopf differential of f, respectively.

The compatibility conditions

U -V, = [Z/I, W
of equations (24) and (2.5) have the following form:
(2.7) ¢:+¢. = 0,
(2.8) usz e+ (g7 —e P = 0,
(2.9) e s = ¢ —u.g

These equations are necessary and sufficient for the existence of the corresponding
Lagrangian surface in CP%. A generic immersed Lagrangian surface f : M — CP?
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is determined uniquely by its induced metric, mean curvature one-form ¢ and Hopf
differential ¥ which satisfy equations [2.7)), (Z8) and 29]) (see [17], [11] for more
details).

Remark 2.1. Actually this cubic differential ¥ has been introduced by several au-
thors in the study of minimal surfaces in Kéhler manifolds, for instance, Eells and
Wood [7], Chern and Wolfson [6], Castro and Urbano [3]. Also, instead of the 1-
form ®, Schoen and Wolfson [I4], Oh [13] introduced the famous Maslov form oy
which is the dual of the vector field JH and in fact o = i(® — ®), where H is the
mean curvature vector field, or Castro and Urbano introduced a global vector field
K= e’“q_S% over M.
® has the following geometric interpretations:

Proposition 2.2. Let f : M — CP? be an oriented immersed surface M. Then
f is minimal if and only if ® = 0. In addition, if f is Lagrangian, then f is
Hamiltonian stationary if and only if ® is holomorphic.

The twistor space £ of CP? can be identified with the flag manifold SU(3)/
SU(1)3, which can be endowed with a structure of an Einstein-Kéhler manifold.
In [3], Castro and Urbano studied twistor harmonic surfaces of CP? i.e., surfaces
of CP? such that their twistor lifts to £ are harmonic maps, and gave a geometric
interpretation for U:

Proposition 2.3 ([3]). Let f : M — CP? be a Lagrangian immersion of an
oriented surface M. f is twistor harmonic if and only if the Hopf differential
W s holomorphic. In particular, f is twistor holomorphic if and only if ¥ = 0.

Proposition 2.4 ([3]). Let f : M — CP? be a twistor harmonic Lagrangian
immersion of a compact oriented surface M with genus g. Then
(a) if g > 2, f is minimal;
(b) if g =0, f is twistor holomorphic;
(c) if g =1, either g is minimal or the function e 3“3y is a nonnull constant
which has been classified in [3].

3. PROOF OF THE THEOREM

We now suppose that we are given three isometric noncongruent Lagrangian
immersions f : M — CP?, k = 1,2, 3, with coinciding mean curvature one-form
®. As conformal immersions of the same Riemann surface, they are described by the
corresponding Hopf differentials Wy, Wy, U3, the conformal metric 2¢“dzdz and the
mean curvature form ®. Since the surfaces are noncongruent, the Hopf differentials
differ.

It follows from (Z8) and (Z9) that

Proposition 3.1. Each of the differences V;; = W; — U, for 1 < 4,5 < 3 isa
holomorphic cubic differential form on M. Moreover,

(3.1) W = |¥;], 1<i,j<3.

Due to the second statement of Proposition [3.] the zeros of ¥y, for k = 1,2,3
coincide. We call this set the umbilic points set of fx,k = 1,2,3. Denote it by

U={Pec M|V, (P)=0}.



2728 HUIXIA HE AND HUI MA

Following the standard arguments in [16] and [I0], we have

Lemma 3.2. If the three immersions fi, k = 1,2,3, are mutually noncongruent,
then

(3.2) A0 loguy, = 4| 108k 2

0z |

for each k, where A° = 4%;2 is the standard Laplacian in the local coordinate z.
Proof. Due to (B1l), we may write

(3.3) U, =0, k=123,

where 6}, is well defined modulo 27 outside of U. Then ¥y — Uy = ¢y (1 — €¥%)dz3
is a holomorphic cubic differential on M. Denote h, = e%*. Considering that
11(1 — hy) is holomorphic, we get

H{yr (1 — hk)} a¢1 00y,

0= E (1 — hi) — i1 hy—— %
Therefore,
00, = 0
5 —i(hg — 1)£ log 1.
Also we have
Ny (1 —h 1o} 00,
0 = —{wl(az k)} 17[}1 (1 — hk) + Z’l,[}lhka—
so that
o7} ) 0 -
(3.4) a_; = i(hi = 1) 5 log 1.
It follows from gzg’; = 323’; that

z 9 log i1 2 Ologpr 0. 5
(hk—l){w—\£log¢1| }+(hk—1){W—|&10g¢1| }=0.

Multiplying the above equation by hj and changing hy by h, we obtain
(3.5)

1 Olog 1)
{ZAO 10g wl | g ¢ 2

810&’;1#1
5, |

810g¢1|2+ AO ,&_|

0 log 1,/11

"} = r{g ~Alogy — |

+h2{ A%log iy — |——5——*} = 0.

