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A NOTE ON CLASSIFICATION OF SUBMODULES IN H2(D2)

RONGWEI YANG

(Communicated by Nigel J. Kalton)

Abstract. The Hardy spaces H2(D2) can be viewed as a module over the

polynomial ring C[z1, z2]. Based on a study of core operator, a new equivalence
relation for submodules, namely congruence, was introduced. This paper gives
a classification of congruent submodules by the rank of core operators.

0. Introduction

In this paper D denotes the unit disk of the complex plane C and T denotes the
unit circle. The polynomial ring C[z1, z2] acts on the Hardy space over the bidisk
H2(D2) by multiplication of functions, which turns H2(D2) into a module over
C[z1, z2]. It is clear that a closed subspace M ⊂ H2(D2) is a submodule if and only
if it is invariant under multiplications by both z1 and z2. For example, if I is an ideal
in C[z1, z2], then its closure in H2(D2) (which we denote by [I]) is a submodule.
There are also many submodules that are unrelated to ideals in C[z1, z2]. For
instance, W. Rudin displayed two submodules in [Ru]: one is of infinite rank, and
the other contains no nontrivial bounded functions. In an attempt to understand
the structure of submodules, two canonical equivalence relations were considered.
Two submodules M and N are said to be unitarily equivalent (or similar) if there is
a unitary (or, respectively, invertible) module map between them. Much is known
about the two equivalence relations (cf. Chen and Guo [CG]). A most notable fact
is the rigidity phenomenon discovered by Douglas, Paulsen, Sah and Yan in [DPSY].
To be precise, let I1 and I2 be two ideals in C[z1, z2] such that each has at most
countably many zeros in D2. If there are bounded module maps A : [I1] −→ [I2]
and B : [I2] −→ [I1] both with dense range, then [I1] = [I2]. Hence [I1] and [I2]
are unitarily equivalent or similar only if they are identical. The following example
provides a simple illustration of this fact.

Example 1. Let λ = (λ1, λ2) be any point in D2 and

Hλ = {f ∈ H2(D2) : f(λ) = 0}.
Then Hλ is a submodule. The rigidity theorem above implies that as long as α �= β,
Hα and Hβ are not unitarily equivalent.
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However, Hα and Hβ are intuitively the same type of submodules. The rigidity
phenomenon indicates that, for the purpose of classifying submodules, one needs a
more flexible equivalence relation. Congruence of submodules was defined in [Ya2].
While it is still far from a complete classification of all submodules, the congruence
relation is able to make good progress in this quest, as we will see in the next
section.

1. Core operator and congruence

In this paper K(λ, z) = (1 − λ1z1)−1(1 − λ2z2)−1 is the reproducing kernel for
H2(D2). The reproducing kernel for a submodule M is denoted by KM (λ, z). The
core function GM (λ, z) for M is

GM (λ, z) :=
KM (λ, z)
K(λ, z)

= (1 − λ1z1)(1 − λ2z2)KM (λ, z),

and the core operator CM (or simply C) on H2(D2) is given by

CM (f)(z) :=
∫

T 2
GM (λ, z)f(λ)dm(λ), z ∈ D2,

where dm(λ) is the normalized Lebesgue measure on T 2. The core operator is
introduced in [GY]. More studies can be found in [Ya1] and [Ya2]. A basic fact is
that on every submodule M , C is a bounded self-adjoint operator with ‖C‖ = 1.
Moreover, it is not hard to check that C = 0 on M⊥, so C will be restricted to M
in our study.

For a submodule M we let (R1, R2) be the pair of multiplications by z1 and z2

on M . Clearly, (R1, R2) is a pair of commuting isometries on M . One relation
between the core operator and the pair (R1, R2) is the identity

(1-1) C = 1 − R1R
∗
1 − R2R

∗
2 + R1R2R

∗
1R

∗
2.

A submodule M is said to be c-compact (c-finite) if its core operator C is com-
pact (or, respectively, of finite rank). There are many c-finite submodules, and as
indicated in [Ya2], almost all known examples of submodules are c-compact (in fact
Hilbert-Schmidt). Two submodules M and N are said to be congruent if CM and
CN are congruent, e.g., there is a bounded invertible linear operator J from N to
M such that CM = JCNJ∗.

Example 2. Now consider the action L of Aut(D2) on H2(D2) defined by

(Lxf)(z) = f(x(z)), x ∈ Aut(D2),

where Aut(D2) is the group of bi-holomorphic self-maps on D2. One sees that Lx

is bounded invertible and Lx(M) is a submodule. Moreover, by [Ya2],

CLx(M) = LxCML∗
x.

Hence M and Lx(M) are congruent. In particular, Hα and Hβ in Example 1 are
congruent.

An invertible symmetric matrix A is said to have signature (p, q) if there is
a nondegenerate matrix T such that TAT ∗ is a diagonal matrix with p 1s and
q − 1s. Since signature is a complete invariant of congruence relation for invertible
self-adjoint matrices, it follows easily that two c-finite submodules M and N are
congruent if and only if CM and CN , when restricted to the orthogonal complement
of their kernels, have the same signature (cf. [Ya2]). The main purpose of this paper
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is to improve on this fact and show that the rank itself is a complete invariant for
congruent c-finite submodules.

The following lemma from [Ya2] is needed.

Lemma 1.1. C2 is unitarily equivalent to the diagonal block matrix(
[R∗

1, R1][R∗
2, R2][R∗

1, R1] 0
0 [R∗

2, R1]∗[R∗
2, R1]

)
.

For an operator A with an eigenvalue λ, we let Eλ(A) denote the corresponding
eigenspace. It is shown in [GY] that

E1(C) = M � (z1M + z2M), E−1(C) = (z1M ∩ z2M) � z1z2M.