Notice that the left side of equation (B3] is a complex polynomial P of degree
2 which vanishes at hy = 1,ho,hs. Since the zeros of holomorphic functions
Y — Y,k # j, are isolated, hi,ho,hs are not equal to each other in a dense
set. Therefore the coefficients of this polynomial are identical to zero. In this case,
AClog g = 4| 21080112, O

From now on we assume that f1, fo, f3 are mutually noncongruent. We will use
this fact only for the two Lagrangian immersions f; and f,. Considering || =
[1)2|?, we may write

1/)2 = 1/)16197
where 6 is well defined outside the zeros of || = e3“(e™“[¢|> + 1 — K) =
e*(3|H|* + 1 — K) modulo 27, where K is the Gauss curvature of the induced
metric and |H| is the length of the mean curvature vector.
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‘We now consider

'(/}1 - w2 i0
=2 ] e
@ (a1
which is well defined on M\U. Since 11 — 12 is holomorphic, we have
(3.6) NlogQ = Alog|Q| +iNargQ <0,

where A is the Laplace-Beltrami operator on M. From (B.0) we know that
Alog|Q] <0, Aarg@Q =0

on M\U.
We now observe that since @ is not zero in the connected set M\U, the function
0 cannot be zero modulo 27 in this set. Hence we can choose a continuous branch
0 : M\U — (0,27). Then there exists a continuous branch
Tom

arg(Q(2)) € (—5. 7):

for z € M\U. In particular, arg @ is a bounded harmonic function on M\U,
where U is a discrete points set. Therefore, by the removable singularities theorem,
arg () can extend to a smooth harmonic function on M, and hence arg(@ is a
constant. It follows that @ is a constant. Consequently, ¥; is holomorphic, and
by Proposition 23] the surface M is Lagrangian twistor harmonic. This completes
the proof.

4. BONNET PAIRS

Let f1, fo be a Bonnet pair, i.e., two isometric noncongruent Lagrangian sur-
faces with coinciding mean curvature form. As conformal immersions of the same
Riemann surface

fi:M — CP?, fy: M — CP?,
they are described by the corresponding Hopf differentials W1, ¥y, the conformal
metric 2e“dzdz and the mean curvature form ®. Since the surfaces are non-
congruent, the Hopf differentials differ: Wy # Ws.

Proposition 4.1. Let ¥, and Vo be the Hopf differentials of a Lagrangian Bonnet
pair fio: M — CP2. Then there exist a holomorphic cubic differential h = U, — W,
on M and a smooth real-valued function o : M — CP? such that

1 1

Proof. Define a smooth cubic differential

q=V1 + Us.
BI) implies
qh + hg = 0.
Thus o = —i{ is a real-valued function defined on M\Uj,, where

U, ={P e M| h(P) =0}
is the zero set of h. At any zy € U the holomorphic differential h has the form
h(z) = (z—20)ho(2), ho(z) #0, keN.
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In a neighborhood of zy we have

gt 4@

(z = 20)" ho(z)’
where ¢ is smooth and hg is holomorphic. Real-valuedness of o near zg implies

q(z) = (2 = 20)*g0(2)
with go smooth, which implies the smoothness of « at z3. So « can be smoothly
extended to the whole M. (]

Corollary 4.2. Umbilic points of a Lagrangian Bonnet pair are isolated. The
umbilic set coincides with the zero set of h, i.e., U = Uy,.

The number k& which is defined above is called the index of the umbilic point.
We call the zero divisor D = (h) of h the umbilic divisor of a Lagrangian Bonnet
pair.

In exactly the same way as in the case of Bonnet pairs in R? (see [1]), for compact
Riemann surfaces, Propositions Bl 1] imply the following.

Proposition 4.3. (1) There are no Lagrangian Bonnet pairs of genus zero.
(2) Lagrangian Bonnet pairs of genus one have no umbilic points.
(3) If Lagrangian Bonnet pairs of genus g > 1 exist, the umbilic divisor D is
of degree 6g — 6 and its class is D = 3K, where K is the canonical divisor.

The development of Bonnet pairs in CP? so far has been completely parallel to
the case of Bonnet pairs in R3. But similar to the case of Bonnet pairs in S3 [15],
Lagrangian Bonnet pairs can be compact in CP2. Recall we have constructed a
class of examples of S'-equivariant Hamiltonian stationary Lagrangian tori in CP?
(see [12]) which have the metric g = 2e“dzdZz, where u only depends on one variable,
the mean curvature one-form ® = dz and the Hopf differential ¥ = 9dz> satisfying
that ¢ = —e* + C, where C is a constant. It is not hard to see that the case when
C' is a complex constant in [I2] provides us examples of Lagrangian Bonnet pairs
of genus one, whose Hopf differentials satisfy that the 1)’s are complex conjugate to
each other.
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