The next lemma is concerned with eigenvalues in the open interval (−1, 1).

Lemma 1.2. Let M be a submodule, and let λ be a nonzero eigenvalue of C in
(−1, 1). Then −λ is also an eigenvalue, and moreover dim Eλ(C) = dim E−λ(C).

Proof. Assume λ is a nonzero eigenvalue of C in (−1, 1). For any nontrivial f ∈
Eλ(C), we have

R∗
2Cf = λR∗

2f.

It follows from (1-1) that

λR∗
2f = R∗

2(I − R1R
∗
1 − R2R

∗
2 + R1R2R

∗
1R

∗
2)f

= R∗
2 − R∗

2R1R
∗
1 − R∗

2 + R1R
∗
1R

∗
2)f

= −(R∗
2R1 − R1R

∗
2)R

∗
1f.(1-2)

Parallelly, we have

(1-3) λR∗
1f = −(R∗

1R2 − R2R
∗
1)R

∗
2f.

We first observe that R∗
2f �= 0. Since if R∗

2f = 0, by (1-3), R∗
1f is also equal to 0.

This means that f ∈ M � (z1M + z2M), which contradicts the fact that λ �= 1.
Putting (1-3) into (1-2), we have

(1-4) [R∗
2, R1][R∗

1, R2]R∗
2f = λ2R∗

2f.

In conclusion, R∗
2 : Eλ(C) −→ Eλ2([R∗

2, R1][R∗
1, R2]) is a well-defined injective

map. In particular,

(1-5) dim Eλ(C) ≤ dimEλ2([R∗
2, R1][R∗

1, R2]).

On the other hand, if we multiply the equation Cf = λf by [R∗
1, R1] and using

(1-1), we have

λ[R∗
1, R1]f = [R∗

1, R1](I − R1R
∗
1 − R2R

∗
2 + R1R2R

∗
1R

∗
2)f

= [R∗
1, R1](I − R2R

∗
2)f + [R∗

1, R1](−R1R
∗
1 + R1R2R

∗
1R

∗
2)f

= [R∗
1, R1][R∗

2, R2]f.(1-6)

Parallelly, multiplying the equation Cf = λf by [R∗
2, R2] and using (1-1), we

have

(1-7) λ[R∗
2, R2]f = [R∗

2, R2][R∗
1, R1]f.

First we observe that [R∗
1, R1]f �= 0. Since if [R∗

1, R1]f = 0, then by (1-7),
[R∗

2, R2]f is also 0. These imply that f ∈ z1M ∩ z2M . Since it is easy to see that
z1z2M ⊂ ker C, f ∈ z1M ∩ z2 � z1z2M = E−1(C), and this contradicts the fact
that λ �= −1.
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Now combining (1-6) and (1-7), we have

(1-8) [R∗
1, R1][R∗

2, R2][R∗
1, R1]f = λ2[R∗

1, R1]f.

Since [R∗
1, R1] = [R∗

1, R1]2, these observations show that

[R∗
1, R1] : Eλ(C) −→ Eλ2([R∗

1, R1][R∗
2, R2][R∗

1, R1])

is a well-defined injective map. In particular,

(1-9) dim Eλ(C) ≤ dimEλ2([R∗
2, R1][R∗

1, R2]).

It now follows from Lemma 1.1 that

dimEλ2((C)2) ≥ 2 dimEλ(C),

which implies that

dimE−λ(C) ≥ dimEλ(C).

The same line of arguments starting with −λ will prove the inequality in the other
direction, and the proof is complete. �

If C is compact, then ran(C) can be decomposed as

ran(C) = E1 ⊕ (
⊕

0<λj<1

Eλj
) ⊕ E−1 ⊕ (

⊕
−1<λj<0

Eλj
).

For simplicity, we let d1 = dim E1, d−1 = dim E−1, and

D =
⊕

0<λj<1

λjPj ,

where Pj is the orthogonal projection from M onto Eλj
. Then Lemma 1.2 indicates

that C is unitarily equivalent to the diagonal block matrix

(1-10)

⎛
⎜⎜⎝

Id1 0 0 0
0 D 0 0
0 0 −Id−1 0
0 0 0 −D

⎞
⎟⎟⎠ .

Theorem 1.3. Two c-finite submodules M and N are congruent if and only if CM

and CN have the same rank.

Proof. If M and N are congruent c-finite submodules, then CM and CN have the
same signature by [Ya2], and hence CM and CN have the same rank.

For the sufficiency, it is shown in [GY] that if C is trace class, then trC = 1. In
view of (1-10), this fact implies d1 = d−1+1. So if CM and CN have the same rank,
then by (1-10) they have the same signature. Hence M and N are congruent. �

Example 3. It is known that rank(C) = 1 if and only if M = φH2(D2) for some
inner function φ (cf. [GY]). So by Theorem 1.3, M is congruent to H2(D2) if and
only if M is of the form φH2(D2).

It follows from (1-10) and the fact that d1 = d−1+1 that for a c-finite submodule,
the rank of C is always an odd number. So next in line is the case rankC = 3.
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Example 4. If q1(z1), q2(z2) are two nontrivial one-variable inner functions over
the unit disk D, then

M = q1(z1)H2(D2) + q2(z2)H2(D2)

is a submodule with interesting properties (cf. Izuchi, Nakazi and Seto [INS]). It
is not difficult to compute that rankC = 3.

Another type of submodule M with rankC = 3 is of the form

M = φH2(D2) ⊕ φH(z)
w − G(z)

H2(z),

where φ is an inner function, G(z) and H(z) are in the unit ball of H∞(D) that
satisfy some conditions, and H2(z) is H2(D) in the variable z (cf. K. J. Izuchi and
K. H. Izuchi [II]).

Question. Is it possible to characterize all submodules M with rankC = 3?
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